计算机操作系统实验三页面置换算法模拟实验

2020-10-09 11:41:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《计算机操作系统实验三页面置换算法模拟实验》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《计算机操作系统实验三页面置换算法模拟实验》。

计算机工程学院

实验报告书

课程名:《

操作系统原理A

目:

虚拟存储器管理

页面置换算法模拟实验

级:

号:

名:

评语:

成绩:

指导教师:

批阅时间:

****年**月**日

一、实验目的与要求

1.目的:

请求页式虚存管理是常用的虚拟存储管理方案之一。通过请求页式虚存管理中对页面置换算法的模拟,有助于理解虚拟存储技术的特点,并加深对请求页式虚存管理的页面调度算法的理解。

2.要求:

本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。其中虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。

二、实验说明

1.设计中虚页和实页的表示

本设计利用C语言的结构体来描述虚页和实页的结构。

pn

pfn

time

pn

pfn

next

虚页结构

实页结构

在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。

在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。

2.关于缺页次数的统计

为计算命中率,需要统计在20次的虚页访问中命中的次数。为此,程序应设置一个计数器count,来统计虚页命中发生的次数。每当所访问的虚页的pfn项值不为-1,表示此虚页已被装入某实页内,此虚页被命中,count加1。最终命中率=count/20*100%。

3.LRU算法中“最近最久未用”页面的确定

为了能找到“最近最久未用”的虚页面,程序中可引入一个时间计数器countime,每当要访问一个虚页面时,countime的值加1,然后将所要访问的虚页的time项值设置为增值后的当前countime值,表示该虚页的最后一次被访问时间。当LRU算法需要置换时,从所有已分配实页的虚页中找出time值为最小的虚页就是“最近最久未用”的虚页面,应该将它置换出去。

4.算法中实页的组织

因为能分配的实页数n是在程序运行时由用户动态指派的,所以应使用链表组织动态产生的多个实页。为了调度算法实现的方便,可以考虑引入free和busy两个链表:free链表用于组织未分配出去的实页,首指针为free_head,初始时n个实页都处于free链表中;busy链表用于组织已分配出去的实页,首指针为busy_head,尾指针为busy_tail,初始值都为null。当所要访问的一个虚页不在实页中时,将产生缺页中断。此时若free链表不为空,就取下链表首指针所指的实页,并分配给该虚页。若free链表为空,则说明n个实页已全部分配出去,此时应进行页面置换:对于FIFO算法要将busy_head

所指的实页从busy链表中取下,分配给该虚页,然后再将该实页插入到busy链表尾部;对于LRU算法则要从所有已分配实页的虚页中找出time值为最小的虚页,将该虚页从装载它的那个实页中置换出去,并在该实页中装入当前正要访问的虚页。

三、程序流程图

四、主要程序清单

#include

#include

/*全局变量*/

int

mSIZE;

/*物理块数*/

int

pSIZE;

/*页面号引用串个数*/

static

int

memery[10]={0};

/*物理块中的页号*/

static

int

page[100]={0};

/*页面号引用串*/

static

int

temp[100][10]={0};

/*辅助数组*/

/*置换算法函数*/

void

FIFO();

void

LRU();

void

OPT();

/*辅助函数*/

void

print(unsigned

int

t);

void

designBy();

void

download();

void

mDelay(unsigned

int

Delay);

/*主函数*/

void

main()

{

int

i,k,code;

printf(“请输入物理块的个数(M<=10):“);

scanf(“%d“,&mSIZE);

printf(“请输入页面号引用串的个数(P<=100):“);

scanf(“%d“,&pSIZE);

puts(“请依次输入页面号引用串(连续输入,无需隔开):“);

for(i=0;i

scanf(“%1d“,&page[i]);

download();

do

{

puts(“输入的页面号引用串为:“);

for(k=0;k<=(pSIZE-1)/20;k++)

{

for(i=20*k;(i

{

if(((i+1)%20==0)||(((i+1)%20)&&(i==pSIZE-1)))

printf(“%d\n“,page[i]);

else

printf(“%d

“,page[i]);

}

}

printf(“*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*\n“);

printf(“*

请选择页面置换算法:\t\t\t

*\n“);

printf(“*

-----------------------------------------*\n“);

printf(“*

1.先进先出(FIFO)

2.最近最久未使用(LRU)

*\n“);

printf(“*

3.退出

*\n“);

printf(“*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*\n“);

printf(“请选择操作:[

]\b\b“);

scanf(“%d“,&code);

switch(code)

{

case

1:

FIFO();

break;

case

2:

LRU();

break;

case

3:

