数学家的故事(汇编)

时间:2019-05-13 07:05:46下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学家的故事》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学家的故事》。

第一篇:数学家的故事

古希腊的毕达哥拉斯学

古希腊的毕达哥拉斯学派认为,世间任何数都可以用整数或分数表示,并将此作为他们的一条信条.有一天,这个学派中的一个成员希伯斯(Hippasus)突然发现边长为1的正方形的对角线是个奇怪的数,于是努力研究,终于证明出它不能用整数或分数表示.但这打破了毕达哥拉斯学派的信条,于是毕达哥拉斯命令他不许外传.但希伯斯却将这一秘密透露了出去.毕达哥拉斯大怒,要将他处死.希伯斯连忙外逃,然而还是被抓住了,被扔入了大海,为科学的发展献出了宝贵的生命.希伯斯发现的这类数,被称为无理数.无理数的发现,导致了第一次数学危机,为数学的发展做出了重大贡献.阿基米德的故事

二千一百九十年前,在古希腊西西里岛的叙拉古国,出现一位伟大的物理学家。他叫阿基米德(公元前287——212年)。阿基米德的一生勤奋好学,专心一志地献身于科学,忠于祖国,受到人们的尊敬与赞扬。阿基米德曾发现杠杆定律和以他的名字命名的阿基米德定律。并利用这些定律设计了多种机械,为人民、为祖国服务。关于他生平的详细情况,已无法考证。但关于他发明创造和保卫祖国的故事,却流传至今。

杠杆定律的确立,人们从远古时代起就会使用杠杆,并且懂得巧妙地运用杠杆。在埃及造金字塔的时候,奴隶们就利用杠杆把沉重的石块往上撬。造船工人用杠杆在船上架设桅杆。人们用汲水吊杆从井里取水,等等。但是,杠杆为什么能做到这一点呢?在阿基米德发现杠杆定律之前,是没有人能够解释的。当时,有的哲学家在谈到这个问题的时候,一口咬定说,这是“魔性”。阿基米德却不承认是什么“魔性”。他懂得,自然界里的种种现象,总有自然的原因来解释。杠杆作用也有它自然的原因,他决心把它解释出来。阿基米德经过反复地观察、实验和计算,终于确立了杠杆的平衡定律。就是,“力臂和力(重量)成反比例。”换句话说,就是:小重量是大重量的多少分之一重,长力臂就应当是短力臂的多少倍长。阿基米德确立了杠杆定律后,就推断说,只要能够取得适当的杠杆长度,任何重量都可以用很小的力量举起来。据说他曾经说过这样的豪言壮语:

“给我一个支点、我就能举起地球!”

称量皇冠的难题

在一般人看来,阿基米德是个“怪人”。用罗马历史学家普鲁塔克的话说:“他象是一个中了邪术的人,对于饭食和自己的身体全不关心。

国王在前不久,叫一个工匠替他打造一顶金皇冠。国王给了工匠他所需要的数量的黄金。工匠的手艺非常高明,制做的皇冠精巧别致,而且重量跟当初国王所给的黄金一样重。可是,有人向国王报告说:“工匠制造皇冠时,私下吞没了一部分黄金,把同样重的银子掺了进去。”国王听后,也怀疑起来,就把阿基米德找来,要他想法测定,金皇冠里掺没掺银子,工匠是否私吞黄金了。这次,可把阿基米德难住了。他回到家里苦思苦想了好久,也没有想出办法,每天饭吃不下,觉睡不好,也不洗澡,象着了魔一样。一边跑,一边叫:“我想出来了,我想出来了,解决皇冠的办法找到啦!”

他进皇宫后,对国王说:“请允许我先做一个实验,才能把结果报告给你。”国王同意了。阿基米德将与皇冠一样重的金子、一块银子和皇冠,分别一一放在水盆里,看金块排出的水量比银块排出的水量少,而皇冠排出的水量比金块排出的水量多。刚才的实验表明,皇冠排出的水量比金块多,说明皇冠的密度比金块的密度小,这就证明皇冠不是用纯金制造的。”阿基米德有条理的讲述,使国王信服了。实验结果证明,那个工匠私吞了黄金。

盲人数学家

欧拉(Euler),瑞士数学家及自然科学家。1707年4月15日出生於瑞士的巴塞尔,1783年9月18日於俄国彼得堡去逝。欧拉出生於牧师家庭,自幼受父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获硕士学位。

欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。

欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把数学推至几乎整个物理的领域。他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学中的经典著作。

欧拉对数学的研究如此广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。

古印度数学家阿帕斯檀跋,阿帕斯檀跋,古印度几何学家,生活在公元前600年,著有《阿帕斯檀跋法经》(Āpastamba Dharmasūtra),是《乔达摩法经》和《达耶那法经》的系统发展,还著有吠陀仪式需要的几何原理的《绳法经》(或称《数经》)(Śulvasūtra),其中记载了勾股定理的一个特殊情况:绳经过正方形的对角线的长作为边长得到的大正方形是原正方形面积的两倍;并记载了√2的近似值:一个单位增加三分之一和三分之一的四分之一,再减去这个四分之一的三十四分之一。这句话相当于说√2≈577/408≈1.4142156862745,给出了相当好的近似值,虽然这个记载可能是抄于其他《绳法经》。阿帕斯檀跋虽然严格来说算不上一个数学家,但其在数学上有一定的贡献是不可否定的。

女数学家王贞仪

女数学家王贞仪(1768-1797),字德卿,江宁人,是清代学者王锡琛之女,著有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。

