【数学家故事】高斯的故事

时间:2019-05-13 12:34:22下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《【数学家故事】高斯的故事》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《【数学家故事】高斯的故事》。

第一篇:【数学家故事】高斯的故事

高斯的故事

1785年,8岁的小高斯在德国农村的一所小学里念一年级。

数学老师是城里来的。他有一个偏见,总觉得农村孩子不如城里孩子聪明。不过,他对孩子们的学习,还是严格要求的。他最讨厌在课堂上不专心听讲、爱做小动作的学生,常常用鞭子敲打他们。孩子们到爱听他的课,因为他经常讲一些非常有趣的东西。

有一天,他出了一道算术题。他说:“你们算一算,1加2加3,一直加到100等于多少?谁算不出来,就不准回家吃饭。” 说完,他就坐在椅子上,用目光巡视着趴在桌上演算的学生。

不到一分钟的工夫,小高斯站了起来,手里举着小石板,说:“老师,我算出来了......”

没等小高斯说完,老师就不耐烦的说:“不对!重新再算!”

小高斯很快的检查了一遍,高声说:“老师,没错!”说着走下座位,把小石板伸到老师面前。

老师低头一看,只见上面端端正正的写着“5050”,不禁大吃一惊。他简直不敢相信,这样复杂的数学题,一个8岁的孩子,用不到一分钟的时间就算出了正确的得数。要知道,他自己算了一个多小时,算了三遍才把这道题算对的。他怀疑以前别人让小高斯算过这道题。就问小高斯:“你是怎么算的?”小高斯回答说:“我不是按照1、2、3的次序一个一个往上加的。老师,你看,一头一尾的两个数的和都是一样的:1加100是101,2加99时101,3加98也是101......一前一后的数相加,一共有50个101,101乘50,得到5050。”

小高斯的回答使老师感到吃惊。因为他还是第一次知道有这种算法。他惊喜的看着小高斯,好像刚刚才认识这个穿着破烂不堪的,砌砖工人的儿子。

不久,老师专门买了一本数学书送给小高斯,鼓励他继续努力,还把小高斯推荐给当地教育局,使他得到免费教育的待遇。后来,小高斯成了世界著名的数学家。人们为了纪念他,把他的这种计算方法称为“高斯定理”。

第二篇:数学家高斯的故事

数学家高斯的故事

高斯(Gauss 1777~1855)是德国数学家、物理学家和天文学家,出生于一个贫苦家庭。高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,头两年没有什么特殊的事情。高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。

在全世界广为流传的一则故事说,高斯10岁时算出布特纳给老师出了一道题目:1+2+3+4+5+6+7+8+9+10+…100=?,让学生计算,当同学们正在认真计算的时候,高斯却第一个举手回答:老师,答案是5050,回答得既快又准,老师感到很惊讶的问高斯你是怎么样算出来的,高斯回答,我是发现1加100的和是101、2加99和也是101、3加98的和也是101、一共有50个101,就是5050。我就是这算出来的。高斯独到的计算方法、非同一般的创造力,使他的老师对他刮目相看,就买了最好的算术书送给高斯。高斯小的时候能将难题变成简易,是高斯平时懂得观察,寻找规律,化难为简,这是值得我们去学习的。

高斯的学术地位,历来为人们推崇得很高。他有“数学王子”、“数学家之王”的美称、被认为是人类有史以来“最伟大的三位(或四位)数学家之一”(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是“人类的骄傲”。天才、早熟、高产、创造力不衰……,人类智力领域的几乎所有褒奖之词,对于高斯都不过分。

高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程

第三篇:数学家高斯的故事

数学家高斯的故事

高斯念小学的时候,数学老师出一道数学题,题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,学生肯定是要算很久的,才有可能算出来,但是才一转眼的时间,高斯已停下了笔,老师看到了很生气的训斥高斯,但是高斯说他答案算出来了,就是55,老师听了下了一跳,问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,高斯长大后,成为一位很伟大的数学家

阿拉伯数字的由来

小明是个喜欢提问的孩子。一天,他对0—9这几个数字产生兴趣:为什么它们被称为“阿拉伯数字”呢?于是,他就去问妈妈:“0—9既然叫‘阿拉伯数字’,那肯定是阿拉伯人发明的了,对吗妈妈?”妈妈摇摇头说:“阿拉伯数字实际上是印度人发明的。大约在1500年前,印度人就用一种特殊的字来表示数目,这些字有10个,只要一笔两笔就能写成。后来,这些数字传入阿拉伯,阿拉伯人觉得这些数字简单、实用,就在自己的国家广泛使用,并又传到了欧洲。就这样,慢慢变成了我们今天使用的数字。因为阿拉伯人在传播这些数字发挥了很大的作用,人们就习惯了称这种数字为‘阿拉伯数字’。”小明听了说:“原来是这样。妈妈,这可不可以叫做‘将错就错’呢?”妈妈笑了。

﹤、﹥和﹦的本领

很久以前,数学王国比较混乱。0—9十个兄弟不仅在王国称霸,而且彼此吹嘘自己的本领最大。数学天使看到这种情况很生气,派﹤、﹥和﹦三个小天使到数学王国建立次序,避免混乱。

三个小天使来到数学王国,0—9十个兄弟轻蔑地看着它们。9问道:“你们三个来数学王国干什么,我们不欢迎你们!”

﹦笑着说:“我们是天使派来你们王国的法官,帮你们治理好你们国家。我是‘等号’,这两位是‘大于号’和‘小于号’,它们开口朝谁,谁就大;它们尖尖朝谁,谁就小。”

0—9十个兄弟听说它们是天使派来的法官,就乖乖地服从﹤、﹥和﹦的命令。从此,数学王国有了严格的次序,任何人不会违反。

数学家华罗庚的故事

华罗庚爷爷是一位只有初中文凭的世界一流数学家。他1910年11月12日出生于江苏省金坛县。他小时候学习很刻苦,初中毕业升入上海中华职业学校后,由于缴不起学费而失学,失学后他在小杂货店做记账员。与此同时,他坚持自学数学,到处借书、抄书,并养成了“啃”数学难题的习惯。他用五年时间自学了高中的课程,又用两年时间自学了大学的全部课程。他先后在国内外几所大学任教,19岁时开始发表论文,先后发表了几十篇论文,成为著名的数学家。华罗庚爷爷于1985年6月在访问日本时不幸逝世。日记本引他走向成才路

雅各布·伯努利是欧洲著名的数学家,他于1654年出生在瑞士的巴塞尔。

从13岁开始,雅各布悄悄地写起了日记,他把自己在学习中所取得的收获及遇到的难题,统统记了下来。翻开他的日记,有阅读书报杂志的体会,有与别人讨论数学问题时得到的启发,有解决数学难题突发的奇想„„日记成了雅各布学习数学的问题集,解决问题的思路集、办法集,研究数学问题的收获集、成果集。

