第一篇:著名数学家的故事
数学小故事
华罗庚回归祖国
著名数学家华罗庚在1946年应聘到美国讲学,很受学术界器重。当时,美国的伊利诺大学以一万美元的年薪,与他订立了终身教授的聘约。华罗庚的生活一下子舒适起来了,不仅有了小洋楼,大学方面还特地给他配备了四名助手和一名打字员。新中国成立后,一些人总以为华罗庚在美国已功成名就,生活优裕,是不会回来的了。然而,物质、金钱、地位并没有能羁绊住他的爱国之心。1950年2月,华罗庚毅然放弃了在美国“阔教授”的待遇,冲破重重封锁回到祖国。途经香港时,他写了一封《告留美同学的公开信》,抒发了他献身祖国的热情。他满腔热忱地呼吁:“为了国家民族,我们应当回去!”“锦城虽乐,不如回故乡;梁园虽好,非久留之地”。
贫贱难移爱国心
著名数学家苏步青早年留学日本,1931年获得博士学位。日本不少名牌大学以高薪聘请他,但他想到出国留学是为了掌握科学、报效祖国,就一一辞谢,毅然回国。回国后,他在浙江大学执教,竟一连四个月领不到工资,穷得连饭都难以吃饱,而当时日本帝国大学还答应保留他半年的工资。贫贱难移爱国心,苏步青毫无再去日本之意。抗日战争爆发后,日本帝国大学又发来电报,请他前往任教。出于民族大义,他一口回绝道:“我要留在自己的祖国。祖国再穷,我也要为她奋斗,为她服务!”
俄罗斯英语
贝塞克维奇(Abram S.Besicovich,1891-1970年)是具有非凡创造力的几何分析学家,生于俄罗斯,一战时期在英国剑桥大学。他很快就学会了英语,但水平并不怎么样。他发音不准,而且沿习俄语的习惯,在名词前不加冠词。有一天他正在给学生上课,班上学生在下面低声议论教师笨拙的英语。贝塞克维奇看了看听众,郑重地说:“先生们,世上有5000万人说你们所说的英语,却有两亿俄罗斯人说我所说的英语。”课堂顿时一片肃静。
不可微—不吃饭
波兰伟大的数学家伯格曼(Stefan Bergman,1898-1977年)离开波兰后,先后在美国布朗大学、哈佛大学和斯坦福大学工作。他不大讲课,生活支出主要*各种课题费维持。由于很少讲课,他的外语得不到锻炼,无论口语还是书面语都很晦涩。但伯格曼本人从不这样认为。他说:“我会讲12种语言,英语最棒。”事实上他有点口吃,无论讲什么话别人都很难听懂。有一次他与波兰的另一位分析大师用母语谈话,不一会对方提醒他:“还是说英语吧,也许更好些。”
1950年国际数学大会期间,意大利一位数学家西切拉(Sichera)偶然提起伯格曼的一篇论文可能要加上“可微性假设”,伯格曼非常有把握地说:“不,没必要,你没看懂我的论文。”说着拉着对方在黑板上比划起来,同事们耐心地等着。过了一会西切拉觉得还是需要可微性假设。伯格曼反而更加坚定起来,一定要认真解释一下。同事们插话:“好了,别去想它,我们要进午餐了。”伯格曼大声嚷了起来:“不可微—不吃饭。”(No differential-bility,no lunch)最终西切拉留下来听他一步一步论证完。
有证据表明伯格曼总在考虑数学问题。有一次清晨两点钟,他拨通了一个学生家里的电话号码:“你在图书馆吗?我想请你帮我查点东西!”
还有一次伯格曼去西海岸参加一个学术会议,他的一个研究生正好要到那里旅行结婚,他们恰好乘同一辆长途汽车。这位学生知道他的毛病,事先商量好,在车上不谈数学问题。伯格曼满口答应。伯格曼坐在最后一排,这对要去度蜜月的年轻夫妇恰巧坐在他前一排*窗的位置。10分钟过后,伯格曼脑子里突然有了灵感,不自觉地凑上前去,斜*着学生的座位,开始讨论起数学。再过一会,那位新娘不得不挪到后排座位,伯格曼则紧挨着他的学生坐下来。一路上他们兴高采烈地谈论着数学。幸好,这对夫妇婚姻美满,有一个儿子,还成了著名数学家。
闭门羹
哥德尔(Kurt Godel,1906-1978年)的举止以“新颖”和“古怪”著称,爱因斯坦是他要好的朋友,他们当时都在普林斯顿。他们经常在一起吃饭,聊着非数学话题,常常是政治方面的。麦克阿瑟将军从朝鲜战场回来后,在麦迪逊大街举行隆重的庆祝游行。第二天哥德尔吃饭时煞有介事地对爱因斯坦说,《纽约时报》封面上的人物不是麦克阿瑟,而是一个骗子。证据是什么呢?哥德尔拿出麦克阿瑟以前的一张照片,又拿了一把尺子。他比较了两张照片中鼻子长度在脸上所占的比例。结果的确不同:证毕。
哥德尔一生花了很大精力想搞清楚连续统假设(CH)是否独立于选择公理(AC)。在60年代早期,一个初出茅庐的年轻数学家柯恩(PaulJ.Cohen),与斯坦福大学的同事们聊天时扬言:他也许可以通过解决某个希尔伯特(Hilbert)问题或者证明CH独立于AC而一举成名。实话说,柯恩当时只是傅里叶分析方面的行家,对于逻辑和递归函数,他只摆弄过不长时间。柯恩果然去专攻逻辑了,大约用了一年的时间,真的证明了CH与AC独立。这项成果被认为是20世纪最伟大的智力成就之一,他因此获得菲尔兹奖(Fieids Medal,比自然科学界的诺贝尔奖还难获得)。柯恩的技术是“力迫”(forcing)法,现已成为现代逻辑的一种重要工具。
当初的情形是:柯恩拿着证明手稿去高等研究院找哥德尔,请他核查证明是否有漏洞。
哥德尔起初自然很怀疑,因为柯恩早已不是第一个向他声明解决了这一难题的人了。在哥德尔眼里,柯恩根本就不是逻辑学家。柯恩找到哥德尔家,敲了门。门只开了6英寸的一道缝,一支冷冰冰的手伸出来接过手稿,随后门“砰”地关上了。柯恩很尴尬,悻悻而去。不过,两大后,哥德尔特别邀请柯恩来家里喝茶。柯恩的证明是对的:大师已经认可了。
维纳的故事
维纳(1894-1964年)是最早为美洲数学赢得国际荣誉的大数学家,关于他的轶事多极了。维纳早期在英国,有一次遇见英国著名数学家李特尔伍德(Littlewood)时说: “噢,还真有你这么个人。我原以为Littlewood只是哈代(Hardy)为写得比较差的文章署的笔名呢。”维纳本人对这个笑话很懊恼,在自传中极力否认此事。此故事的另一种版本说的是朗道(Edmund Laudau):朗道很怀疑李特尔伍德的存在性,为此专程去英国亲自看了这个人。