从她遗留下来的著作可以看出,她是一位从事天文和筹算研究的女数学家。算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状的计算工具。一般是竹制或木制的一批同样长短粗细的小棒,也有用金属、玉、骨等质料制成的,不用时放在特制的算袋或算子筒里,使用时在特制的算板、毡或直接在桌上排布。应用“算筹”进行计算的方法叫做“筹算”,算筹传入日本称为“算术”。算筹在中国起源甚早,《老子》中有一句“善数者不用筹策”的记述,现在所见的最早记载是《孙子算经》,至明朝筹算渐渐为珠算所取代。

女数学家王贞仪

17世纪初叶,英国数学家纳皮尔发明了一种算筹计算法,明末介绍到我国,也称为“筹算”。清代著名数学家梅文鼎、戴震等人曾加以研究。戴震称其为“策算”。王贞仪也从事研究由西洋传入我国的这种筹算,并且写了三卷书向国人介绍西洋筹算。她在著作中对西洋筹算进行增补讲解,使之简易明了。王贞仪介绍的纳皮尔算筹乘除法,当时的读者认为容易了解,但与当时我国的乘除法筹算的方法相比,显得较繁杂,因此,数学家们没有使用西洋筹算,一直使用中国筹算法。今天的读者把中外筹算乘除法视为老古董,采用的是由外国传入的笔算四则运算,这种笔算于1903年才开始被使用,故我国与世界接轨使用笔算的历史只有100年。

数学家的故事

欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为“分析学的化身”.

欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年.

数学奇才——伽罗华

1832年5月30日 晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从枪伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点钟,他就离开了人世。数学史上最年轻、最有创造性的头脑停止了思考。人们说,他的死使数学发展推迟了好几十年。这个青年就是死时不满21岁的伽罗华。

伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。

1828年,17岁的伽罗华开始研究方程论,创造了“置换群”的概念和方法,解决了几百年来使人头痛的方程来解决问题。伽罗华最重要的成就,是提出了“群”的概念,用群论改变了整个数学的面貌。1829年5月,伽罗华把他的成果写成论文,递交法国科学院,但伴随着这篇杰作而来的是一连串的打击和不幸。先是父亲因不堪忍受教士诽谤而自杀,接着因他的答辩既简捷又深奥令考官们不满而未能进入著名的巴黎综合技术学校。至于他的论文,先是被认为新概念太多又过于简略而要求重写;第二份推导详尽的稿子又因审稿人病逝而下落不明;1831年1月提交的第三份论文又因评阅人不能全部看懂而被否定。

“数学之神”——阿基米德

阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称“智慧之都”的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。

后来阿基米德成为兼数学家与力学家的伟大学者,并且享有“力学之父”的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的“阿基米德原理”,他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。

《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。

“数学之神”——阿基米德

阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称“智慧之都”的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。阿基米德成为兼数学家与力学家的伟大学者,并且享有“力学之父”的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的“阿基米德原理”,他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。

《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。

《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为: <π<,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。

《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的。在这部著作中,他还提出了著名的“阿基米德公理”。

数学奇才——伽罗华

伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。

青年伽罗华一方面追求数学的真知,另一方面又献身于追求社会正义的事业。在1831年法国的“七月革命”中,作为高等师范学校新生,伽罗华率领群众走上街头,抗议国王的专制统治,不幸被捕。在狱中,他染上了霍乱。即使在这样的恶劣条件下,伽罗华仍然继续搞他的数学研究,并且写成了论文,准备出狱后发表。出狱不久,因为卷入一场无聊的“爱情”纠葛而决斗身亡。

伽罗华去世后16年,他留存下来的60页手稿才得以发表,科学界才传遍了他的名字。

陈景润与哥德巴赫猜想

为了使自己梦想成真,陈景润不管是酷暑还是严冬,在那不足6平米的斗室里,食不知味,夜不能眠,潜心钻研,光是计算的草纸就足足装了几麻袋。1957年,陈景润被调到中国科学院研究所工作,做为新的起点,他更加刻苦钻研。经过10多年的推算,在1965年5月,发表了他的论文《大偶数表示一个素数及一个不超过2个素数的乘积之和》。论文的发表,受到世界数学界和著名数学家的高度重视和称赞。英国数学家哈伯斯坦和德国数学家黎希特把陈景润的论文写进数学书中,称为“陈氏定理”,可是这个世界数学领域的精英,在日常生活中却不知商品分类,有的商品名字都叫不出来,被称为“痴人”和“怪人”。

作家徐迟在《哥德巴赫猜想》中这样描绘陈景润的内心世界:“我知道我的病早已严重起来。我是病入膏肓了。细菌在吞噬我的肺腑内脏。我的心力已到了衰竭的地步。我的身体确实是支持不了啦!唯独我的脑细胞是异常的活跃,所以我的工作停不下来。我不能停止。„„”对于陈景润的贡献,中国的数学家们有过这样一句表述:陈景润是在挑战解析数论领域250年来全世界智力极限的总和。中国改革开放总设计师邓小平曾经这样意味深长地告诉人们:像陈景润这样的科学家,“中国有一千个就了不得”。