雅各布对数学的执著追求,终于使他走上了研究数学的道路。他33岁就成为巴塞尔大学数学教授。

数学家陈景润的故事

陈景润是我国现代著名的数学家,1933年出生于福建。在高中时,他的老师讲了哥德巴赫猜想的故事之后说:“科学的皇冠是数学,数学的皇冠是数论,哥德巴赫猜想是皇冠上的明珠。”

这些话深深地打动了青年学生陈景润的心,他下定决心要学数学。1956年底,已先后写了四十多篇论文的陈景润调到中国科学院,开始在华罗庚教授指导下专心研究数论。1966年5月,他像一颗璀璨的明星升上数学的天空,宣布他已经证明了(1+2)。1973年,关于(1+2)的简化证明发表了,他的论文轰动了整个数学界。(1+2)即“大偶数都能表示一个素数及一个超过二个素数的积之和”,被国际公认为“陈景润定理”。数学博士的“错误”

时间王国的全体国民刚刚举行完一次数学考试,时间博士邀请数学王国的对对博士来做阅卷指导。对对博士高兴地拿起一份试卷,可是他越看越生气,这是为什么呢?原来他在检查试卷的时候,发现所有人的试题都做错了,例如:

7+6=1;6+6=0;3-7=8

对对博士把问题反映给时间博士,时间博士看着试卷,笑着对他说:“博士,他们做的并没有错误。因为在时间王国中晚上12点就是0点,所以6=6=0;7点钟再过6小时是13点,也就是1点,即7+6=1;3-7就是表示3点钟前7个小时是8点钟”

对对博士一拍脑袋,说:“对呀!哎,看来我这个博士还得继续学习啊。”

事故讲完了,小朋友们,你认识钟表吗?你会计算时间吗?让我们一起来学习“时间”。

有用的“×”

我的名字叫“乘号”。

我是数学符号王国中的一员猛将,大家都离不开我。

对了,我可不是“+”,你们要看清楚,我的方向跟他不一样。但是我们之间的关系很密切,如果“+”两边的数字是一样的,我就可以减轻他的负担,很容易的得到结果,著名数学家高斯在小的时候,就是用我来解决问题的。

在乘法竖式中,我的位置和“+”、“-”一样,但是我的运算方式却不一样。我是分级运算的,我的准则就是乘法口诀。

除法虽然表面上和我处处做对,但是我们之间互相协助,他可以帮助我发现运算中的错误,相反我也可以帮助他。

“0”的故事

大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。

而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。过了一段时间,这件事被当时的罗马教皇知道了。当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇帝。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。

但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。

数字之间的故事。

有一天,数字卡片在一起吃午饭的时候,最小的一位说起话来了。0弟弟说:“我们大家伙儿,一起拍几张合影吧,你们觉得怎么样?”

0的兄弟姐妹们一口齐声的说:“好啊。”

8哥哥说:“0弟弟的主意可真不错,我就做一回好人吧,我老8供应照相机和胶卷,好吧?”

老4说话了:“8哥,好是好,就是太麻烦了一点,到不如用我的数码照相机,就这么定了吧。”

于是,它们变忙了起来,终于+号帮它们拍好了,就立刻把数码照相机送往冲印店,冲是冲好了,电脑姐姐身手想它们要钱,可它们到底谁付钱呢?它们一个个呆呆的望着对方,这是电脑姐姐说:“一共5元钱,你们一共十一个兄弟姐妹,平均一人付多少元钱?”

在它们十一个人中,就数老六最聪明,这回它还是第一个算出了结果,你知道它是怎么算出来的吗?

儿歌比赛

数学学校举行儿歌比赛,大象老师做裁判。

小猴聪聪第一个举手。聪聪清了清嗓子,开始朗诵道:“进位加法我会算,数位对齐才能加。个位对齐个位加,满十要向十位进。十位相加再加一,得数算得快又准。”

聪聪刚刚说完,小狗佳佳兴起手,说:“我的儿歌和聪聪的很相似。”大象老师说:“好!那我们听听你的儿歌。”佳佳大方地走上台,朗诵道:“退位减法并不难,数位对齐才能减。个位数小不够减,要向十位借个一。十位退一是一十,退了以后少个一。十位数字怎么减,十位退一再去减。”

大家为他们的精彩表演鼓掌。大象老师说:“他们的儿歌主我们明白了进位加法和退位减法,所以,我们觉得他们两个人都得冠军,好不好?”大家同意老师的意见,高兴的鼓掌祝贺他们俩。

找零钱

一家手杖店来了一个顾客,买了30元一根的手杖.他拿出一张50元的票子,要求找钱.

店里正巧没有零钱,店主到邻居处把50元的票子换成零钱,给了顾客20元的找头.顾客刚走,邻居慌慌张张地奔来,说这张50元的票子是假的.店主不得已向邻居赔偿了50元.随后出门去追那个顾客,并把他抓住说:“你这个骗子,我赔给邻居50元,又给你找头20元,你又拿走了一根手杖,你得赔偿我100元的损失.”这个顾客却说:“一根手杖的费用就是邻居给你换零钱时你留下的30元,因此我只拿了你70元.”请你计算一下,手杖店真正的损失是多少?这里要补充一下,手杖的成本是20元.如果这个顾客行骗成功,那么共骗得了多少钱?

猴子捞帽

一群猴子在井旁玩,一阵风将一只猴子的帽子吹到井里,他招呼来18个小伙伴,从井上方的松上一个接一个去捞帽子,有4只猴子没有上树,就捞着了帽子,问:是几只猴子上树下井接在一起把帽子捞上来的?

蜗牛何时爬上井?

一只蜗牛不小心掉进了一只枯井里,它趴在井底上哭起来,一只癞蛤蟆过来,翁声翁气的对蜗牛说:“别哭了,小兄弟,哭也没用,这井壁又高又滑,掉到这里只能在这里生活了。我已经在这里生活了许多年了。蜗牛望着又老又丑的癞蛤蟆,心里想:“井外的世界多美呀!我决不能像它那样生活在又黑又冷的井底里。”蜗牛对癞蛤蟆说:“癞大叔,我不能生活在这里,我一定要爬出去,请问这口井有多深?”“哈哈哈„„,真是笑话,这井有10米深,你小小年纪。又背负着这么重的壳,怎么能爬出去呢?”“我不怕苦不怕累,每天爬一段,总能爬出去!”第二天,蜗牛吃得饱饱的,开始顺着井壁往上爬了,它不停的爬呀爬,到了傍晚,终于爬了5米,蜗牛特别高兴,心想:“照这样的速度,明天傍晚我就可以爬出去了。”想着想着不知不觉睡着了,早上,蜗牛被一阵呼噜声吵醒了,一看,原来是癞大叔还以睡觉,他心里一惊:“我怎么离井底这么近?”原来,蜗牛睡着以后,从井壁上滑下来4米,蜗牛叹了一口气,咬咬牙,又开始往上爬,到傍晚又往上爬了5米,可晚上,蜗牛又滑下来4米,就这样,爬呀爬,滑呀滑,最后坚强的蜗牛终于爬上了井台。聪明的小朋友你能猜出来蜗牛用了多少天才爬上井台的吗?