维纳后来赴美国麻省理工学院任职,长达25年。他是校园中大名鼎鼎的人物,人人都想与他套点近乎。有一次一个学生问维纳怎样求解一个具体问题,维纳思考片刻就写出了答案。实际上这位学生并不想知道答案,只是问他“方法”。维纳说:“可是,就没有别的方法了吗?”思考片刻,他微笑着随即写出了另一种解法。维纳最有名的故事是有关搬家的事。一次维纳乔迁,妻子熟悉维纳的方方面面,搬家前一天晚上再三提醒他。她还找了一张便条,上面写着新居的地址,并用新居的房门钥匙换下旧房的钥匙。第二天维纳带着纸条和钥匙上班去了。白天恰有一人问他一个数学问题,维纳把答案写在那张纸条的背面递给人家。晚上维纳习惯性地回到旧居。他很吃惊,家里没人。从窗子望进去,家具也不见了。掏出钥匙开门,发现根本对不上齿。于是使劲拍了几下门,随后在院子里踱步。突然发现街上跑来一小女孩。维纳对她讲:“小姑娘,我真不走运。我找不到家了,我的钥匙插不进去。”小女孩说道:“爸爸,没错。妈妈让我来找你。”
有一次维纳的一个学生看见维纳正在邮局寄东西,很想自我介绍一番。在麻省理工学院真正能与维纳直接说上几句话、握握手,还是十分难得的。但这位学生不知道怎样接近他为好。这时,只见维纳来来回回踱着步,陷于沉思之中。这位学生更担心了,生怕打断了先生的思维,而损失了某个深刻的数学思想。但最终还是鼓足勇气,*近这个伟人:“早上好,维纳教授!”维纳猛地一抬头,拍了一下前额,说道:“对,维纳!”原来维纳正欲往邮签上写寄件人姓名,但忘记了自己的名字„„。
富勒烯
1985年,科学家克罗托、斯麦利等人在研究太空深处的碳元素时,发现有一种碳分子由60个碳原子组成。它的对称性极高,而且它比其他碳分子更强也更稳定。其分子模型与那个已在绿茵场滚动了多年,由12块黑色五边形与20块白色六边形拼合而成的足球竟然毫无二致。因此当斯麦利等人打电话给美国数学会主席告知这一信息时,这位主席竟惊讶地说:“你们发现的是一个足球啊!”克罗托在英国《自然》杂志发表第一篇关于C60论文时,索性就用一张安放在得克萨斯草坪上的足球照片作为C60的分子模型。这种碳分子被称为布基球,又叫富勒烯,是继石墨、金刚石之后发现的纯碳的第三种独立形态。按理说,人们早就该发现C60了。它在蜡烛烟黑中,在烟囱灰里就有;鉴定其结构所用的质谱仪、核磁共振谱仪几乎任何一所大学或综合性研究所都有。可以说,几乎每一所大学或研究所的化学家都具备发现C60的条件,然而几十年来,成千上万的化学家都与它失之交臂。克罗托、斯麦利等因这一发现荣获诺贝尔化学奖。
哈代的失算
1940年,英国著名数论专家哈代(G.H.Hardy,1877-1947)在1940年他的一本书<<一个数学家的辩白>>中写道:“真正的数学对战争没有影响.还没有人发现数论或是相对论服务于战争目的,在许多年内似乎也不会有人发现这件事.”可是,到了1945年,世界已经目睹了哈代关于相对论对于战争无用的可怕的否证:原子弹爆炸了.至于他举出的另外一个例子----数论,这门“无用”的学科所提供的各种安全体系,正用于控制(也许某一天用于发射)成百上千颗原子弹;自从在广岛投下第一颗原子弹后,核导弹的数目已经大大地增加了.数学的发现在整个世界中到处都有可以预见的(或所需要的)应用.碰巧,哈代本人正是从事数论研究的,他自己的某些工作已经被证明有实用价值,尽管他自己宣称:“我从未做过任何'有实用价值'的事情.没有一项我的发现,对世界的舒适程度产生过(或可能产生)哪怕是最小的,直接或间接的,好的或坏的影响.” 纯粹数学中一些看起来无用而深奥的研究课题,居然成为现代安全体系的基础,这是在二十世纪数学中发生的最有趣的故事,它向那些随意宣称某件科学工作“毫无实用价值”的人们敲响了警钟.比上帝还挑剔的人
奥地利物理学家沃尔夫冈·泡利(Wolfgang Pauli)生于1900年,1958年就去世了。他是本世纪初一位罕见的天才,对相对论及量子力学都有杰出贡献,因发现“泡利不相容原理”(Exclusion Principle)而获1945年诺贝尔物理学奖。这个原理是他在1924年发现的,对原子结构的建立与对微观世界的认识有革命性的影响。泡利在19岁(1919年)时就写了一篇关于广义相对论理论和实验结果的总结性论文。当时距爱因斯坦发表“广义相对论”(1916年)才3年,人们认为他这么年轻却有如此独到的见解,所以震惊了整个物理学界,从此他一举成名了。
关于泡利的故事很多,他以严谨、博学而著称,同时也以尖刻和爱挑刺而闻名。据说在一次国际会议上泡利见到了爱因斯坦,爱因斯坦演讲完后,泡利站起来说:“我觉得爱因斯坦不完全是愚蠢的”。
一次,在后来发现反质子的意大利物理学家塞格雷做完一个报告和泡利等离开会议室时,泡利对他说:“我从来没有听过象你这么糟糕的报告。”
当时塞格雷一言未发。泡利想了一想,又回过头对与他们同行的瑞士物理化学家布瑞斯彻说:“如果是你做报告的话,情况会更加糟糕。当然,你上次在苏黎士的开幕式报告除外。”
另一次泡利想去一个地方,但不知道该怎么走,一位同事告诉了他。后来这位同事问他,那天找到那个地方没有,他反而讽刺人家说:“在不谈论物理学时,你的思路应该说是清楚的。”
泡利对他的学生也很不客气,有一次一位学生写了论文请泡利看,过了两天学生问泡利的意见,泡利把论文还给他说:“连错误都够不上。” 但泡利被玻尔称作“物理学的良知”,因为他的敏锐和审慎挑剔,使他具有一眼就能发现错误的能力。在物理学界还曾笑谈存在一种“泡利效应”——当泡利在哪里出现时,那儿的人不管做理论推导还是实验操作一定会出岔子。而当泡利说:“哦,这竟然没什么错”时,通常表示一种非常高的赞许。一则笑话说,泡利死后去见上帝,上帝把自己对世界的设计方案给他看,泡利看完后耸耸肩,说道:“你本来可以做得更好些„„”
田忌赛马
《史记》中有这样一个故事:有一天,齐王要田忌和他赛马,规定每个人从自己的上、中、下三等马中各选一匹来赛;并规定,每有一匹马来比赛;并约定,每有一匹马取胜可获千两黄金,每有一匹马落后要付千两黄金。当时,齐王的每一等次的马比田忌同样等次的马都要强,因而,如果田忌用自己的上等马与齐王的上等马比,用自己的中等马与齐王的中等马比,用自己的下等马与齐王的下等马比,则田忌要输三次,因而要输黄金三千两。但是结果,田忌没有输,反而赢了一千两黄金。这是怎么回事呢?