陈景润与哥德巴赫猜想

陈景润在福州英华中学读书时,有幸聆听了清华大学调来一名很有学问的数学教师讲课。他给同学们讲了世界上一道数学难题:“大约在200年前,一位名叫哥德巴赫的德国数学家提出了‘任何一个偶数均可表示两个素数之和’,简称1+l。他一生没有证明出来,便给俄国圣彼得堡的数学家欧拉写信,请他帮助证明这道难题。欧拉接到信后,就着手计算。他费尽了脑筋,直到离开人世,也没有证明出来。之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题。200多年来,这个哥德巴赫猜想之谜吸引了众多的数学家,但始终没有结果,成为世界数学界一大悬案”。老师讲到这里还打个形象的比喻,自然科学皇后是数学,“哥德巴赫猜想”则是皇后王冠上的明珠!这引人入胜的故事给陈景润留下了深刻的印象,“哥德巴赫猜想”像磁石一般吸引着陈景润。从此,陈景润开始了摘取皇冠上宝石的艰辛历程......数学之父——塞乐斯

塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。

塞乐斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,塞乐斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。塞乐斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。

高斯的学校生涯

在费迪南公爵的善意帮助下,十五岁的高斯进入一间著名的学院(程度相当於高中和大学之间)。在那里他学习了古代和现代语言,同时也开始对高等数学作研究。

他专心阅读牛顿、欧拉、拉格朗日这些欧洲著名数学家的作品。他对牛顿的工作特别钦佩,并很快地掌握了牛顿的微积分理论。

795年10月他离开家乡的学院到哥庭根(Gottingen)去念大学。哥庭根大学在德国很有名,它的丰富数学藏书吸引了高斯。许多外国学生也到那里学习语言、神学、法律或医学。这是一个学术风气很浓厚的城市。

高斯这时候不知道要读什麼系,语言系呢还是数学系?如果以实用观点来看,学数学以后找生活是不大容易的。

可是在他十八岁的前夕,现在数学上的一个新发现使他决定终生研究数学。这发现在数学史上是很重要的。

我们知道当 n ≥ 3 时,正 n 边形是指那些每一边都相等,内角也一样的 n 边多边形。

希腊的数学家早知道用圆规和没有刻度的直尺画出正三、四、五、十五边形。但是在这之后的二千多年以来没有人知道怎麼用直尺和圆规构造正十一边

数学奇才、计算机之父——冯·诺依曼

20世纪即将过去,21世纪就要到来.我们站在世纪之交的大门槛,回顾20世纪科学技术的辉煌发展时,不能不提及20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为“计算机之父”.

1954年夏,冯·诺依曼被使现患有癌症,1957年2月8日,在华盛顿去世,终年54岁.

冯·诺依曼在数学的诸多领域都进行了开创性工作,并作出了重大贡献.在第二次世界大战前,他主要从事算子理论、鼻子理论、集合论等方面的研究.1923年关于集合论中超限序数的论文,显示了冯·诺依曼处理集合论问题所特有的方式和风格.他把集会论加以公理化,他的公理化体系奠定了公理集合论的基础.他从公理出发,用代数方法导出了集合论中许多重要概念、基本运算、重要定理等.特别在 1925年的一篇论文中,冯·诺依曼就指出了任何一种公理化系统中都存在着无法判定的命题.

数学奇才、计算机之父——冯·诺依曼

约翰·冯·诺依曼(John Von Nouma,1903-1957),美藉匈牙利人,1903年12月28日生于匈牙利的布达佩斯,父亲是一个银行家,家境富裕,十分注意对 孩子的教育.冯·诺依曼从小聪颖过人,兴趣广泛,读书过目不忘.据说他6岁时就能用古 希腊语同父亲闲谈,一生掌握了七种语言.最擅德语,可在他用德语思考种种设想时,又能以阅读的速度译成英语.他对读过的书籍和论文.能很快一句不差地将内容复述出来,而且若干年之后,仍可如此.1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.1921年一1923年在苏黎世大学学习.很快又在1926年以优异的成绩获得了布达佩斯大学数学博士学位,此时冯·诺依曼年仅22岁.1927年一1929年冯·诺依曼相继在柏林大学和汉堡大学担任数学讲师。1930年接受了普林斯顿大学客座教授的职位,西渡美国.1931年成为该校终身教授.1933年转到该校的高级研究所,成为最初六位教授之一,并在那里工作了一生. 冯·诺依曼是普林斯顿大学、宾夕法尼亚大学、哈佛大学、伊斯坦堡大学、马里兰大学、哥伦比亚大学和慕尼黑高等技术学院等校的荣誉博士.他是美国国家科学院、秘鲁国立自然科学院和意大利国立林且学院等院的院土. 1954年他任美国原子能委员会委员;1951年至1953年任美国数学会主席

我国第一位数学家的故事

刘徽是中国古代最伟大的数学家,在世界数学史上,也享有较高的声誉。他生于公元250年左右,生年履历不详。他出身清贫,一生未任官职,以数学研究为己任,刻苦探求真理,为我们的民族留下了无价之宝。

据说,刘徽从小聪明好学,幼时就能自学《九章算术》,长大后更加详细研究,因此领悟了其中奥妙,并且采用自己的见解,为此书作注。刘徽原书的方法、公式河定理进行一般的解释和推导,并弥补了《九章算术》的不足,在数学方法及理论上贡献卓越,奠定了中国古代数学的理论基础。

刘徽同时还创立了“割圆术”。割圆,就是在圆周上截取等分点,然后顺次连接各等分点,组成圆内接正多边形。“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失矣。”意思是说,等分圆周越细,内接正多边形的面积与圆面积就越接近,只要这种分割无限进行下去,就可以获得圆面积的值。正是利用割圆术,刘徽得出了圆周率π=3.14的结果,为圆周率的研究工作奠定理论基础合提供了科学的算法

我国第一位数学家的故事

刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位。他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。

《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明。在这些证明中,显示了他在多方面的创造性的贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法。在几何方面,提出了“割圆术”,即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π=3.14的结果。刘徽在割圆术中提出的“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”,这可视为中国古代极限观念的佳作。