第四篇:数学家高斯小时候的故事

数学家高斯小时候的故事

从一加到一百

高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈他小时后的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。

高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。

高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音后,就自己学着读起书来。

七岁时高斯进了 St.Catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯:第一个做完的就把石板〔当时通行,写字用〕面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。

数学家高斯的故事

高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。

老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。

1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。

数学家华罗庚小时候的轶事

华罗庚(1910——1982)出生于江苏太湖畔的金坛县,因出生时被父亲华老祥放于箩筐以图吉利,“进箩避邪,同庚百岁“,故取名罗庚。

华罗庚从小便贪玩,也喜欢凑热闹,只是功课平平,有时还不及格。勉强上完小学,进了家乡的金坛中学,但仍贪玩,字又写得歪歪扭扭,做数学作业时倒时满认真地画来画去,但像涂鸦一般,所以上初中时的华罗庚仍不被老师喜欢的学生而且还常常挨戒尺。

金坛中学的一位名叫王维克的教员却独有慧眼,他研究了华罗庚涂鸦的本子才发现这许多涂改的地方正反映他解题时探索的多种路子。一次王维克老师给学生讲[孙子算经]出了这样一道题:”今有物不知其数,三三数之剩其二,五五数剩其三,七七数剩其二,问物几何?“正在大家沉默之际,有个学生站起来,大家一看,原来是向来为人瞧不起的华罗庚,当时他才十四岁,你猜一猜华罗庚他说出是多少?

陈景润:小时候,教授送我一颗明珠

20多年前,一篇轰动全中国的报告文学《哥德巴赫猜想》,使得一位数学奇才一夜之间街知巷闻、家喻户晓。在一定程度上,这个人的事迹甚至还推动了一个尊重科学、尊重知识和尊重人才的伟大时代早日到来。他的名字叫做陈景润。

不善言谈,他曾是一个“丑小鸭”。通常,一个先天的聋子目光会特别犀利,一个先天的盲人听觉会十分敏锐,而一个从小不被人注意、不受人欢迎的“丑小鸭”式的人物,常常也会身不由己或者说百般无奈之下穷思冥想,探究事理,格物致知,在天地万物间重新去寻求一个适合自己的位置,发展自己的潜能潜质。你可以说这是被逼的,但这么一“逼”往往也就“逼”出来不少伟人。比如童年时代的陈景润。陈景润1933年出生在一个邮局职员的家庭,刚满4岁,抗日战争开始了。不久,日寇的狼烟烧至他的家乡福建,全家人仓皇逃入山区,孩子们进了山区学校。父亲疲于奔波谋生,无暇顾及子女的教育;母亲是一个劳碌终身的旧式家庭妇女,先后育有12个子女,但最后存活下来的只有6个。陈景润排行老三,上有兄姐、下有弟妹,照中国的老话,“中间小囡轧扁头“,加上他长得瘦小孱弱,其不受父母欢喜、手足善待可想而知。在学校,沉默寡言、不善辞令的他处境也好不到哪里去。不受欢迎、遭人欺负,时时无端挨人打骂。可偏偏他又生性倔强,从不曲意讨饶,以求改善境遇,不知不觉地便形成了一种自我封闭的内向性格。人总是需要交流的,特别是孩子。禀赋一般的孩子面对这种困境可能就此变成了行为乖张的木讷之人,但陈景润没有。对数字、符号那种天生的热情,使得他忘却了人生的艰难和生活的烦恼,一门心思地钻进了知识的宝塔,他要寻求突破,要到那里面去觅取人生的快乐。所谓因材施教,就是通过一定的教育教学方法和手段,为每一个学生创造一个根据自己的特点充分得到发展的空间。

小小陈景润,自己对自己因材施教着。

一生大幸,小学生邂逅大教授但是,他毕竟还是个孩子。除了埋头书卷,他还需要面对面、手把手的引导。毕竟,能给孩子带来最大、最直接和最鲜活的灵感和欢乐的,还是那种人与人之间的、耳提面命式的,能使人心灵上迸射出辉煌火花的交流和接触。所幸,后来随着家人回到福州,陈景润遇到了他自谓是终身获益匪浅的名师沈元。

沈元是中国著名的空气动力学家,航空工程教育家,中国航空界的泰斗。他本是伦敦大学帝国理工学院毕业的博士、清华大学航空系主任,1948年回到福州料理家事,正逢战事,只好留在福州母校英华中学暂时任教,而陈景润恰恰就是他任教的那个班上的学生。

大学名教授教幼童,自有他与众不同、出手不凡的一招。针对教学对象的年龄和心理特点,沈元上课,常常结合教学内容,用讲故事的方法,深入浅出地介绍名题名解,轻而易举地就把那些年幼的学童循循诱入了出神入化的科学世界,激起他们向往科学、学习科学的巨大热情。比如这一天,沈元教授就兴致勃勃地为学生们讲述了一个关于哥德巴赫猜想的故事。

师手遗“珠“,照亮少年奋斗的前程

“我们都知道,在正整数中,2、4、6、8、10......,这些凡是能被2整除的数叫偶数;1、3、5、7、9,等等,则被叫做奇数。还有一种数,它们只能被1和它们自身整除,而不能被其他整数整除,这种数叫素数。“

像往常一样,整个教室里,寂静地连一根绣花针掉在地上的声音都能听见,只有沈教授沉稳浑厚的嗓音在回响。

“二百多年前,一位名叫哥德巴赫的德国中学教师发现,每个不小于6的偶数都是两个素数之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13......反反复复的,哥德巴赫对许许多多的偶数做了成功的测试,由此猜想每一个大偶数都可以写成两个素数之和。”沈教授说到这里,教室里一阵骚动,有趣的数学故事已经引起孩子们极大的兴趣。

“但是,猜想毕竟是猜想,不经过严密的科学论证,就永远只能是猜想。”这下子轮到小陈景润一阵骚动了。不过是在心里。

该怎样科学论证呢?我长大了行不行呢?他想。后来,哥德巴赫写了一封信给当时著名的数学家欧勒。欧勒接到信十分来劲儿,几乎是立刻投入到这个有趣的论证过程中去。但是,很可惜,尽管欧勒为此几近呕心沥血,鞠躬尽瘁,却一直到死也没能为这个猜想作出证明。从此,哥德巴赫猜想成了一道世界著名的数学难题,二百多年来,曾令许许多多的学界才俊、数坛英杰为之前赴后继,竞相折腰。教室里已是一片沸腾,孩子们的好奇心、想像力一下全给调动起来。

“数学是自然科学的皇后,而这位皇后头上的皇冠,则是数论,我刚才讲到的哥德巴赫猜想,就是皇后皇冠上的一颗璀璨夺目的明珠啊!” 沈元一气呵成地讲完了关于哥德巴赫猜想的故事。同学们议论纷纷,很是热闹,内向的陈景润却一声不出,整个人都“痴”了。这个沉静、少言、好冥思苦想的孩子完全被沈元的讲述带进了一个色彩斑斓的神奇世界。在别的同学啧啧赞叹、但赞叹完了也就完了的时候,他却在一遍一遍暗自跟自己讲:

“你行吗?你能摘下这颗数学皇冠上的明珠吗?”