原来,在赛马之前,田忌的谋士孙膑给他出了一个主意,让田忌用自己的下等马去与齐王的上等马比,用自己的上等马与齐王的中等马比,用自己的中等马与齐王的下等马比。田忌的下等马当然会输,但是上等马和中等马都赢了。因而田忌不仅没有输掉黄金三千两,还赢了黄金一千两。
这个故事与上一段老鼠逃跑的策略问题都表明,在有双方参加的竞赛或斗争中,策略是很重要的。采用的策略适当,就有可能在似乎一定会失败的情况下取得胜利的结果。
研究这种竞赛策略的数学分支,叫作博奕论,也叫对策论;它是运筹学中的一部分内容。
“无理数”的由来
公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可子希勃索斯公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公度性与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭。这一发现使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位。希勃索斯因此被囚禁,受到百般折磨,最后竞遭到沉舟身亡的惩处。
毕氏弟子的发现,第一次向人们揭示了有理数系的缺陷,证明它不能同连续的无限直线同等看待,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的“孔隙”。而这种“孔隙”经后人证明简直多得“不可胜数”。于是,古希腊人把有理数视为连续衔接的那种算术连续统的设想彻底地破灭了。不可公度量的发现连同著名的芝诺悖论一同被称为数学史上的第一次危机,对以后2000多年数学的发展产生了深远的影响,促使人们从依*直觉、经验而转向依*证明,推动了公理几何学与逻辑学的发展,并且孕育了微积分的思想萌芽。
不可通约的本质是什么?长期以来众说纷坛,得不到正确的解释,两个不可通约的比值也一直被认为是不可理喻的数。15世纪意大利著名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。
然而,真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”。人们为了纪念希勃索斯这位为真理而献身的可敬学者,就把不可通约的量取名为“无理数”—— 这便是“无理数”的由来。
数学王国的巾帼英雄
陀螺是中小学生熟悉一种玩具。一只小小的陀螺在桌面上飞速地旋转着。单见它立定一点,一面绕倾斜于桌面的轴急速自转,另一面自转轴又宛如锥体母线般绕着过定点而垂直于桌面的轴线,缓慢而稳定地做公转运动。
陀螺旋转的时候为什么不会倒?在千万个玩陀螺的人中,能正确回答出这个问题的,大概不会太多。的确,陀螺的转动是十分有趣而神秘的。
陀螺在科学上有很高的研究价值。把旋转着的陀螺抛向空中。它能使自己的轴保持原来的方向。陀螺的这一特性,被用来制造定向陀螺仪,广泛用于航海、航空和宇宙飞行之中。
然而,关于陀螺运动的研究,或者用更有学术味道的话,叫刚体绕固定点运动的问题,却有一段神奇的历史。
公元1888年,法兰西科学院举行第三次有奖国际征文,悬赏三千法郎,向全世界征集关于刚体绕固定点运动问题的论文。在此之前的几十年内,鉴于该问题的重要性,法兰西科学院曾以同样的奖金进行过两次征文。不少杰出的数学家曾尝试过解答,但都没有能够得到成功。两次征文的奖金,依然原封不动地高搁着。为此,法兰西科学院决定第三次征集论文,这使许多素有盛望的数学家跃跃欲试。可是到了评判那天,评委们全都大为震惊。他们发现有一篇文章在无数平凡之中鹤立鸡群。这是一篇闪烁着智慧光芒的佳作,每一个步骤,每一个结论,都充溢着高人一筹的才华。鉴于它具有特别高的科学价值,评委们破例决定,把奖金从原来的三千法郎提到五千法郎。
评判结束了,打开密封的名字一看,原来获奖的是一位俄罗斯女性,她就是数学王国的巾帼英雄,一位蜚声数坛的女数学家索菲娅。
打开世界的科学史,科学家中的女性屈指可数,女数学家更是寥若晨星。而在二十世纪之前能够载入数学史册的,大约只有柯瓦列夫斯卡娅一个。而她的奋斗经历则是充满着传奇的色彩。
索菲娅生于将军之家,由于叔叔彼得的启蒙,她对数学产了浓厚的兴趣。但她的父亲,一位退休了的军人,带着对女性古老的偏见,反对女儿学习数学。在这种情况下,索菲娅只好躲在自己的房间里偷偷地看数学书。这种神秘的学习气氛,反而增加了索菲娅的好奇心和求知欲,她的进取心更强了,这时她才13岁。翻过一个年头,一本基利托夫的物理书引起了索菲娅的注意,因为基利托夫教授是她的邻居。在翻看教授的著作时,她发现书中利用到许多三角知识,然而三角对于这时的她,却是一个陌生的世界。于是她从画弦开始,自己推导出一系列三角公式,这无疑相当于一个数学分支史的再创造!这一超人的天赋,使基利托夫教授惊鄂了,他仿佛看到了一位新帕斯卡的出现。法国数学家帕斯卡在少年时代曾是世人公认的神童。在基利托夫教授的再三说服下,索菲娅的父亲终于同意她前往外地学习微积分和其他课程。就这样索菲娅得以刻苦学习了两年。正当她渴望能上大学深造的时候,父亲严令将她召回。这位当过将军的父亲怎么也不能理解女儿和数学是不可共容的两个词,况且女儿已经长大成人。
为了继续自己的学业,索菲娅使出了作为姑娘的最为有效的一招。她决定出嫁了,丈夫是一位年轻开明的生物学家。婚后,她与丈夫双双来到彼得堡。可是一到那里,美好的幻影立即破灭,因为当时的俄国大学不招收女生。
世界上的许多事情常常是事与愿违。结婚,既带给索菲娅欢悦,也带给她苦恼。没过多久,索菲娅?柯瓦列夫斯卡娅当了母亲。幼小的生命,繁重的家务,淡化了她对数学的酷爱。一天,小孩屋里没有糊墙的纸,她就用数学家奥斯特洛格拉德斯基的书撕下来裱糊。没想到这到这些散页中的各种符号,重新燃起了柯瓦列夫斯卡娅学习数学的热情。在丈夫的支持下,她一面买了许多数学书日夜攻读,另一面在彼得堡大学非正式跟班旁听。随着学业的进步,她对深造的愿望更加强烈了!