《海岛算经》一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。

刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。

刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。

女数学家王贞仪

女数学家王贞仪(1768-1797),字德卿,江宁人,是清代学者王锡琛之女,著有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。

从她遗留下来的著作可以看出,她是一位从事天文和筹算研究的女数学家。算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状的计算工具。一般是竹制或木制的一批同样长短粗细的小棒,也有用金属、玉、骨等质料制成的,不用时放在特制的算袋或算子筒里,使用时在特制的算板、毡或直接在桌上排布。应用“算筹”进行计算的方法叫做“筹算”,算筹传入日本称为“算术”。算筹在中国起源甚早,《老子》中有一句“善数者不用筹策”的记述,现在所见的最早记载是《孙子算经》,至明朝筹算渐渐为珠算所取代。

女数学家王贞仪

女数学家王贞仪(1768-1797),字德卿,江宁人,是清代学者王锡琛之女,著有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。

17世纪初叶,英国数学家纳皮尔发明了一种算筹计算法,明末介绍到我国,也称为“筹算”。清代著名数学家梅文鼎、戴震等人曾加以研究。戴震称其为“策算”。王贞仪也从事研究由西洋传入我国的这种筹算,并且写了三卷书向国人介绍西洋筹算。她在著作中对西洋筹算进行增补讲解,使之简易明了。王贞仪介绍的纳皮尔算筹乘除法,当时的读者认为容易了解,但与当时我国的乘除法筹算的方法相比,显得较繁杂,因此,数学家们没有使用西洋筹算,一直使用中国筹算法。今天的读者把中外筹算乘除法视为老古董,采用的是由外国传入的笔算四则运算,这种笔算于1903年才开始被使用,故我国与世界接轨使用笔算的历史只有100年。

清代数学家梅文鼎

清代数学家梅文鼎,出生于公元1633年,安徽宣城人。在88年的生涯中醉心于天文数学之研究,成书七十余种,是我国十七八世纪之交的大数学家。不仅如此,其弟梅文鼐、文,其子以燕;其孙梅爵成、刿成;曾孙梅旰都精通数学。其中除了梅文鼎之外,要数梅的成就最大。

梅文鼎著书颇丰,他是明末清初沟通上下,横贯中西的数学家;在发掘、整理古代传统数学和传播、疏散引进西方数学上作出了巨大的贡献。在《梅氏丛书辑要》中有他编著的数学著作十三种共四十卷之多。其中《方程论》其六卷1672年完成;《筹算》两卷完成于1678年;《平三角举要》五卷;《弧三角举要》五卷完成于1684年;《勾股举隅》《几何通解》各一卷,《几何补编》四卷完成于1692年;《少广拾遗》一也完成于1692年;第二年则完成《笔算》五卷;《环中黍尺》五卷则完成于1700年;《堑堵测量》二卷,《方圆幂积说》一卷是1710年著成;《度算释例》两卷完成于1717年。这些书将中西数学合壁于一体,集古今数学之大成,深入浅出“使读书者不待详求而义可晓然。”是我国数学史上不可多得的鸿篇巨著。而梅老前辈那种为数学的发展而鞠躬尽瘁,勤耕不辍的精神更值得后代人敬仰。特别是他对中、西数学“技取其长而理唯其是”的致学态度更值得我辈深究。

清代数学家梅文鼎

梅文鼎之孙梅爵成是梅氏家族中又一巨人。他于1761年编成《梅氏丛书辑要》共60卷,其中收集了其爷爷的四十卷数学巨著。而同一时期梅 成还主编了在当时号称数学百科全书的《数理精蕴》。该书是康熙年间即1712年,康熙合梅 成等学者主编天文算法书《律历渊源》一百卷中的数学部分。该书共分三部分:上编五卷,下编四十卷,附数学用表四种共八卷,其内容包括当时传入中国的西方主要数学知识及中国古算的一些重要成果。

该书是西方数学传入中国进入第二阶段的重要著作,在中国数学史上的地位,较之利玛窦,徐光启译的《几何原本》,以及利玛窦、李之藻译的《同文算指》要高。

掩卷沉思,古人之追求数学之最高境界令我钦佩,而要成为一名真正的数学家,除了勤奋、智慧之外,尚需对数学的悟性。正如梅文鼎所言:“且夫数者所以合理也,历者所以顺天也,法有可采何论东西,理所当明何分新旧,在善学者知其所以异,又知其怪同,去中西之见,以平心观理,则弧三角之详明,郭图之简括,皆足以资探讨而启深思。务集众长以观其会通,毋拘名相而取其精粹。”这种对真理的追求和博大的容纳是深深地嵌进我的心中。

清代数学家梅文鼎

梅文鼎最突出的特点是勤奋。遇到难读的书,他从不轻易绕过,而是反复钻研,一定要弄懂其中的意义。对于暂时不理解的问题,也总是耿耿不忘,时时刻刻挂在心上,力求弄懂。为此废寝忘食是经常的事。有时读别的书的时候,无意中触发心中的疑团,豁然开朗,便趁夜秉烛,立刻记了下来。有时找到的书,残缺不全,就设法抄补,不错一字,不漏一句。有时听说某地有位在天文、数学方面很有修养的人,他就不顾旅途劳累,步行登门求教。后来他曾客居北京,与他同住的朋友见他如此勤奋钻研,大为惊异。这位朋友说,梅文鼎“尝午夜篝灯夜读,昧爽(天将亮)则兴,频年手抄杂帙,不下数万卷”。