一个是大学教授,一个是黄口小儿。虽然这堂课他们之间并没有严格意义上的交流、甚至连交谈都没有,但又的确算得上一次心神之交,因为它奠就了小陈景润一个美丽的理想,一个奋斗的目标,并让他愿意为之奋斗一辈子!多年以后,陈景润从厦门大学毕业,几年后,被著名数学家华罗庚慧眼识中,伯乐相马,调入中国科学院数学研究所。自此,在华罗庚的带领下,陈景润日以继夜地投入到对哥德巴赫猜想的漫长而卓绝的论证过程之中。

1966年,中国数学界升起一颗耀眼的新星,陈景润在中国《科学通报》上告知世人,他证明了(1+2)!

1973年2月,从“文革“浩劫中奋身站起的陈景润再度完成了对(1+2)证明的修改。其所证明的一条定理震动了国际数学界,被命名为“陈氏定理”。不知道后来沈元教授还能否记得自己当年对这帮孩子们都说了些什么,但陈景润却一直记得,一辈子都那样清晰。

名人成长路

陈景润(1933-1996),当代著名数学家。1950年,仅以高二学历考入厦门大学,1953年毕业留校任教。1957年调入中国科学院数学研究所,后任研究员。1973年发表论文《大偶数表为一个素数及一个不超过二个素数的乘积之积》。1979年,论文《算术级数中的最小素数》问世。1980年当选为中国科学院学部委员(中国科学院院士)。

第五篇:数学家故事

台上几分钟,台下三年功

秭归县长海希望小学 吴述俊收集整理

在一次数学学术报告会上,大家要求著名的数学家科尔作报告,科尔也不谦虚,阔步走上讲台,坐在台下的数学家们等待听他的鸿篇阔论。

不料,科尔一言不发,他对听众点头示意之后,便转过身去,背对听众,用粉笔在黑板上写了两个 算式,第一个是2的67次方 —1=***9676412927;第二个是193707721×761838257287。接着,他又在这两个式子之间画上了等号。

随后,他放下粉笔,又向听众示意后便离开了讲台,整个过程仅花费了几分钟,在这其间他未说半句话。

可是,当他离开讲台后,本来鸦雀无声的会场顿时爆发出经久不息的掌声,因为科尔的这两个算式已经向全世界宣布,他已攻克了一道世界难题:证明2的67次方 —1不是质数,而是合数。

后来有人问科尔:“您为证明这个难题,总共花去了多少时间?”他回答说:“我花去了三年之内的全部星期天。”

成功仅仅几分钟,而获得成功所进行的努力,却是漫长而艰苦的。只有长期坚持不懈,才有获得成功的希望。

中华民族是一个具有灿烂文化和悠久历史的民族,在灿烂的文化瑰宝中数学在世界也同样具有许多耀眼的光环。中国古代算术的许多研究成果里面就早已孕育了后来西方数学才涉及的思想方法,近代也有不少世界领先的数学研究成果就是以华人数学家命名的。

【李氏恒等式】数学家李善兰在级数求和方面的研究成果,在国际上被命名为“李氏恒等式”。

中国清代数学家、天文学家、翻译家和教育家,近代科学的先驱者。原名心兰,字竞芳,号秋纫,别号壬叔,浙江海宁县硖石镇人,生于嘉庆十六年,卒于光绪八年。

李善兰自幼酷爱数学。十岁时学习《九章算术》。十五岁时读明末徐光启、利玛窦合译的欧几里得《几何原本》前六卷,尽解其意。后来,他到杭州应试,买回元代李冶的《测圆海镜》、清代戴震(1724~1777)的《勾股割圆记》等算书,认真研读;又在嘉兴等地与数学家顾观光(1799~1862)、张文虎(1808~1888)、汪曰桢(1813~1881)以及戴煦、罗士琳(1774~1853)、徐有壬(1800~1860)等人相识,经常在学术上相互切磋。自此数学造诣日臻精深,时有心得,辄复著书,1845年前后就得到并发表了具有解析几何思想和微积分方法的数学研究成果──“尖锥术”。

1852~1859年,李善兰在上海墨海书馆与英国传教士、汉学家伟烈亚力等人合作翻译出版了《几何原本》后九卷,以及《代数学》、《代微积拾级》、《谈天》、《重学》、《圆锥曲线说》、《植物学》等西方近代科学著作,又译《奈端数理》(即牛顿《自然哲学的数学原理》)四册(未刊),这是解析几何、微积分、哥白尼日心说、牛顿力学、近代植物学传入中国的开端。李善兰的翻译工作是有独创性的,他创译了许多科学名词,如“代数”、“函数”、“方程式”、“微分”、“积分”、“级数”、“植物”、“细胞”等,匠心独运,切贴恰当,不仅在中国流传,而且东渡日本,沿用至今。李善兰为近代科学在中国的传播和发展作出了开创性的贡献。李善兰“尖锥术”书影

1860年起,他先后在徐有壬、曾国藩军中作幕僚,与化学家徐寿、数学家华蘅芳等人一起,积极参与洋务运动中的科技学术活动。1867年他在南京出版《则古昔斋算学》,汇集了二十多年来在数学、天文学和弹道学等方面的著作,计有《方圆阐幽》、《弧矢启秘》、《对数探源》、《垛积比类》、《四元解》、《麟德术解》、《椭圆正术解》、《椭圆新术》、《椭圆拾遗》、《火器真诀》、《对数尖锥变法释》、《级数回求》和《天算或问》等13种24卷,共约15万字。1868年,李善兰被荐任北京同文馆天文算学总教习,直至1882年他逝世为止,从事数学教育十余年,其间审定了《同文馆算学课艺》、《同文馆珠算金□》等数学教材,培养了一大批数学人才,是中国近代数学教育的鼻祖。

李善兰生性落拓,潜心科学,淡于利禄。晚年官至三品,授户部正郎、广东司行走、总理各国事务衙门章京等职,但他从来没有离开过同文馆教学岗位,也没有中断过科学研究特别是数学研究工作。他的数学著作,除《则古昔斋算学》外,尚有《考数根法》、《粟布演草》、《测圆海镜解》、《九容图表》,而未刊行者,有《造整数勾股级数法》、《开方古义》、《群经算学考》、《代数难题解》等。李善兰在数学研究方面的成就,主要有尖锥术、垛积术和素数论三项。