公元1870年,年仅20岁的柯瓦列夫斯卡娅毅然决定前往柏林,那里有一所她所倾慕的学府——柏林大学。但是她不知道,在那个时代,歧视妇女的思想并没有国界,柏林大学拒绝接纳这位外国女生。然而柯瓦列夫斯卡娅并不因此甘休,她找到了在柏林大学任教的著名数学家魏尔斯特拉斯,直接向他陈述自己的请求。这位年近花甲的教授迷惑了,他用怀疑的眼光看了看这个异邦的姑娘,然后向她提出了一个当时相当深奥的椭圆函数问题,这是教授前此一刻思考的。柯瓦列夫斯卡娅当场作了解答。精辟的结论,巧妙的构思,非凡的见解!魏尔斯特拉斯震撼了!教授破例答应收她为私人学生。在名师指点下,柯瓦列夫斯卡娅如虎添翼,迅速地成长着。
公元1873年,柯瓦列夫斯卡娅连续发表了三篇关于偏微分方程的论文。由于论文的创造性和价值,1874年7月,哥廷根大学破例在无须答辩的情况下,授予柯瓦列夫斯卡娅博士学位,那年她才24岁。
1875年,柯瓦列夫斯卡娅满怀热情返回故土,但等待她的确是无限的忧愁。沙皇俄国决定不允许一个女人走上讲台,研究机构也没有女人的位置。就这样,这位俄罗斯的天才儿女,令人惋惜地中断了三年研究。而后又因小女儿的出生再次耽搁了两年。1880年彼得堡召开科学大会,著名数学家车比雪夫请她为大会提供一篇文章。她从箱底翻出一篇六年前没有发表的,关于阿贝尔积分的论文,献给大会。然而这篇放置了六年之久的文章,依旧引起了大会的轰动。
1888年12月,法兰系科学院授予柯瓦列夫斯卡娅波士顿奖,表彰她对于刚体运动的杰出研究。1889年,瑞典科学院也向柯瓦列夫斯卡娅授予了奖。同年11月慑服于这位女数学家的巨大功绩,和以车比雪夫为首的一批数学家的坚决请求,俄国科学院终于放弃了“女人不能当院士”的旧规。年已古稀的车比雪夫激动地给柯瓦列夫斯卡娅大去了如下电报:
“在没有先例地修改了院章之后,我国科学院刚刚选举你做通讯院士。我非常高兴看到,我的最急切和正义的要求之一实现了。”
1891年初,柯瓦列夫斯卡娅在从法国返回斯得哥尔摩途中病倒。由于医生的误诊,无情的病魔夺去了她光彩的生命。此时她年仅42岁
从死亡线上生还的人
在《神奇的功勋》的故事中我们看到,在一种前提下的随机事件,在另一种前提下可能成为必然事件。同样地,在一种前提的必然事件,在另一种前提也可能不出现。下面两则“从死亡线上生还”的故事,生动地说明了这一点。
第一个从死亡线上生还的故事。
传说古代有一个阴险狡诈、残暴凶狠的国王。有一次他抓到一个反对者,决意要将他处死。虽说国王心中早已打定注意,然而嘴上却假惺惺地说:“让上帝的旨意决定这个可怜人的命运吧!我允许他在临刑前说一句话。如果他讲的是假话,那么他将被绞死;只有他的话使我缄默不言,那才是上帝的旨意让我赦免他。”
在这番冠冕堂皇话语的背后,国王的如意算盘是:尽管话是由你讲的,但判定真话、假话的权在我,该绞该斩还不是凭我的一句话!的确,如果判断的前提只凭国王孤立的一句话,那么这位反对者是必死无疑的了。然而愚蠢的国王无论如何没有料到,要是判断真话或假话的前提是指自己所说话的意思,那么情况完全变了样。聪明的囚犯正是利用这一点,使自己获释的。
亲爱的读者,你猜得到国王的反对者说了一句什么样的话吗?可能你已经猜到了,也可能你还在思考。好!让我告诉你,犯人所说的话是:“我将被绞死。”
对这句话国王能怎么判断呢?如果他断言这句话是“真话”,那么此时按规定犯人应当处斩,然而犯人说的是自己“将被绞死”,因而显然不能算为“真话”。又若国王判定此话为“假话”,那么按说假话的规定,犯人将被受绞刑,但犯人恰恰就是说自己“将被绞死”,这岂不表明他的话是真的吗?可见也不能断为假话。
由于国王无法自圆其说,为了顾全自个儿的面子,只好让犯人得到自由。
第二个从死亡线上生还的故事。
相传古代有个国王,由于崇尚迷信,世代沿袭着一条奇特的法归:凡是死囚,在临刑前都要抽一次“生死签”。即在两张小纸上分别写着“生”和“死”的字样,由执法官监督,让犯人当众抽签。如果抽到“死”字的签,则立即处刑;如果抽到“活”字的签,则被认为这是神的旨意,应予当场赦免。
有一次国王决定处死一名大臣,这名大臣因不满国王的残暴统治而替老百姓讲了几句公道话,为此国王震怒不已。他决心不让这名敢于“犯上”的臣下,得到半点获赦的机会。于是,他与几名心腹密谋暗议,终于想出了一条狠毒的计策:暗嘱执法官,把“生死签”的两张签纸都写成“死”字。这样,不管犯人抽得是哪张签纸,终难幸免与死。
世上没有不透风的墙。国王的诡计终于被外人所察觉。许多悉知内情的问武官员,虽然十分同情这位往日正直的同僚,但慑于国王的淫威,也只是敢怒而不敢言。就这样终于挨到了临刑的前一天,一位好心的看守含蓄地对囚臣说:“你看看有什么后事要交待,我将尽力为你奔劳。”看守吞吞吐吐的神情,引起了囚臣的疑心,百问之下,终于获知阴谋的内幕。看守原以为囚臣会为此神情沮丧,有心好言相慰几句,但见犯人陷入沉思,片刻间额上焕发出兴奋的光芒。
在国王一伙看来,这个“背道离经”的臣子的“死”是必然事件,因为他们考虑的前提条件是“两死抽一”。然而聪明的囚臣,正是巧妙利用了这一点而使自己获赦的。
囚臣是怎样死里逃生的呢?
原来当执法官宣布抽签的办法之后,但见囚臣以极快的速度抽出一张签纸,并速即塞进嘴里。待到执法官反应过来,嚼烂的纸团早已吞下。执法官赶忙追问:“你抽到死字签还是活字签?”囚臣固作叹息说:“我听从天意安排,如果上天认为我有罪,那么这个咎由自取的苦果我业已吞下,只要查看剩下的签是什么字就清楚了。”这时,在场的群众异口同声地赞成这个做法。
剩下的签当然写着“死”字,这意味着犯臣已经抽到“活签”。国王和执法官有苦难言,由于怕触犯众怒,只好当众赦免了犯臣。
本来,这位犯臣抽到“生”还是“死”是一个随机事件,抽到每一种的可能性各占一半。但由于国王一伙“机关算尽”,想把这种“有一半可能死”的随机事件,变为“必定死”的必然事件,终于搬起石头砸了自己的脚,反使犯臣因此得以死里逃生。
一个永恒运动的世界
我们这个星球,宛如飘浮在浩瀚宇宙中的一方岛屿,从茫茫中来,又向茫茫中去。生息在这一星球上的生命,经历了数亿年的繁衍和进化,终于在创世纪的今天,造就了人类的高度智慧和文明。
然而,尽管人类已经有着如此之多的发现,但仍不知道我们周围的宇宙是怎样开始的,也不知道它将怎样终结!万物都在时间长河中流淌着,变化着。从过去变化到现在,又从现在变化到将来。静止是暂时的,运动却是永恒!
天地之间,大概再没有什么能比闪烁在天空中的星星,更能引起远古人的遐想。他们想象在天庭上应该有一个如同人世间那般繁华的街市。而那些本身发着亮光的星宿,则忠 诚地守护在天宫的特定位置,永恒不动。后来,这些星星便区别于月亮和行星,称之为恒星。其实,恒星的称呼是不确切的,只是由于它离我们太远了,以致于它们间的任何运动,都慢得使人一辈子感觉不出来!
北斗七星,大约是北天最为明显的星座之一。在天文学上有个正式的名字叫大熊星座。大熊座的七颗亮星,组成把勺子的样子,勺底两星的连线延长约5倍处,可寻找到北极星。在北天的夜空是很容易辨认的。
大概所有的人一辈子见到的北斗七星,总是那般形状,这是不言而喻的。人的生命太短暂了!几十年的时光,对于天文数字般的岁月,是几乎可以忽略不计的!然而有幸的是:现代科学的进展,使我们有可能从容地追溯过去,和精确地预测将来。人类在十万年前、现在和十万年后应该看到和可以看到的北斗七星,它们的形状是大不一样的!不仅天在动,而且地也在动。火山的喷发,地层的断裂,冰川的推移,泥石的奔流,这一切都还只是局部的现象。更加不可思议的是。我们脚下站立着的大地,也如同水面上的船只那样,在地馒上缓慢地漂移着!