梅文鼎治学的目的非常明确,他的志向是追求科学真理,献身于社会。他研究天文、数学不是为了做官、求功名,而是为了使这些学问能够“斯世共明”,让大家了解。他认为,只要天文、数学这种“古之绝学”不致失传,有所发展,自己就“死而无憾”,“不必身擅其名”。他把功利看得十分淡薄。到了中年,他的夫人不幸去世,梅文鼎决心不再娶,以便专心从事研究、著述。在那个时代,绝大多数的读书人都以学古崇儒为时尚,并且为了参加科举考试而皓首穷经,东奔西走。但梅文鼎无意于仕途,潜心于天文、数学的研究。到了老年,他仍是好学不辍,继续博览群书,观察天象,演算数学,致力于写作。1721年,88岁高龄的梅文鼎把自己的毕生精力,献给了祖国的科学事业。

数学家的小故事

陈景润。他在一间破旧的小屋里,用掉几麻袋的草稿纸,证明了离哥达巴赫猜想(1+1)最接近的(1+2)。

高斯在上小学时,小学老师对学生很不负责任。这天,老师让大家做从一加到一百的计算题,不一会儿,高斯做完了,老师拿来一看,便对他刮目相看:上面歪歪扭扭地写着5050四个字。老师也算过,答案也是5050。高斯说:“其实很简单,100加1是101,99加2也是101,一共有50对,只要101乘以50就可以了。

华罗庚因病左腿残疾后,走路要左腿先画一个大圆圈,右腿再迈上一小步。对于这种奇特而费力的步履,他曾幽默地戏称为“圆与切线的运动”。在逆境中,他顽强地与命运抗争,誓言是:“我要用健全的头脑,代替不健全的双腿!”

数 学 家 的 故 事

七岁时高斯进了 St.Catherine小学。大约在十岁时,老师在算数课上出了一道难题:[把 1到 100的整数写下来,然后把它们加起来!]每当有考试时他们有如下的习惯:第一个做完的就把石板﹝当时通行,写字用﹞面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:[答案在这儿!]其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完後,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050.由此可见高斯找到了算术级数的对称性,然後就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。

数 学 家 的 故 事

尼尔斯·亨利克·阿贝尔(N.H.Abel)1802年8月5日出生在挪威一个名叫芬德 的小村庄。有七个兄弟姐妹,阿贝尔在家里排行第二。他父亲是村子里的穷牧师,母亲安妮是一个非常美丽的女人,她遗传给阿贝尔惊人的漂亮容貌。小时候由他 父亲和哥哥教导识字,小学教育基本上是由父亲来教,因为他们没有钱请不起家 庭教师。

在中学的最后一年,阿贝尔开始试图解决困扰了数学界几百年的五次方程问 题,不久便认为得到了答案。霍姆伯厄将阿贝尔的研究手稿寄给丹麦当时最著名 的数学家达根。达根教授看不出阿贝尔的论证有甚么错误的地方,但他知道这个 许多大数学家都解决不出的问题不会这么简单的解决出来,于是给了阿贝尔一些 可贵的忠告,希望他再仔细演算自己的推导过程。就在同时,阿贝尔也发现了自 己推理中的缺陷。这次失败给他一个非常有益的打击,把他推上了正确的途径,使他怀疑一个代数解是否可能。后来他终于证明了五次方程不可解,而那已经是 他十九岁时的事情了。

尼尔斯·亨利克·阿贝尔的故事

尼尔斯·亨利克·阿贝尔(N.H.Abel)1802年8月5日出生在挪威一个名叫芬德 的小村庄。有七个兄弟姐妹,阿贝尔在家里排行第二。他父亲是村子里的穷牧师,母亲安妮是一个非常美丽的女人,她遗传给阿贝尔惊人的漂亮容貌。小时候由他 父亲和哥哥教导识字,小学教育基本上是由父亲来教,因为他们没有钱请不起家 庭教师。

1817年是阿贝尔一生的转折点。当时给他教数学的老师是一个好酒如命又脾 气粗暴的家伙,后因体罚而致死一名学生被解职,并由一位比阿贝尔大七岁的年 青的教师霍姆伯厄代替。霍姆伯厄本身在数学上没有什么成就,是一个称职但决 不是很有才气的数学家。他在科学上的贡献,就是发掘了阿贝尔的数学才能,而 且成为他的忠诚朋友,给他许多帮助。阿贝尔死后,霍姆伯厄收集出版了他的研

究成果。霍姆伯厄很快就发现了十六岁的阿贝尔惊人的数学天赋,私下开始给他教授 高等数学,还介绍他阅读泊松、高斯以及拉格朗日的著作。在他的热心指点下,阿贝尔很快掌握了经典著作中最难懂的部分。

数学家的故事——祖冲之

祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.

祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以“径一周三”做为圆周率,这就是“古率”.后来发现古率误差太大,圆周率应是“圆径一而周三有余”,不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--“割圆术”,用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做“祖率”.

数学家的故事——祖冲之

祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.

祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.

祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:“幂势既同,则积不容异.”意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为“祖暅原理”.