尖锥术理论主要见于《方圆阐幽》、《弧矢启秘》、《对数探源》三种著作,成书年代约为1845年,当时解析

几何与微积分学尚未传入中国。李善兰创立的“尖锥”概念,是一种处理代数问题的几何模型,他对“尖锥曲线”的描述实质上相当于给出了直线、抛物线、立方抛物线等方程□他创造的“尖锥求积术”。相当于幂函数的定积分公式□和逐项积分法则□他用“分离元数法”独立地得出了二项平方根的幂级数展开式□结合“尖锥求积术”,得到了□的无穷级数表达式□

各种三角函数和反三角函数的展开式,以及对数函数的展开式□在使用微积分方法处理数学问题方面取得了创造性的成就。垛积术理论主要见于《垛积比类》,写于1859~1867年间,这是有关高阶等差级数的著作。李善兰从研究中国传统的垛积问题入手,获得了一些相当于现代组合数学中的成果。例如,“三角垛有积求高开方廉隅表”和“乘方垛各廉表”实质上就是组合数学中著名的第一种斯特林数和欧拉数。驰名中外的“李善兰恒等式”□自20世纪30年代以来,受到国际数学界的普遍关注和赞赏。可以认为,《垛积比类》是早期组合论的杰作。【华氏定理】数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。

华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。华罗庚1924年金坛中学初中毕业之后,在上海中华 职业学校学习不到一年,因家贫辍学,但他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学,1948年始,他为伊利诺伊大学教授。

1950年回国。历任清华大学教授,中国科学院数学研究所、应用数学研究所所长、名誉所长,中国数学学会理事长、名誉理事长,全国数学竞赛委员会主任,美国国家科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士,中国科学院物理学数学化学部副主任、副院长、主席团成员,中国科学技术大学数学系主任、副校长,中国科协副主席,国务院学位委员会委员等职。曾任一至六届全国人大常务委员,六届全国政协副主席。曾被授予法国南锡大学、香港中文大学和美国伊利诺斯大学荣誉博士学位。主要从事解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等领域的研究与教授工作并取得突出成就。40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至今仍是最佳纪录。在代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉当-布饶尔-华定理。其专著 《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之一,其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式,获中国自然科学奖一等奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作并亲自在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多篇,并有专著和科普性著。

1985年6月12日,华罗庚应邀到日本东京大学作学术报告。他先中文,后改用英语演讲。日本学者被他精彩的演说深深吸引,原定45分钟的报告在经久不息的掌声中被延长到一个多小时。当他满头大汗结束讲话时,突然心脏病发作倒在讲台上。他用行动实践了自己的诺言:“最大的希望就是工作到生命的最后一刻。” 【苏氏锥面】数学家苏步青在仿射微分几何学方面的研究成果在国际上被命名为“苏氏锥面”。

姓名:苏步青 性别:男 出生年月:1902年-2003年 籍贯:浙江平阳 学历:日本东北帝国大学研究院理学博士学位 职务:原浙江大学教务长,复旦大学教授、校长、名誉校长,中国数学会以副理事长,国务院学位委员会委员,民盟中央副主席等。

苏步青(1902-2003)教育家,数学家,浙江平阳人。1931年获日本东北帝国大学研究院理学博士学位。回国后,任浙江大学教授、数学系主任。建国后,历任浙江大学教务长,复旦大学教授、校长、名誉校长,中国数学会以副理事长,国务院学位委员会委员,民盟中央副主席,上海市第五届政协副主席,上海市第七届人大常委会副主任,第六届全国人大教育科学文化卫生委员会副主任委员,中国科学院物理学数学部委员,第七届全国政协副主席,民盟中央参议委员会主任。1959年加入中国共产党。是第二、三、七届全国人大代表,第五、六届全国人大常委,第一届全国政协委员。创立了具有特色的微分几何学派,开拓了仿射微分几何、射影微分几何、空间微分几何等领域,开创了计算几何的研究方向。著有《射影曲面概论》、《仿射微分几何学》、《射影共轭网概论》等

【熊氏无穷级】数学家熊庆来关于整函数与无穷级的亚纯函数的研究成果被国际数学界誉为“熊氏无穷级”。

熊庆来是我国著名数学家、教育家、现代数学的耕耘者,为我国数学教学和研究作了许多开创性的工作,不愧为数学界的一代宗师。熊庆来,字迪之,清代光绪十七年(公元1891年)出生于云南省弥勒县息宰村。他自幼养成勤奋好学的良好习惯,再加上非凡的记忆力与天才的语言接受能力,常令教育过他的中外教师惊叹不已。1913年他以优异成绩考取云南教育司主持的留学比利时公费生,但因第一次世界大战爆发,只得转赴法国,在格诺大学、巴黎大学等大学功读数学,获理科硕士学位。他用法文撰写发表了《无穷极之函数问题》等多篇论文,以其独特精辟严谨的论证获得法国数学界的交口赞誉。1921年熊庆来学成归国,先后在云南甲种工业学校、东南大学(今南京大学)、南京高等师范大学、西北大学、清华大学担任教授和系主任。他创办了中国近代史上第一个近代数学研究机构——清华大学算学研究部和东南大 学、清华大学等3所大学的数学系,以及中国数学报。培养了华罗康、陈省身、吴大任、庄圻泰等一批享誉国内外的知名数学家。著名物理学家钱三强、赵九章、钱伟长、彭恒五等也是熊庆来到清华大学后培养出来的学生。这期间他潜心于学术研究与著述,编写的《高等数学分析》等10多种大学教材是当时第一次用中文写成的数学教科书。

熊庆来在“函数理论”领域造诣很深。1932年他代表中国第一次出席了瑞士苏黎士国际数学家大会,后到法国普旺加烈学院从事了两年数论的研究,获法国国家理学博士学位,成为第一个获此学位的中国人。此间,熊庆来写成了论文《关于整函数与无穷极的亚纯函数》,该文中定义的无穷极,被数学界称为“熊氏无穷极”又称“熊氏定理”,被载入世界数学史册,奠定了他在国际数学界的地位。

作为一位学者,熊庆来自早期从事教育工作起,就把培育人才当作头等大事。对于有培养前途的穷学生他总是解囊相助。著名的物理学家严济慈,因得到熊庆来资助才得以出国深造。为资助严济慈,当自己经济拮据时,熊庆来不惜让夫人当去自己御寒的皮大衣。华罗庚青年时代,因家贫念完初中就无力继续上学,熊庆来在看了他发表的《论苏子驹教授的五次方程之解不能成立》论文之后,发现华罗庚是一个数学人才,立即把他请到清华大学,安排在数学系图书馆任助理员,破格任助教工作,后直接升为教授,并前往英国留学,终于把他造就成国际知名的大数学家。熊庆来既是千里马又是伯乐,除自己在数学研究领域内攀登上科学高峰之外,还着意提携后进,让后者站在自己的肩膀上攀上另一个数学高峰,为我国数学界创建了一种识才、爱才、育才的优良传统,他的慧眼卓识是我国科学家的典范。