本世纪初,德国年青的气象学家魏根纳(Wegener, 1880~1930)发现:大西洋两岸,特别是非洲和南美洲海岸轮廓,非常相似。这其间究竟隐含着什么奥秘呢?魏根纳为此而深深思索着。
一天,魏根纳正在书房看报一个偶然的变故,激发了他的灵感。由于座椅年久失修,某个接头突然断裂,魏的身体骤然间向后仰去,持在手中的报纸被猛然断裂。在这一切过去之后,当魏根纳重新注视手上的两半报纸时。顿时醒悟了!长期萦回在脑中的思绪跟眼前的现象,碰撞出智慧的火花!一个伟大的思想在魏根纳的脑中闪现了:世界的大陆原本是连在一起的,后来由于某种原因而破裂分离了!
此后,魏根纳奔波于大西洋两岸,为自己的理论寻找证据。公元1912年,“大陆漂移说”终于诞生了!
今天,大陆漂移学说已为整个世界所公认。据美国宇航局的最新测定表明,目前大陆移动仍在持续:如北美正以每年1.52厘米的速度远离欧洲而去;而澳大利亚却以每年6.858厘米的速度,向夏威夷群岛飘来!
世间万物都在变化,“不变”反而使人充满着疑惑,下面的故事是在生动不过了。
公元1938年12月22日,在非洲的科摩罗群岛附近,渔民们捕捉到一条怪鱼。这条鱼全身披着六角形的鳞片,长着四只“肉足”,尾巴就像古代勇士用的长矛。当时渔民们对此并不在意,因为每天从海里网上来的奇形怪状的生物多得是!于是这条鱼便顺理成章地成了美味佳肴。
话说当地博物馆有个年轻的女管理员叫拉蒂迈,此人平时热心于鱼类学研究。当她听到消息闻讯赶来的时候,见到的已是一堆残皮剩骨。不过,出于职业的爱好,拉蒂迈小姐还是把鱼的头骨收集了起来,寄给当时的鱼类学权威,南非罗兹大学的史密斯教授。
教授接信后,顿时目瞪口呆。原来这种长着矛尾的鱼,早在七千万年前就已绝种了。科学家们过去只是在化石中见到它。眼前发生的一切,使教授由惊震转为打一个大大的问号。于是不惜定下十万元重金,悬赏捕捉第二条矛尾鱼!
时间一年又一年地过去,不知不觉过了十四个年头。正当史密斯博士抱恨绝望之际,公元1952年12月20日,教授突然收到了一封电报,电文是:“捉到了您所需要的鱼。”史密斯见电欣喜若狂,立即乘机赶往当地。当教授用颤抖的双手打开鱼布包时,一股热泪夺眶而出„„
那么,为什么一条矛尾鱼竟会引起这样大的轰动呢?原来现在捉到的矛尾鱼和七千万年前的化石相比,几乎看不到变异!矛尾鱼在经历了亿万年的沧桑之后,竟然既没有灭绝,也没有进化。这一“不变”的迷惑,无疑是对“变”的进化论的挑战!究竟是达尔文的理论需要修正呢,还是由于其他更加深刻的原因?争论至今仍在继续!
我们前面讲过,这个世界的一切量,都跟随着时间的变化而变化。时间是最原始的自行变化的量,其他量则是因变量。一般地说,如果在某一变化过程中有两个变量x,y,对于变量x在研究范围内的每一个确定的值,变量y都有唯一确定的值和它对应,那么变量x就称为自变量,而变量y则称为因变量,或变量X的函数,记为:
y=f(X)
函数一语,起用于公元1692年,最早见自德国教学家莱布尼兹的著作。记号f(x)则是由瑞士数学家欧位于公元1724年首次使用的.上面我们所讲的函数定义,属于德国数学家黎曼(Riemann,1826-1866)。我国引进函数概念,始于1859年,首见于清代数学家李善兰(1811~1882)的译作。
一个量如果在所研究的问题中保持同一确定的数值,这样的量我们称为常量。常量并不是绝对的。如果某一变量在局部时空中,其变化是那样地微不足道,那么这样的量,在这一时空中便可以看成常量。例如读者所熟知的“三角形内角和为180°”的定理,那只是在平面上才是成立的。但绝对平的面是不存在的。即使是水平面,由于地心引力的关系,也是呈球面弯曲的。然而,这丝毫没有影响广大读者,去掌握应用平面的这条定理!又如北斗七星,诚如前面所说,它前十万年与后十万年的位置是大不相同的。但在近几个世纪内,我们完全可以把它看成是恒定的,甚至可以利用它来精确地判断其他星体的位置!
卡尔丹诺公式的由来 在自然科学领域,有不少公式和定律都以发现者的名字而命名。而数学上的“卡尔丹诺公式”的命名则是一桩地地道道的冤案。在中世纪的意大利,盛行在街头打数学擂台。通常是摆上一张桌子。数学斗士们各向对手提交一批数量不等的难题,谁先做出正确的解答,谁就是优胜者。这种风习有效地培养出一批颇具才华的数学家。
出身寒微而自学成才的尼古拉·塔尔达利亚便是其中的佼佼者。由于他才智过人,又极为勤奋好学,因而享有“不可战胜者”的盛誉。一次,他接到了平庸的大富豪费奥里的挑战书,并且得知费奥里已向一位教师要到了三次方程式的秘密解法,希图以此获胜。塔尔达利亚为赢得这次胜利,闭门谢客,废被忘食,苦苦琢磨了三天三夜,终于找到了三次方程式的新解法,并在随后的比赛中,又一次轻取桂冠。
这时,一个名叫卡尔丹诺的科学骗子找到了塔尔达利亚,狂妄地自称他有4万项发明,只有三次方程式的解法才是他唯一的不解之谜,并为此痛不欲生。在卡尔丹诺甜言蜜语的哄骗下,诚实而善良的塔尔达利亚便毫无保留地将自己的新发现告诉了他。
谁知,几天以后,卡尔丹诺竟发表了一篇论文,阐述了三次方程式的新解法,并大言不惭地宣称,这是他的最新发现。待人一向诚恳的塔尔达利亚被骗子这一欺世盗名的无耻行径激怒了,他向卡尔丹诺堂堂正正地提出挑战,并把骗子派来的数学高手击得惨败。然而,在随即而来的一个没有星光的夜晚,塔尔达利亚竟被骗子收买的亡命之徒秘密刺杀了。
从此,在罗马街头的数学擂台上,不可战胜的数学斗士塔尔达利亚的勃勃英姿永远消逝了,他对三次方程式的新解法的卓越贡献,也被一些不公正的记载一笔抹煞了,在今天的不少数学著作中,他的发现仍被称为“卡尔丹诺公式”,这使凡是熟知上述史实的人,无不痛感必须恢复真理的权威性和历史本身的尊严。
从古至今,妇女研究数学一直未受鼓励,声称数学不适合于妇女,并且是她们的智力不能承受的。但是有一名法国妇女成功地摆脱了社会的束缚,使自己成为一个优秀的数论家。她就是索非.热尔曼(Sophie German 1776-1831)。
她涉猎各种数学书籍,但是受到父亲的百般阻挠,她克服一切困难来自学数学,由于她的坚定无比,最终她的父母动了恻隐之心,同意她继续学习。热尔曼终生未婚。始终是她的父亲资助她的研究工作。
1794年,巴黎综合工科学校成立了,热尔曼渴望进入大学学习,但是该校只招收男生。在她的邻居里有一位名叫勒布朗的男生,是巴黎综合工科学校大数学家拉格朗日的学生,数学学得很糟糕。恰好因为某些原因中途辍学了。热尔曼就冒名顶替偷偷摸摸地在学校里学习。学校的行政当局不知道真正的勒布朗先生已经离开巴黎,所以继续为他印发课程讲义和习题。热尔曼设法取得原本给拉布朗的材料,并且每星期以勒布朗的名义交上习题解答。一切都按照计划顺利地进行着,直到两个月后,拉格朗日觉得再也不能无视这位“勒布朗先生”在习题解答中所表现出的才华了。“勒布朗先生”的解答不仅巧妙非凡,而且显示了他的深刻的转变。他要求“勒布朗先生”来见他,于是热尔曼被迫泄漏了她的真实身份。拉格朗日感到非常震惊,他很高兴见到这个年轻的女学生并成为她的导师和朋友。热尔曼变得越来越有信心,并且开始研究数学问题,当她对费尔马大定理的研究取得突破的时候,决定直接与当时最伟大的数学家高斯交流,她给高斯写了信,署名是“勒布朗先生”。当高斯看到勒布朗先生研究成果时感到惊喜万分。后来法国数学家勒让德和狄利赫莱以及拉米都是在热尔曼的基础上推进了对费尔马大定理的研究工作。