数学家的故事——苏步青

苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。

那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。„天下兴亡,匹夫有责‟,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。

数学家的故事——苏步青

苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。

17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!” 这就是老一辈数学家那颗爱国的赤子之心

数学家的故事------陈景润

陈景润成了国际知名的大数学家,深受人们的敬重。但他并没有产生骄傲自满情绪,而是把功劳都归于祖国和人民。为了维护祖国的利益,他不惜牺牲个人的名利。

1977年的一天,陈景润收到一封国外来信,是国际数学家联合会主席写给他的,邀请他出席国际数学家大会。这次大会有3000人参加,参加的都是世界上著名的数学家。大会共指定了10位数学家作学术报告,陈景润就是其中之一。这对一位数学家而言,是极大的荣誉,对提高陈景润在国际上的知名度大有好处。陈景润没有擅作主张,而是立即向研究所党支部作了汇报,请求党的指示。党支部把这一情况又上报到科学院。科学院的党组织对这个问题比较慎重,因为当时中国在国际数学家联合会的席位,一直被台湾占据着。院领导回答道:“你是数学家,党组织尊重你个人的意见,你可以自己给他回信。”

数学家的故事------陈景润

陈景润成了国际知名的大数学家,深受人们的敬重。但他并没有产生骄傲自满情绪,而是把功劳都归于祖国和人民。为了维护祖国的利益,他不惜牺牲个人的名利。

1977年的一天,陈景润收到一封国外来信,是国际数学家联合会主席写给他的,邀请他出席国际数学家大会。陈景润经过慎重考虑,最后决定放弃这次难得的机会。他在答复国际数学家联合会主席的信中写到:“第一,我们国家历来是重视跟世界各国发展学术交流与友好关系的,我个人非常感谢国际数学家联合会主席的邀请。第二,世界上只有一个中国,唯一能代表中国广大人民利益的是中华人民共和国,台湾是中华人民共和国不可分割的一部分。因为目前台湾占据着国际数学家联合会我国的席位,所以我不能出席。第三,如果中国只有一个代表的话,我是可以考虑参加这次会议的。”为了维护祖**亲的尊严,陈景润牺牲了个人的利益。1979年,陈景润应美国普林斯顿高级研究所的邀请,去美国作短期的研究访问工作。普林斯顿研究所的条件非常好,陈景润为了充分利用这样好的条件,挤出一切可以节省的时间,拼命工作,连中午饭也不回住处去吃。有时候外出参加会议,旅馆里比较嘈杂,他便躲进卫生间里,继续进行研究工作。正因为他的刻苦努力,在美国短短的五个月里,除了开会、讲学之外,他完成了论文《算术级数中的最小素数》,一下子把最小素数从原来的80推进到16。这一研究成果,也是当时世界上最先进的。

数学家的故事------陈景润

陈景润成了国际知名的大数学家,深受人们的敬重。但他并没有产生骄傲自满情绪,而是把功劳都归于祖国和人民。为了维护祖国的利益,他不惜牺牲个人的名利。

在美国这样物质比较发达的国度,陈景润依旧保持着在国内时的节俭作风。他每个月从研究所可获得2000美金的报酬,可以说是比较丰厚的了。每天中午,他从不去研究所的餐厅就餐,那里比较讲究,他完全可以享受一下的,但他都是吃自己带去的干粮和水果。他是如此的节俭,以至于在美国生活五个月,除去房租、水电花去1800美元外,伙食费等仅花了700美元。等他回时,共节余了7500美元。这笔钱在当时不是个小数目,他完全可以像其他人一样,从国外买回些高档家电。但他把这笔钱全部上交给国家。他是怎么想的呢? 用他自己的话说:“我们的国家还不富裕,我不能只想着自己享乐。” 陈景润就是这样一个非常谦虚、正直的人,尽管他已功成名就,然而他没有骄傲自满,他说:“在科学的道路上我只是翻过了一个小山包,真正的高峰还没有有攀上去,还要继续努力。”

数学家的故事———熊庆来

熊庆来(1893-1969)是云南弥勒县人,中国现代数学的先驱,为中国数学事业的发展做出了杰出贡献。熊庆来的父亲熊国栋,精通儒学,但更喜欢新学,思想很开明,对熊庆来的影响很大。少年时的熊庆来从他父亲那里常听到有关孙中山民主革命的事情,这在幼年熊庆来的心田播下了爱国的种子。1907年,熊庆来考入昆明的云南方言学堂,不久又升入云南高等学堂。当时满清王朝已日薄西山,各地的反清斗争风起云涌,抗捐、抗税、罢课、罢市、兵变遍及全国,清政府陷入于风雨飘摇之中。熊庆来由于参加了“收回矿山开采权”的抗法反清的示威游行而遭到学校的记过处分。现实的生活与斗争命命名熊庆来认识到:要使国家富强,必须掌握科学,科学能强国富民。1913年,熊庆来赴欧留学。

数学家的故事———熊庆来

1914年,第一次世界大战爆发,他从比利时经荷兰、英国,辗转到了法国巴黎。8年间先后获得高等数学、力学及天文学等多科证书,并获得理学硕士学位。1921年,28岁的熊庆来学成归国,一心想学以致用,救民于水火。1949年6月,国民党反动政府趁熊庆来去巴黎参加国际会议的机会,解散了熊庆来苦心经营12年的云南大学。年近花甲的熊庆来怀着“壮志难酬,报国无门”的心情,决定滞留在法国继续从事函数论的研究。“……祖国欢迎你,人民欢迎你!欢迎你回来参加社会主义建设的伟大事业……”1957年4月,周总理给熊庆来写信,动员他回国。同年6月,熊庆来在完成了函数论专著稿后,毅然启程,回到了祖国的怀抱。他表示,愿在社会主义的光芒中鞠躬尽瘁于祖国的学术建设事业。在回国后的7年中,他在国内外学术杂志上发表了近20篇具有世界水平的数学论文。还培养了杨乐、张广厚等一批数学人才,为祖国赢得了荣誉,表现了这位七旬老人热爱祖国的赤子之心。1969年,一代宗师、著名数学家熊庆来先生与世长辞。临终之前他还表示为人民鞠躬尽瘁,死而后已。