1937年抗日战争爆发,在缪云台、龚自知、方国瑜等人的推荐下,熊庆来接受云南省主席龙云的聘请,出任云南大学校长,为云大的发展作出了巨大贡献。当时的云大,只有3个学院,39个教授,8个讲师,302个学生,教学设备简陋,教学质量不高。熊庆来利用抗战初期各方人才大量涌入昆明的机会,广延人才,延聘了全国著名教授吴文藻、顾领刚、白寿彝、楚图南、费孝通、吴暗、赵忠尧、刘文典、张奚若、方国瑜等187名专任教授和40名兼任教授,还延聘了一些外国教授,使云大成为与西南联大同享盛名的又一处著名专家学者荟萃之地,教学质量因此跃入全国名牌大学之列,被吸收进《大英百科全书》之中;他把云大扩充成5个学院,18个系,3个专修科,1个先修班的多学院、多学科的综合大学,学生人数达1100多人,1939年又创办了云大附中;他还不断充实图。书教学设备,使图书馆藏书达十余万册,理科各系都有比较完善的实验室和标本资料室,医学院拥有附属医院及解剖室,农学院有实验农场,数学系在东郊凤凰山建立了天文台,工学院有实习工厂,航空系有飞机3架,这在全国高校中是罕有的;他亲自作了《云南大学校歌》,制定了“诚、正、敏、毅”的校训,要求每一个学生都要诚实、正直、聪敏又有坚毅的学习精神。在熊庆来任校长的12年里,云大各项工作井然有序,日新月异,被认为是云南大学历史上的第一个“黄金时代”。【陈示性类】数学家陈省身关于示性类的研究成果被国际上称为“陈示性类”。

陈省身1911年10月26日生于中国浙江嘉兴,1926年入天津南开大学数学系,先后受教于姜立夫与孙鎕,由他们引导至微分几何这一领域。1934年赴汉堡就学于当时德国几何学权威W.J.E.布拉施克,1936年完成博士论文后,赴法国跟从当代微分几何学家E.嘉当继续深造。1937年回国,正值抗日战争,他任教长沙临时大学和西南联合大学,在此期间,他把积分几何理论推广到齐性空间。1943-1945年在普林斯顿高等研究所工作两年,先后完成了两项划时代的重要工作,其一为黎曼流形的高斯──博内一般公式,另一为埃尔米特流形的示性类论。在这两篇论文中,他首创应用纤维丛概念于微分几何的研究,引进了后来通称的陈示性类,為大范围微分几何提供了不可缺少的工具,成为整个现代数学中的重要构成部份。陈省身的其他数学工作范围极为广泛,影响亦深。

陈省身于1946年第二次世界大战结束后重返中国,在上海建立了中央研究院数学研究所(后迁南京),此后两三年中,他培养了一批青年拓扑学家。1949年他再去美国,先后在芝加哥大学与伯克利加州大学任终身教授。1981年在伯克利的以纯粹数学为主的数学科学研究所任第一任所长。1985年创办南开数学研究所,并任所长。陈省身由于对数学的重要贡献而享有多种荣誉,其中有1984年获颁的沃尔夫奖(Wolf Prize,Link)。给他教过的学生,计有吴文俊、杨振宁、廖山涛、丘成桐、郑绍远等著名学者。

【周氏坐标】数学家周炜良在代数几何学方面的研究成果被国际数学界称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环”。周炜良 1911年10月1日生于上海.代数几何.

周炜良的父亲周达(美权)是清末民初著名数学家、集邮家,家境比较富裕.周炜良幼年在上海生长,从未进过学校.5岁开始学中文,11岁学英文,都由家庭教师讲授.20年代上海的大中学校颇多使用美国的原文课本,周炜良即自学各种知识:从数学到物理,从历史到经济.1924年,周炜良恳求父亲送他到美国读书,先在肯塔基州的阿斯伯里学院补习,后来进入肯塔基大学.那时的主要兴趣在政治经济.直到1929年10月进入芝加哥大学时,仍然主修经济学.可是此后两年内发生了变化.

1931年夏天,一位在芝加哥大学得到博士学位后又去普林斯顿工作一年的中国数学家,劝周炜良到普林斯顿去,或者去德国的格丁根大学——那时的世界数学中心.于是在1932年10月,周炜良带着研究数学的模糊想法去了格丁根.补了半年的德文后,希特勒法西斯上台,格丁根衰落了.周炜良在芝加哥时曾读过B.L.范·德·瓦尔登(Van der Waerden)写的《代数学》(Algebra),十分欣赏,于是转到莱比锡大学随范·德·瓦尔登研究代数几何,这是1933年夏天的事.次年夏天,周炜良到汉堡渡暑假,遇到维克特(Margot Victor)小姐,成为好友.周炜良滞留汉堡大学,随数学家E.阿丁(Artin)听课.直至1936年初才回到莱比锡,在范·德·瓦尔登指导下完成博士论文,并和维克特完婚.婚礼上,正在汉堡大学留学的陈省身是唯一的中国宾客. 周炜良成家立业之后,遂返回上海,在南京的中央大学任数学教授.一年后,抗日战争爆发,不得已留在上海.周炜良的岳父在德国曾有很好的工作,由于希特勒的种族迫害而流亡上海,几乎身无分文.这时的周炜良必须自立挣钱,供养太太、两个孩子,以及岳父母. 抗日战争胜利后,周炜良计划经营进出口贸易.大约在1946年春天,陈省身从美国返回上海.他力劝周炜良重返数学研究,并留下许多战时发表的论文,特别是O.扎里斯基(Zariski)和A.韦伊(Weil)的论文预引本.周炜良虽然离开数学已近10年之久,但他终于作出了他一生中最重要的决定:回到数学领域.