1806年,拿破仑入侵普鲁士,法国军队一个接一个地猛攻德国的城市,热尔曼担心落在阿基米德身上的命运会夺走她的崇拜对象高斯的生命,因此她给她的朋友怕尼提将军写了封信。她请求他保证高斯的安全,结果将军对这位德国数学家给与了特别的照顾,并向他解释是热尔曼小姐挽救了他的生命。高斯非常感激,也很惊讶,因为他从未听说过索非。热尔曼。
游戏该结束了。在热尔曼给高斯的下一封信中,她透露了自己的真实身份。高斯完全没有因为受到欺骗而恼怒,他愉快地给她写了回信:
不知道该怎样向你描述当我明白了我所尊敬的通信者勒布朗先生把自己变成为做出如此辉煌的使我难以相信的范例的卓越人物时我的
钦佩和震惊。一般而言,对抽象的科学,尤其是对神秘的数论的爱好是非常罕见的。这门高尚的科学只对那些有勇气深入其中的人展现其
迷人的魅力。而当一位在世俗和偏见的眼光看来一定会遭遇到比男子多得多的困难才能通晓洞察其中最令人费解的部分时,那么毫无疑问
她一定具有最崇高的勇气、超常的才智和卓越的创造力。事实上,还没有任何东西能以如此令人喜欢和毫不含糊的方式向我证明,这门为
我的生活增添了无比欢乐的科学所具有的吸引力绝不是虚构的,如同你的偏爱使它更为荣光一样。
高斯的回信给了热尔曼莫大的鼓舞,后来她又在物理学中做出了重大的贡献,她写出了《弹性振动研究》这篇杰出的、见解深刻的论文,它奠定了现代弹性理论的基础。由于她的杰出贡献,法国科学院给她颁发了金质奖章。高斯还说服了哥廷根大学授予热尔曼名誉博士学位。可惜的是,这时索非。热尔曼已经死于癌症。
数学家的墓志铭
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在说:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算 而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑。
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语。
未卜先知的韦达
韦达是十六世纪法国的一名律师,但他把自己的绝大部分业余时间都贡献给了数学,据说当他被某一数学问题吸引住时,他总是一连数日将自己关在房间里,一份耕耘,一份收获,丰硕的成果使它成为那个时代最伟大的数学家。
在法西战争中,法国人对于西班牙的军事企图总是洞察秋毫,故在军事上总能先发制人,因而在两年内就打败了西班牙。西班牙国王菲力普二世对法国人在战争中的“未卜先知”十分恼火又无法理解,他向教皇控告说,法国人在对付他的国家时使用了“魔法”,与基督教信仰的惯例“相矛盾”,事实上,是韦达用精湛的数学方法成功地破译了西班牙人的军事密码,使他的祖国赢得了战争的主动权。
监狱里的数学研究
法国的彭赛列(Jean-Victov Poncelet, 1788~1867)是近代射影几何的奠基者之一。他1812年投入军队,随拿破仑侵略军远征莫斯科,在一次战役中,被当作死尸弃在冰冻的战场上,一队俄国的搜索兵发现他,便把他抓了去。
1813年3月,彭赛列被投进伏尔加河畔萨拉托夫的监狱。他开始潜心研究图形经过投影后不变的性质。狱中没有书籍和纸笔,起先,他藏起一些取暖的木炭,在墙上作图,后来才找到一些纸张。
1814年6月,他被释放。9月回到法国,立即着手整理狱中的研究心得。又经过几年的努力,终于完成了《图形的射影性质》一书,奠定了射影几何的基础。其中详论交比、射影对应、对合变换等,并引入极有价值的连续原理。
第二篇:中外著名数学家故事
1、16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语2、20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为“计算机之父”.1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.3、伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
4、阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称“智慧之都”的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
数学家的墓志铭
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算 而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑。
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语
数学家高斯小时候的故事
从一加到一百
高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈他小时后的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。
高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。
高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音后,就自己学着读起书来。
七岁时高斯进了 St.Catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯:第一个做完的就把石板〔当时通行,写字用〕面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。
数学家高斯的故事
高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。
老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。
1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。
数学家华罗庚小时候的轶事
华罗庚(1910——1982)出生于江苏太湖畔的金坛县,因出生时被父亲华老祥放于箩筐以图吉利,“进箩避邪,同庚百岁“,故取名罗庚。
华罗庚从小便贪玩,也喜欢凑热闹,只是功课平平,有时还不及格。勉强上完小学,进了家乡的金坛中学,但仍贪玩,字又写得歪歪扭扭,做数学作业时倒时满认真地画来画去,但像涂鸦一般,所以上初中时的华罗庚仍不被老师喜欢的学生而且还常常挨戒尺。
金坛中学的一位名叫王维克的教员却独有慧眼,他研究了华罗庚涂鸦的本子才发现这许多涂改的地方正反映他解题时探索的多种路子。一次王维克老师给学生讲[孙子算经]出了这样一道题:”今有物不知其数,三三数之剩其二,五五数剩其三,七七数剩其二,问物几何?“正在大家沉默之际,有个学生站起来,大家一看,原来是向来为人瞧不起的华罗庚,当时他才十四岁,你猜一猜华罗庚他说出是多少?