OPT();

break;

case

4:

system(“cls“);

//system(“color

0A“);

exit(0);

default:

printf(“输入错误,请重新输入:“);

}

printf(“按任意键重新选择置换算法:>>>“);

getchar();

}

while

(code!=4);

getchar();

}

/*载入数据*/

void

download()

{

printf(“\nFinish.\n载入成功!“);

}

/*设置延迟*/

void

mDelay(unsigned

int

Delay)

{

unsigned

int

i;

for(;Delay>0;Delay--)

{

for(i=0;i<124;i++)

{

printf(“

\b“);

}

}

}

/*显示设计者信息*/

void

print(unsigned

int

t)

{

int

i,j,k,l;

int

flag;

for(k=0;k<=(pSIZE-1)/20;k++)

{

for(i=20*k;(i

{

if(((i+1)%20==0)||(((i+1)%20)&&(i==pSIZE-1)))

printf(“%d\n“,page[i]);

else

printf(“%d

“,page[i]);

}

for(j=0;j

{

for(i=20*k;(i{

if(i>=j)

printf(“

|%d|“,temp[i][j]);

else

printf(“

|

|“);

}

for(i=mSIZE+20*k;(i

{

for(flag=0,l=0;l

if(temp[i][l]==temp[i-1][l])

flag++;

if(flag==mSIZE)/*页面在物理块中*/

printf(“

“);

else

printf(“

|%d|“,temp[i][j]);

}

/*每行显示20个*/

if(i%20==0)

continue;

printf(“\n“);

}

}

printf(“----------------------------------------\n“);

printf(“缺页次数:%d\t\t“,t+mSIZE);

printf(“缺页率:%d/%d\n“,t+mSIZE,pSIZE);

printf(“置换次数:%d\t\t“,t);

printf(“访问命中率:%d%%\n“,(pSIZE-(t+mSIZE))*100/pSIZE);

printf(“----------------------------------------\n“);

}

/*计算过程延迟*/

void

compute()

{

int

i;

printf(“正在进行相关计算,请稍候“);

for(i=0;i++<30;printf(“\b“));

for(i=0;i++<30;printf(“

“));

for(i=0;i++<30;printf(“\b“));

}

/*先进先出页面置换算法*/

void

FIFO()

{

int

memery[10]={0};

int

time[10]={0};

/*记录进入物理块的时间*/

int

i,j,k,m;

int

max=0;

/*记录换出页*/

int

count=0;

/*记录置换次数*/

/*前mSIZE个数直接放入*/

for(i=0;i

{

memery[i]=page[i];

time[i]=i;

for(j=0;j

temp[i][j]=memery[j];

}

for(i=mSIZE;i

{

/*判断新页面号是否在物理块中*/

for(j=0,k=0;j

{

if(memery[j]!=page[i])

k++;

}

if(k==mSIZE)

/*如果不在物理块中*/

{

count++;

/*计算换出页*/

max=time[0]

for(m=2;m

if(time[m]

max=m;

memery[max]=page[i];

time[max]=i;

/*记录该页进入物理块的时间*/

for(j=0;j

temp[i][j]=memery[j];

}

else

{

for(j=0;j

temp[i][j]=memery[j];

}

}

compute();

print(count);

}

/*最近最久未使用置换算法*/

void

LRU()

{

int

memery[10]={0};

int

flag[10]={0};

/*记录页面的访问时间*/

int

i,j,k,m;

int

max=0;

/*记录换出页*/

int

count=0;

/*记录置换次数*/

/*前mSIZE个数直接放入*/

for(i=0;i

{

memery[i]=page[i];

flag[i]=i;

for(j=0;j

temp[i][j]=memery[j];

}

for(i=mSIZE;i

{

/*判断新页面号是否在物理块中*/

for(j=0,k=0;j

{

if(memery[j]!=page[i])

k++;

else

flag[j]=i;

/*刷新该页的访问时间*/

}

if(k==mSIZE)

/*如果不在物理块中*/

{

count++;

/*计算换出页*/

max=flag[0]

for(m=2;m

if(flag[m]

max=m;

memery[max]=page[i];

flag[max]=i;

/*记录该页的访问时间*/

for(j=0;j

temp[i][j]=memery[j];

}

else

{

for(j=0;j

temp[i][j]=memery[j];

}

}

compute();

print(count);

}

/*最佳置换算法*/

void

OPT()

{

int

memery[10]={0};

int

next[10]={0};

/*记录下一次访问时间*/

int

i,j,k,l,m;

int

max;

/*记录换出页*/

int

count=0;