第二篇:数学家故事

台上几分钟,台下三年功

秭归县长海希望小学 吴述俊收集整理

在一次数学学术报告会上,大家要求著名的数学家科尔作报告,科尔也不谦虚,阔步走上讲台,坐在台下的数学家们等待听他的鸿篇阔论。

不料,科尔一言不发,他对听众点头示意之后,便转过身去,背对听众,用粉笔在黑板上写了两个 算式,第一个是2的67次方 —1=***9676412927;第二个是193707721×761838257287。接着,他又在这两个式子之间画上了等号。

随后,他放下粉笔,又向听众示意后便离开了讲台,整个过程仅花费了几分钟,在这其间他未说半句话。

可是,当他离开讲台后,本来鸦雀无声的会场顿时爆发出经久不息的掌声,因为科尔的这两个算式已经向全世界宣布,他已攻克了一道世界难题:证明2的67次方 —1不是质数,而是合数。

后来有人问科尔:“您为证明这个难题,总共花去了多少时间?”他回答说:“我花去了三年之内的全部星期天。”

成功仅仅几分钟,而获得成功所进行的努力,却是漫长而艰苦的。只有长期坚持不懈,才有获得成功的希望。

中华民族是一个具有灿烂文化和悠久历史的民族,在灿烂的文化瑰宝中数学在世界也同样具有许多耀眼的光环。中国古代算术的许多研究成果里面就早已孕育了后来西方数学才涉及的思想方法,近代也有不少世界领先的数学研究成果就是以华人数学家命名的。

【李氏恒等式】数学家李善兰在级数求和方面的研究成果,在国际上被命名为“李氏恒等式”。

中国清代数学家、天文学家、翻译家和教育家,近代科学的先驱者。原名心兰,字竞芳,号秋纫,别号壬叔,浙江海宁县硖石镇人,生于嘉庆十六年,卒于光绪八年。

李善兰自幼酷爱数学。十岁时学习《九章算术》。十五岁时读明末徐光启、利玛窦合译的欧几里得《几何原本》前六卷,尽解其意。后来,他到杭州应试,买回元代李冶的《测圆海镜》、清代戴震(1724~1777)的《勾股割圆记》等算书,认真研读;又在嘉兴等地与数学家顾观光(1799~1862)、张文虎(1808~1888)、汪曰桢(1813~1881)以及戴煦、罗士琳(1774~1853)、徐有壬(1800~1860)等人相识,经常在学术上相互切磋。自此数学造诣日臻精深,时有心得,辄复著书,1845年前后就得到并发表了具有解析几何思想和微积分方法的数学研究成果──“尖锥术”。

1852~1859年,李善兰在上海墨海书馆与英国传教士、汉学家伟烈亚力等人合作翻译出版了《几何原本》后九卷,以及《代数学》、《代微积拾级》、《谈天》、《重学》、《圆锥曲线说》、《植物学》等西方近代科学著作,又译《奈端数理》(即牛顿《自然哲学的数学原理》)四册(未刊),这是解析几何、微积分、哥白尼日心说、牛顿力学、近代植物学传入中国的开端。李善兰的翻译工作是有独创性的,他创译了许多科学名词,如“代数”、“函数”、“方程式”、“微分”、“积分”、“级数”、“植物”、“细胞”等,匠心独运,切贴恰当,不仅在中国流传,而且东渡日本,沿用至今。李善兰为近代科学在中国的传播和发展作出了开创性的贡献。李善兰“尖锥术”书影

1860年起,他先后在徐有壬、曾国藩军中作幕僚,与化学家徐寿、数学家华蘅芳等人一起,积极参与洋务运动中的科技学术活动。1867年他在南京出版《则古昔斋算学》,汇集了二十多年来在数学、天文学和弹道学等方面的著作,计有《方圆阐幽》、《弧矢启秘》、《对数探源》、《垛积比类》、《四元解》、《麟德术解》、《椭圆正术解》、《椭圆新术》、《椭圆拾遗》、《火器真诀》、《对数尖锥变法释》、《级数回求》和《天算或问》等13种24卷,共约15万字。1868年,李善兰被荐任北京同文馆天文算学总教习,直至1882年他逝世为止,从事数学教育十余年,其间审定了《同文馆算学课艺》、《同文馆珠算金□》等数学教材,培养了一大批数学人才,是中国近代数学教育的鼻祖。

李善兰生性落拓,潜心科学,淡于利禄。晚年官至三品,授户部正郎、广东司行走、总理各国事务衙门章京等职,但他从来没有离开过同文馆教学岗位,也没有中断过科学研究特别是数学研究工作。他的数学著作,除《则古昔斋算学》外,尚有《考数根法》、《粟布演草》、《测圆海镜解》、《九容图表》,而未刊行者,有《造整数勾股级数法》、《开方古义》、《群经算学考》、《代数难题解》等。李善兰在数学研究方面的成就,主要有尖锥术、垛积术和素数论三项。

尖锥术理论主要见于《方圆阐幽》、《弧矢启秘》、《对数探源》三种著作,成书年代约为1845年,当时解析

几何与微积分学尚未传入中国。李善兰创立的“尖锥”概念,是一种处理代数问题的几何模型,他对“尖锥曲线”的描述实质上相当于给出了直线、抛物线、立方抛物线等方程□他创造的“尖锥求积术”。相当于幂函数的定积分公式□和逐项积分法则□他用“分离元数法”独立地得出了二项平方根的幂级数展开式□结合“尖锥求积术”,得到了□的无穷级数表达式□