陈景润:小时候,教授送我一颗明珠
20多年前,一篇轰动全中国的报告文学《哥德巴赫猜想》,使得一位数学奇才一夜之间街知巷闻、家喻户晓。在一定程度上,这个人的事迹甚至还推动了一个尊重科学、尊重知识和尊重人才的伟大时代早日到来。他的名字叫做陈景润。
不善言谈,他曾是一个“丑小鸭”。通常,一个先天的聋子目光会特别犀利,一个先天的盲人听觉会十分敏锐,而一个从小不被人注意、不受人欢迎的“丑小鸭”式的人物,常常也会身不由己或者说百般无奈之下穷思冥想,探究事理,格物致知,在天地万物间重新去寻求一个适合自己的位置,发展自己的潜能潜质。你可以说这是被逼的,但这么一“逼”往往也就“逼”出来不少伟人。比如童年时代的陈景润。陈景润1933年出生在一个邮局职员的家庭,刚满4岁,抗日战争开始了。不久,日寇的狼烟烧至他的家乡福建,全家人仓皇逃入山区,孩子们进了山区学校。父亲疲于奔波谋生,无暇顾及子女的教育;母亲是一个劳碌终身的旧式家庭妇女,先后育有12个子女,但最后存活下来的只有6个。陈景润排行老三,上有兄姐、下有弟妹,照中国的老话,“中间小囡轧扁头“,加上他长得瘦小孱弱,其不受父母欢喜、手足善待可想而知。在学校,沉默寡言、不善辞令的他处境也好不到哪里去。不受欢迎、遭人欺负,时时无端挨人打骂。可偏偏他又生性倔强,从不曲意讨饶,以求改善境遇,不知不觉地便形成了一种自我封闭的内向性格。人总是需要交流的,特别是孩子。禀赋一般的孩子面对这种困境可能就此变成了行为乖张的木讷之人,但陈景润没有。对数字、符号那种天生的热情,使得他忘却了人生的艰难和生活的烦恼,一门心思地钻进了知识的宝塔,他要寻求突破,要到那里面去觅取人生的快乐。所谓因材施教,就是通过一定的教育教学方法和手段,为每一个学生创造一个根据自己的特点充分得到发展的空间。
小小陈景润,自己对自己因材施教着。
一生大幸,小学生邂逅大教授但是,他毕竟还是个孩子。除了埋头书卷,他还需要面对面、手把手的引导。毕竟,能给孩子带来最大、最直接和最鲜活的灵感和欢乐的,还是那种人与人之间的、耳提面命式的,能使人心灵上迸射出辉煌火花的交流和接触。所幸,后来随着家人回到福州,陈景润遇到了他自谓是终身获益匪浅的名师沈元。
沈元是中国著名的空气动力学家,航空工程教育家,中国航空界的泰斗。他本是伦敦大学帝国理工学院毕业的博士、清华大学航空系主任,1948年回到福州料理家事,正逢战事,只好留在福州母校英华中学暂时任教,而陈景润恰恰就是他任教的那个班上的学生。
大学名教授教幼童,自有他与众不同、出手不凡的一招。针对教学对象的年龄和心理特点,沈元上课,常常结合教学内容,用讲故事的方法,深入浅出地介绍名题名解,轻而易举地就把那些年幼的学童循循诱入了出神入化的科学世界,激起他们向往科学、学习科学的巨大热情。比如这一天,沈元教授就兴致勃勃地为学生们讲述了一个关于哥德巴赫猜想的故事。
师手遗“珠“,照亮少年奋斗的前程
“我们都知道,在正整数中,2、4、6、8、10......,这些凡是能被2整除的数叫偶数;1、3、5、7、9,等等,则被叫做奇数。还有一种数,它们只能被1和它们自身整除,而不能被其他整数整除,这种数叫素数。“
像往常一样,整个教室里,寂静地连一根绣花针掉在地上的声音都能听见,只有沈教授沉稳浑厚的嗓音在回响。
“二百多年前,一位名叫哥德巴赫的德国中学教师发现,每个不小于6的偶数都是两个素数之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13......反反复复的,哥德巴赫对许许多多的偶数做了成功的测试,由此猜想每一个大偶数都可以写成两个素数之和。”沈教授说到这里,教室里一阵骚动,有趣的数学故事已经引起孩子们极大的兴趣。
“但是,猜想毕竟是猜想,不经过严密的科学论证,就永远只能是猜想。”这下子轮到小陈景润一阵骚动了。不过是在心里。
该怎样科学论证呢?我长大了行不行呢?他想。后来,哥德巴赫写了一封信给当时著名的数学家欧勒。欧勒接到信十分来劲儿,几乎是立刻投入到这个有趣的论证过程中去。但是,很可惜,尽管欧勒为此几近呕心沥血,鞠躬尽瘁,却一直到死也没能为这个猜想作出证明。从此,哥德巴赫猜想成了一道世界著名的数学难题,二百多年来,曾令许许多多的学界才俊、数坛英杰为之前赴后继,竞相折腰。教室里已是一片沸腾,孩子们的好奇心、想像力一下全给调动起来。
“数学是自然科学的皇后,而这位皇后头上的皇冠,则是数论,我刚才讲到的哥德巴赫猜想,就是皇后皇冠上的一颗璀璨夺目的明珠啊!”
沈元一气呵成地讲完了关于哥德巴赫猜想的故事。同学们议论纷纷,很是热闹,内向的陈景润却一声不出,整个人都“痴”了。这个沉静、少言、好冥思苦想的孩子完全被沈元的讲述带进了一个色彩斑斓的神奇世界。在别的同学啧啧赞叹、但赞叹完了也就完了的时候,他却在一遍一遍暗自跟自己讲:
“你行吗?你能摘下这颗数学皇冠上的明珠吗?”
一个是大学教授,一个是黄口小儿。虽然这堂课他们之间并没有严格意义上的交流、甚至连交谈都没有,但又的确算得上一次心神之交,因为它奠就了小陈景润一个美丽的理想,一个奋斗的目标,并让他愿意为之奋斗一辈子!多年以后,陈景润从厦门大学毕业,几年后,被著名数学家华罗庚慧眼识中,伯乐相马,调入中国科学院数学研究所。自此,在华罗庚的带领下,陈景润日以继夜地投入到对哥德巴赫猜想的漫长而卓绝的论证过程之中。
1966年,中国数学界升起一颗耀眼的新星,陈景润在中国《科学通报》上告知世人,他证明了(1+2)!