由于陈省身写信给普林斯顿的S.莱夫谢茨(Lefschetz)作了推荐,周炜良在上海同济大学短期任教之后,便于1947年春天到达普林斯顿.他在那里做了一些相当好的工作.次年,范·德·瓦尔登访问位于美国马里兰州的约翰·霍普金斯大学,周炜良去看他,恰好该校有一个教职的空缺,周炜良遂应聘到那里就任副教授.1950年升任正教授.当年,战后首次恢复的国际数学家大会在美国举行,周炜良作为该校的正式代表与会,会后曾在哈佛大学短期讲学.1955年再度去普林斯顿进行访问研究,返回霍普金斯大学之后就任数学系主任,前后达11年之久(1955—1966).1959年,他当选为台北中央研究院院士.1977年,周炜良退休,成为霍普金斯大学的荣退教授. 周炜良把毕生精力奉献给代数几何的研究,成为20世纪代数几何学领域的主要人物之一,以周炜良名字命名的数学名词,仅在日本《岩波数学词典》里就收有7个.回顾20世纪中国数学的历史,能在世界数坛上留下痕迹的华人数学家并不多,周炜良是其中杰出的一位. 代数几何学是解析几何的深入和发展.正如二元二次代数方程。x2+y2=r2的解集(x,y)可以表示半径为r的圆,代数几何的研究对象仍是高次多元代数方程或代数方程组的解集,即系数在某域k内的n元多项式F1,F2,…,Fn所形成的代数方程组F1(x1,…,xn)=0,F2(x1,…,xn)=0,…,Fn(x1,…,xn)=0的位于域k内的公共解集合V,我们称之为代数簇(algebraicvariety),最简单的代数簇就是平面曲线.椭圆函数、椭圆积分、阿贝尔(Abel)积分等都与平面曲线有关,复变量的代数函数论及黎曼曲面论进一步推动了现代代数几何学的发展.

19世纪下半叶,德国的R.克莱布施(Clebsch)、J.普吕克(Plcker)、M.诺特(Noether)以及意大利学派曾做出很大贡献.经过J.H.庞加莱(Poincar)、C.E.皮卡(Picard)、J.W.R.戴德金(Dedekind)和A.凯莱(Cayley)的发展,到20世纪20—30年代,E.诺特(Noether)、E.阿廷(Artin)和他们的学生范·德·瓦尔登创立了抽象代数学,为代数几何学的研究注入了新的活力.周炜良的代数几何学研究正是在这样的背景下开始的. 周炜良坐标 1937年,周炜良最初的两篇论文发表在德国《数学年刊》(Mathematische Annalen)上.第一篇是与范·德·瓦尔登合作的,第二篇则是周炜良的博士论文.这两篇文章继承了凯莱和普吕克的工作,并将其推广到n维射影空间Pn上的代数簇.其中指出,任何n维射影空间Pn中的不可约射影族X可唯一地由一个配型(associated form)Fx所决定,配型的坐标即著名的周炜良坐标.该坐标是普吕克坐标的推广,现已成为代数几何学研究的一项基本工具.

抗日战争开始后,周炜良在上海闲居,继续研究数学.1939年,他发表了一篇重要论文“关于一阶线性偏微分方程组”,将C.卡拉西奥多里(Carathodory)的一项工作(1909)推广到一般的高维流形.当时并未引起人们注意,事隔30余年之后,这篇文章成为非线性连续时间系统可控性数学理论的基石之一.控制论表达的周炜良定理(或称卡拉西奥多里-周定理)可以写成:

设V(M)是解析流形M上所有解析向量场的全体,D是V(M)中对称子集,T(D)是V(M)中含D的最小子代数,I(D,x)是通过x的极大积分流形.那么,对任何x∈M,y∈I(D,x),都存在一条积分曲线α:[0,T]→M,T≥0,使得α(0)=x,且α(T)=y.

抗日战争后期,周炜良曾有论文涉及代数基本定理的拓扑证明和电网络理论等,似乎已偏离了代数几何学的方向.信息断绝和乏人讨论,恐是主要原因. 周炜良于1947年到达普林斯顿高级研究院,开始了他的黄金创作期.他首先撰文阐明,E.嘉当(Cartan)意义下的对称齐次空间可以表示为代数簇,因而能用代数几何的框架研究其几何学性质.该文所附文献中包括华罗庚的有关矩阵几何学的论文多篇.1947—1948年间,法国数学家C.谢瓦莱(Chevalley)也在普林斯顿,他对周炜良的这篇论文做了很长的评论性摘要,发表于美国的《数学评论》(Mathematical Review).谢瓦莱曾邀请周炜良证明下列猜想:“任何代数曲线,在一个代数系统中的亏数,不会大于该系统中一般曲线的亏数”.周炜良使用纯代数的方法给出了证明,其主要工具之一仍然是范德瓦尔登-周炜良形式. 关于解析簇的周炜良定理

周炜良于1949年发表了一篇重要论文“关于紧复解析簇”.所谓解析簇V,是指对任何p∈V,总存在一组解析函数g1,g2,…,gn,和点p的一个邻域B(p),使得V∩B(p)中的点x都是g1,g2,…,gn的零点.这是一种局部性质.由于多项式都是解析函数,所以代数簇都是解析簇.周炜良证明了某些情形下的逆命题:

“若V是n维复射影空间CPn中的闭解析子簇,那么它一定是代数簇,而且所有闭解析子簇间的半纯映射,一定是有理映射”. 这一反映由局部性质向整体性质过渡的深刻结论,被称为周炜良定理(Chow Theorem),在代数几何学著作中广受重视.在许多论文里,常常把它作为新理论的出发点. 复解析流形

1950年前后,复解析流形的研究形成热门课题.日本数学家小平邦彦(K.Kodaira)是这方面的专家,当时也在美国工作,与周炜良有交往.1952年,周炜良证明了如下结果:“若V是复r维的紧复解析流形,F(V)是V上半纯函数所构成的域,则F(V)是有限的代数函数域,其超越维数s不会大于r.此外,还存在一s维的代数簇V'以及V到V'的半纯变换T,使T可诱导出F(V)和F(V')间的同构.特别地,如果可选择V'使得T还是双正则变换,那么V必是代数簇.这就把复解析流形和代数簇联系起来了.

把这个一般的结论用于二维的克勒(Khler)曲面,并用小平邦彦所建立的克勒流形上的黎曼-罗赫(Riemann-Roch)定理,就可以得出如下结论:“具有两个独立的半纯函数的克勒曲面(即s=r=2的情形)一定是代数曲面.”这是周炜良和小平邦彦合作的论文中的一个结论,被称为周-小平(Chow-Kodaira)定理. 周炜良簇和周炜良环 用周炜良坐标可以对平面曲线和空间曲线进行分类.只要由已知的次数d和亏数g,从非奇异的空间射影曲线的周炜良坐标形成所谓周炜良簇,就能很自然地用有限个拟射影簇将它参数化.

在射影簇研究上,另一个为人们称道的周炜良引理(ChowLemma),涉及完全簇和射影簇的关系.苏联数学家И.Р.沙法列维奇(ЩaфapeВИЧ)在其名著《代数几何基础》中曾提到这一引理:

“对于每一个不可约的完全簇X,总有一个射影簇X',使得X和X'之间有一双有理同构”.