/*记录置换次数*/

/*前mSIZE个数直接放入*/

for(i=0;i

{

memery[i]=page[i];

for(j=0;j

temp[i][j]=memery[j];

}

for(i=mSIZE;i

{

/*判断新页面号是否在物理块中*/

for(j=0,k=0;j

{

if(memery[j]!=page[i])

k++;

}

if(k==mSIZE)

/*如果不在物理块中*/

{

count++;

/*得到物理快中各页下一次访问时间*/

for(m=0;m

{

for(l=i+1;l

if(memery[m]==page[l])

break;

next[m]=l;

}

/*计算换出页*/

max=next[0]>=next[1]?0:1;

for(m=2;m

if(next[m]>next[max])

max=m;

/*下一次访问时间都为pSIZE,则置换物理块中第一个*/

memery[max]=page[i];

for(j=0;j

temp[i][j]=memery[j];

}

}

if(k==mSIZE)

/*如果不在物理块中*/

{

count++;

/*得到物理快中各页下一次访问时间*/

for(m=0;m

{

for(l=i+1;l

if(memery[m]==page[l])

break;

next[m]=l;

}

/*计算换出页*/

max=next[0]>=next[1]?0:1;

for(m=2;m

if(next[m]>next[max])

max=m;

/*下一次访问时间都为pSIZE,则置换物理块中第一个*/

memery[max]=page[i];

for(j=0;j

temp[i][j]=memery[j];

}

}

五、程序运行结果

①FIFO

②LRU

六、实验体会

在做该次作业的时候,通过对课本相关内容的温习,以及对自己在网络上找到的一些资源的了解。我对操作系统中页面调度的算法有了很大程度的了解,加深了对课程上知识的理解,也懂得了如何在程序中将这些算法实现,在程序中基本上实现了所要求的算法以及相关的性能分析,基本上实现了课程的要求。

这次作业也暴露了自己在某些方面的不足之处,自己的语言功底有一定的不足,以及一开始对某个算法不够熟悉,将算法实现设计的比较复杂,此次自己的程序存在一些思想上的漏洞,反映出此次程序设计的要求有了一定的限制。

下载计算机操作系统实验三页面置换算法模拟实验word格式文档
下载计算机操作系统实验三页面置换算法模拟实验.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    计算机操作系统实验4页面置换算法

    实验4 页面置换算法(2学时) 一、实验目的 通过实验加强对虚拟存储管理中页面置换算法的理解和掌握。 二、实验内容 编写程序实现虚拟存储管理中OPT,FIFO,LRU页面置换算法。 三......

    操作系统 七次实验报告 常用页面置换算法模拟实验

    操作系统课程第七次实验报告姓名学号系计算机任课教师指导教师评阅教师实验地点综合楼B102实验时间2012-9-26实验课表现出勤和个人表现Q1(15+15(组长评分)=30分)得分:实验总分(......

    页面置换算法模拟实验 操作系统大作业(含源文件)(合集五篇)

    “计算机操作系统”课程设计大作业 页面置换算法模拟实验 (含完整资料,可直接提交) 一、题目: 页面置换算法模拟实验 二、目的 分别采用最佳(Optimal)置换算法、先进先出(FI......

    实验5 页面置换算法

    实验5 页面置换算法 一、实验题目:页面置换算法(请求分页) 二、实验目的: 进一步理解父子进程之间的关系。 1) 理解内存页面调度的机理。 2) 掌握页面置换算法的实现方法。 3) 通......

    计算机操作系统 课程设计报告 银行家算法

    《计算机操作系统》 课 程 设 计 报 告 题 目: 银行家算法班 级: XXXXXXXXXXXXXXXX 姓 名: XXM 学 号: XXXXXXXXXXXX 指导老师: XXXXXXXXXXXXXX 设计时间: XXXXXXXXXXXXXXX......

    《操作系统原理》算法总结

    《操作系统原理》算法总结 一、进程(作业)调度算法  先来先服务调度算法(FCFS):每次调度是从就绪队列中,选择一个最先进入就绪队列的进程,把处理器分配给该进程,使之得到执行。该......

    操作系统实验报告(clock算法)

    实验四 页面置换算法 一、实验目的 本实验主要对操作系统中请求分页式内存管理及其应用的一些关键算法进行模拟。学生通过设计与实现Clock算法,能够加强对相应理论的理解,并对......

    操作系统银行家算法实验报告

    实验四死锁 一、 实验目的 当系统的总资源数m小于或等于所有进程对对资源的最大需求时,就可能产生 死锁。死锁会引起计算机系统的瘫痪。银行家算法是在实现资源分配时避免......