1973年2月,从“文革“浩劫中奋身站起的陈景润再度完成了对(1+2)证明的修改。其所证明的一条定理震动了国际数学界,被命名为“陈氏定理”。不知道后来沈元教授还能否记得自己当年对这帮孩子们都说了些什么,但陈景润却一直记得,一辈子都那样清晰。
名人成长路
陈景润(1933-1996),当代著名数学家。1950年,仅以高二学历考入厦门大学,1953年毕业留校任教。1957年调入中国科学院数学研究所,后任研究员。1973年发表论文《大偶数表为一个素数及一个不超过二个素数的乘积之积》。1979年,论文《算术级数中的最小素数》问世。1980年当选为中国科学院学部委员(中国科学院院士)。
第三篇:中国著名数学家的小故事
华罗庚的故事
温室里难开出鲜艳芬芳耐寒傲雪的花儿。人只有经过苦难磨练才有望获得成功!我国著名的数学家华罗庚爷爷的成功就得益于他的坎坷经历。少年时代的华罗庚家境贫寒,疾病缠身。18岁那年,华罗庚初中时代的王老师从外国学成归来,出任金坛中学校长。华罗庚是他得意的门生。他一心要接济华罗庚。不久,经王校长介绍,华罗庚到金坛中学做了个勤杂工,负责收发信件、报纸做杂务。华罗庚做勤杂工时,手脚勤快,每天忙忙碌碌地干完事就捧起数学课本学习。王校长看在眼里,喜在心里。他为这位勤奋肯学的年轻人而感到骄傲。真是天有不测风雨。华罗庚被一场伤寒病拖垮,医生作出“无法医救”的诊断。全家人悲痛万分,王校长更是觉得十分惋惜。但是死神终究没有把他拽走,他又奇迹般地活了过来,只是左腿僵硬,落下了终身残疾。
数学家的墓志铭
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算 而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为
他建造正十七边形的棱柱为底座的墓碑。
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语
第四篇:著名数学家趣事
数学陈景润的小故事 继续思考。
数学家鲁道夫的小故事
著名数学家趣事
数学家陈景润边思考问题边走路,撞到一棵树干上,头也不抬说:“对不起、对不起。”16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上。
数学家雅谷伯努利的小故事
瑞士数学家雅谷伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语。八岁的高斯发现了数学定理
德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。陈景润
陈景润出生在贫苦的家庭,母亲生下他来就没有奶汁,靠向邻居借熬米汤活过来。快上学的年龄,因为当邮局小职员的父亲的工资太少,供大哥上学,母亲还要背着不满两岁的小妹妹下地干活挣钱。
这样,平日照看3岁小弟弟的担子就落在小景润的肩上。
稍大一点,挤出帮母亲下地干活的空隙,忙着练习写字和演算。母亲见他学习心切,就把他送进了城关小学。别看他长得瘦小,可十分用功,成绩很好,因而引起有钱人家子弟的嫉妒,对他拳打脚踢。他打不过那些人,就淌着泪回家要求退学,妈妈抚摸着他的伤处说:“孩子,只怨我们没本事,家里穷才受人欺负。
你要好好学,争口气,长大有出息,那时他们就不敢欺负咱们了!”眼泪,又去做功课了。
小景润擦干此后,他再也没流过泪,把身心所受的痛苦,终于以全校第一名的成绩考入了三元县立初级中学。
化为学习的动力,成绩一直拔尖,在初中,他受到两位老师的特殊关注: 一位是年近花甲的语文老师,原是位教授,他目睹日本人横行霸道,国民党却节节退让,感到痛心疾首,只可惜自己年老了,就把希望寄托于下一代身上。他看到陈景润勤奋刻苦,年少有为,就经常把他叫到身边,讲说中国5000年文明史,激励他好好读书,肩负起拯救祖国的重任。
老师常常说得满眼催泪,陈景润也含泪表示,长大以后,一定报效祖国!另一位是不满30岁的数学教师,毕业于清华大学数学系,知识非常丰富。陈景润最感兴趣的是数学课,一本课本,只用两个星期就学完了。老师觉得这个学生不一般,就分外下力气,多给他讲,并进一步激发他的爱国热情,说:“一个国家,一个民族,要想强大,自然科学不发达是万万不行的,而数学又是自然科学的基础。”从此,陈景润就更加热爱数学了。一直到初中毕业,都保持了数学成绩全优的记录。
祖国光复后,陈景润考入福州英华书院念高中。在这里,他有幸遇见使他终生难忘的沈元老师。沈老师曾任清华大学航空系主任,当时是陈景润的班主任兼教数学、英语。
沈老师学问渊博,循循善诱,同学们都喜欢听他讲课。有一次,沈老师出了一道有趣的古典数学题:“韩信点兵”。大家都闷头算起来,陈景润很快小声回答:“53人”全班为他算得速度之快惊呆了,沈老师望着这个平素不爱说话、衣服槛楼的学生问是怎么得出来的?陈景润的脸羞红了,说不出话,最后是用笔在黑板上写出了方法。沈老师高兴地说:“陈景润算得很好,只是不敢讲,我帮他讲吧!”
沈老师讲完,又介绍了中国古代对数学贡献,说祖冲之对圆周率的研究成果早于西欧1000年,南宋秦九韶对“联合一次方程式”的解法,也比意大利数学家欧拉的解法早500多年。沈老师接着鼓励说:“我们不能停步,希望你们将来能创造出更大的奇迹,比如有个‘哥得巴赫猜想’,未解的难题,们把它比做皇冠上的明珠,你们要把它摘下来!”
是数论中至今
课后,沈老师问陈景润有什么想法,陈景润地说:“我能行吗?”沈老师说:“你既然能自己解出‘韩信点兵’,将来就能摘取那颗明珠:天下无难事,只怕有心人啊!”那一夜,陈景润失眠了,他立誓:长大无论成败如何,都要不惜一切地去努力!
我国著名的数学家
1.国际著名数学大师,沃尔夫数学奖得主,陈省身
2.享有国际盛誉的大数学家,新中国数学事业发展的重要奠基人,华罗庚
3.仅次于哥德尔的逻辑数学大师,王浩
4.著名数学家力学家,美国科学院院士,林家翘
5.我国泛函分析领域研究先驱者,曾远荣
6.我国最早提倡应用数学与计算数学的学者,赵访熊
7.著名数学家,数学教育家,吴大任
8.著名数学家,北大教授,庄圻泰
9.著名数学家,数学教育家,四川大学校长,柯召
10.中央研究院院士,首批学部委员,许宝騄
11.中科院院士,原北大数学系主任,段学复
12.我国拓扑学的奠基人 江泽涵
第五篇:著名数学家的5个传奇小故事
著名数学家的5个传奇小故事
很多伟大的数学家有一些传奇的故事,在这些故事中,不是无意义的琐碎,也不是一些让人盲目追求的癖好。而且一些高贵的品质和令人称艳的能力,让我们对其敬仰,这些伟人也会因此成为我们的偶像,让孩子有一个追逐的目标。如果孩子认为数学是枯燥的,对数学没兴趣,就让孩子一起看看数学家的故事吧!
Top1:伽利略质疑权威
伽利略17岁那年,考进了比萨大学医科专业。
有一次上课,比罗教授讲胚胎学。他讲道:“母亲生男孩还是生女孩,是由父亲的强弱决定的。父亲身体强壮,母亲就生男孩;父亲身体衰弱,母亲就生女孩。”
比罗教授的话音刚落,伽利略就举手说道:“老师,我有疑问。我的邻居,男的身体非常强壮,可他的妻子一连生了5个女儿。这与老师讲的正好相反,这该怎么解释?”
“我是根据古希腊著名学者亚里士多德的观点讲的,不会错!”比罗教授想压服他。
伽利略继续说:“难道亚里士多德讲的不符合事实,也要硬说是对的吗?科学一定要与事实符合,否则就不是真正的科学。”比罗教授被问倒了,下不了台。
后来,伽利略果然受到了校方的批评,但是,他勇于坚持、好学善问、追求真理的精神却丝毫没有改变。正因为这样,他才最终成为一代科学巨匠。
Top2:小欧拉怀疑上帝
小欧拉在一个教会学校里读书。有次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。这个老师不懂装懂,回答欧拉说:“天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。”
欧拉感到很奇怪:”天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?”
老师又一次被问住了。心中顿时升起一股怒气,这不仅是因为孩的问题使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。
在欧拉的年代,对上帝是绝对不能怀疑的。小欧拉没有与教会、与上帝“保持一致”,老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。上帝也许是个别人编造出来的家伙,根本就不存在。
Top 3:小欧拉机智改羊圈
小欧拉帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。
爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。他发现他的材料只够围100米的篱笆。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难。
小欧拉却向父亲说,不用缩小羊圈,他有办法。父亲不相信小欧拉会有办法。心想:“世界上哪有这样便宜的事情?”但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。
小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。
父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。
父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。
Top 4:8岁高斯发现了数学定理
德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。
有一天高斯的数学教师情绪低落的一天。对同学们说:“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”
结果不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”
老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”
高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”
数学老师本来想怒吼起来,可是一看石板上写了这样的数:5050,他惊奇起来,这个8岁的小鬼怎么这样快就得到了答案呢?
高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。
Top 5:陈景润攻克歌德巴赫猜想
陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。
1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。
一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28= 5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。
它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。……”陈景润瞪着眼睛,听得入神。