周炜良在射影簇方面最著名的工作是提出周炜良环(ChowRing).他于1956年发表的论文“关于代数簇上闭链的等价类”中,提出了射影代数簇上代数闭链的有理等价性的系统理论.大意是:设V是n维射影空间Pn上的代数簇,其上的s维闭链所成的群为G(V,s),与零链等价的闭链成子群Gr(V,s).令Hr(V,s)是二者的商群.将s从1到n作直和,得 Hr(V)=Hr(V,s).

周炜良在Hr(V)上定义一种乘法,使之构成环,这就是著名的周炜良环.它是结合的,交换的,具有单位元.这篇论文由M.F.阿蒂亚(Atiyah)写成文摘刊于美国的《数学评论》. 周炜良环具有很好的函子性质:设p是两代数簇X,V之间的模射,f:X→V,则V中闭链C的原象f-1(C)也是X中的闭链,且此运算与相截(intersection)和有理等价性能够相容.因此,它是代数几何研究中的一项重要工具.周炜良环在许多情形可以代替上同调环.在证明各种黎曼-罗赫定理时,常用周炜良环去导出陈省身类.著名的韦伊(Weil)猜想的解决,也可使用周炜良环.

另一个常被引用的结论是所谓周炜良运动定理(Chow’s Mo-ving Lemma):若Y,Z是非奇异拟射影簇X中的两闭链,则必存在与Z有理等价的闭链Z',使Y和Z'具有相交性质(inte-rsect property).1970年在奥斯陆举行的代数几何会议上,有专文论述此定理. 关于阿贝尔簇的周炜良定理

20世纪40年代,A.韦伊(Weil)等开创了阿贝尔簇的研究.他们把代数曲线上的雅可比(Jacobi)簇发展为一般代数流形上的皮卡-阿尔巴内塞(Picard-Albanese)簇理论,将过去意大利学派的含糊结果加以澄清.周炜良对此作了丰富和发展,并推广到特征p域的情形.周炜良在文献[10]中证明对一般射影代数簇都存在雅可比簇.文献[11]和[12]给出了阿贝尔簇的代数系统理论,其中有关可分(separable)、正则(regular)和本原扩张(pri-mary extention)的论述,已成为这一领域的基本文献. 周炜良还证明了以下结论:“若A是域k上的阿贝尔簇,B是定义在k的准素扩张K上的阿贝尔子簇,那么B也在k上有意义.”S.郎(Lang)称之为周炜良定理.

周炜良在1957年发表的关于阿贝尔簇的论文也反复被人引用.这一年,普林斯顿大学以数学名家莱夫谢茨的名义举行“代数几何与拓扑”的科学讨论会,韦伊和周炜良都参加了.他们两人在会上宣读的论文密切相关.韦伊证明任何阿贝尔簇都可嵌入射影空间,而周炜良则证明任何齐次簇(不必完备)也可嵌入射影空间.文章不长,但解决得很彻底. 其他工作

周炜良在代数几何领域的研究,涉及很广.例如扎里斯基关于抽象代数几何中的退化原理(degeneration principle)的论证,很长而且难懂,周炜良把证明作了大幅度压缩,并加以推广.他和井草准一(J.lgusa)合作,建立了环上代数簇的上同调理论.此外,还推广了代数几何中的连通性定理.在扩充由W.V.霍奇(Hodge)与D.佩多(Pedoe)证明的格拉斯曼(Grassm-ann)簇的基本定理时,指出了某些环空间上的代数特性.这些都是很有价值的工作.退休之后,周炜良仍然研究不辍.1986年,他以75岁高龄,发表了题为“齐次空间上的形式函数(formalfunction)”的论文. P.拉克斯(Lax)把周炜良列为最重要的移居美国的数学家之一.但他性情淡泊,甚至很少参加国际学术会议.他是台北中央研究院院士,却长期不参加活动.应该说,周炜良的学术成就远超过他应得的荣誉.不过,各种代数几何的论著不断地引用周炜良的工作,并以周炜良的名字陆续命名一系列术语,这也许是更有意义的褒奖了. 【吴氏方法】数学家吴文俊关于几何定理机器证明的方法被国际上誉为“吴氏方法”;另外还有以他命名的“吴氏公式”。

吴文俊,中国人,1919年5月12日生于上海。1940年毕业于交通大学,1949年在法国斯特拉斯堡大学获博士学位。1951年回国,1957年任中国科学院学部委员,1984年当先为中国数学会理事长。吴文俊在数学上作出了许多重大的贡献。

拓扑学方面,在示性类、示嵌类等领域获得一系列成果,还得到了许多著名的公式,指出了这些理论和方法的广泛应用。他还在拓扑不变量、代数流形等问题上有创造性工作。1956年吴文俊因在拓扑学中的示性类和示嵌类方面的卓越成就获中国自然科学奖一等获。机器证明方面,从初等几何着手,在计算机上证明了一类高难度的定理,同时也发现了一些新定理,进一步探讨了微分几何的定理证明。提出了利用机器证明与发现几何定理的新方法。这项工作为数学研究开辟了一个新的领域,将对数学的革命产生深远的影响。1978年获全国科学大会重大科技成果奖。

中国数学史方面,吴文俊认为中国古代数学的特点是:从实际问题出发,经过分析提高,再抽象出一般的原理、原则和方法,最终达到解决一大类问题的目的。他对中国古代数学在数论、代数、几何等方面的成就也提出了精辟的见解。

下载【数学家故事】高斯的故事word格式文档
下载【数学家故事】高斯的故事.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学家故事

    蒲丰试验 一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一......

    数学家故事

    数学家故事: 著名数学家华罗庚读书的方法与众不同。他拿到一本书,不是翻开从头至尾地读,而是对着书思考一会,然后闭目静思。他猜想书的谋篇布局,斟酌完毕再打开书,如果作者的思路......

    高斯的故事

    高斯的故事 约翰·卡尔·弗里德里希·高斯(C.F.Gauss,1777年4月30日-1855年2月23日),德国著名数学家、物理学家、天文学家、大地测量学家。高斯被认为是历史上最重要的数学家之一......

    数学家高斯名言

    我们在学习数学的时候,老师偶尔会说一些关于数学家的故事,那么你们知道数学家高斯说的名言是什么吗?下文内容为你解答!数学家高斯名言数学是科学的女王,而数论是数学的女王。——......

    数学家的故事(本站推荐)

    数学家的故事;祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学......

    数学家的故事

    数学家的故事——苏步青 苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太......

    数学家的故事

    数学家的故事 陈景润是我国有名的数学家。他不爱逛公园,不爱遛马路,就爱学习。他学习起来,常常忘记了吃饭睡觉。有一天,陈景润在吃中饭的时候,摸摸脑袋发现头发太长了,应该快去理......

    数学家的故事

    数学家的故事 1.第一个算出地球周长的埃拉托色尼 2000多年前,有人用简单的测量工具计算出地球的周长。这个人就是古希腊的埃拉托色尼(约公元前275—前194)。 埃拉托色尼博......