各种三角函数和反三角函数的展开式,以及对数函数的展开式□在使用微积分方法处理数学问题方面取得了创造性的成就。垛积术理论主要见于《垛积比类》,写于1859~1867年间,这是有关高阶等差级数的著作。李善兰从研究中国传统的垛积问题入手,获得了一些相当于现代组合数学中的成果。例如,“三角垛有积求高开方廉隅表”和“乘方垛各廉表”实质上就是组合数学中著名的第一种斯特林数和欧拉数。驰名中外的“李善兰恒等式”□自20世纪30年代以来,受到国际数学界的普遍关注和赞赏。可以认为,《垛积比类》是早期组合论的杰作。【华氏定理】数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。

华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。华罗庚1924年金坛中学初中毕业之后,在上海中华 职业学校学习不到一年,因家贫辍学,但他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学,1948年始,他为伊利诺伊大学教授。

1950年回国。历任清华大学教授,中国科学院数学研究所、应用数学研究所所长、名誉所长,中国数学学会理事长、名誉理事长,全国数学竞赛委员会主任,美国国家科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士,中国科学院物理学数学化学部副主任、副院长、主席团成员,中国科学技术大学数学系主任、副校长,中国科协副主席,国务院学位委员会委员等职。曾任一至六届全国人大常务委员,六届全国政协副主席。曾被授予法国南锡大学、香港中文大学和美国伊利诺斯大学荣誉博士学位。主要从事解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等领域的研究与教授工作并取得突出成就。40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至今仍是最佳纪录。在代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉当-布饶尔-华定理。其专著 《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之一,其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式,获中国自然科学奖一等奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作并亲自在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多篇,并有专著和科普性著。

1985年6月12日,华罗庚应邀到日本东京大学作学术报告。他先中文,后改用英语演讲。日本学者被他精彩的演说深深吸引,原定45分钟的报告在经久不息的掌声中被延长到一个多小时。当他满头大汗结束讲话时,突然心脏病发作倒在讲台上。他用行动实践了自己的诺言:“最大的希望就是工作到生命的最后一刻。” 【苏氏锥面】数学家苏步青在仿射微分几何学方面的研究成果在国际上被命名为“苏氏锥面”。

姓名:苏步青 性别:男 出生年月:1902年-2003年 籍贯:浙江平阳 学历:日本东北帝国大学研究院理学博士学位 职务:原浙江大学教务长,复旦大学教授、校长、名誉校长,中国数学会以副理事长,国务院学位委员会委员,民盟中央副主席等。

苏步青(1902-2003)教育家,数学家,浙江平阳人。1931年获日本东北帝国大学研究院理学博士学位。回国后,任浙江大学教授、数学系主任。建国后,历任浙江大学教务长,复旦大学教授、校长、名誉校长,中国数学会以副理事长,国务院学位委员会委员,民盟中央副主席,上海市第五届政协副主席,上海市第七届人大常委会副主任,第六届全国人大教育科学文化卫生委员会副主任委员,中国科学院物理学数学部委员,第七届全国政协副主席,民盟中央参议委员会主任。1959年加入中国共产党。是第二、三、七届全国人大代表,第五、六届全国人大常委,第一届全国政协委员。创立了具有特色的微分几何学派,开拓了仿射微分几何、射影微分几何、空间微分几何等领域,开创了计算几何的研究方向。著有《射影曲面概论》、《仿射微分几何学》、《射影共轭网概论》等

【熊氏无穷级】数学家熊庆来关于整函数与无穷级的亚纯函数的研究成果被国际数学界誉为“熊氏无穷级”。

熊庆来是我国著名数学家、教育家、现代数学的耕耘者,为我国数学教学和研究作了许多开创性的工作,不愧为数学界的一代宗师。熊庆来,字迪之,清代光绪十七年(公元1891年)出生于云南省弥勒县息宰村。他自幼养成勤奋好学的良好习惯,再加上非凡的记忆力与天才的语言接受能力,常令教育过他的中外教师惊叹不已。1913年他以优异成绩考取云南教育司主持的留学比利时公费生,但因第一次世界大战爆发,只得转赴法国,在格诺大学、巴黎大学等大学功读数学,获理科硕士学位。他用法文撰写发表了《无穷极之函数问题》等多篇论文,以其独特精辟严谨的论证获得法国数学界的交口赞誉。1921年熊庆来学成归国,先后在云南甲种工业学校、东南大学(今南京大学)、南京高等师范大学、西北大学、清华大学担任教授和系主任。他创办了中国近代史上第一个近代数学研究机构——清华大学算学研究部和东南大 学、清华大学等3所大学的数学系,以及中国数学报。培养了华罗康、陈省身、吴大任、庄圻泰等一批享誉国内外的知名数学家。著名物理学家钱三强、赵九章、钱伟长、彭恒五等也是熊庆来到清华大学后培养出来的学生。这期间他潜心于学术研究与著述,编写的《高等数学分析》等10多种大学教材是当时第一次用中文写成的数学教科书。

熊庆来在“函数理论”领域造诣很深。1932年他代表中国第一次出席了瑞士苏黎士国际数学家大会,后到法国普旺加烈学院从事了两年数论的研究,获法国国家理学博士学位,成为第一个获此学位的中国人。此间,熊庆来写成了论文《关于整函数与无穷极的亚纯函数》,该文中定义的无穷极,被数学界称为“熊氏无穷极”又称“熊氏定理”,被载入世界数学史册,奠定了他在国际数学界的地位。

作为一位学者,熊庆来自早期从事教育工作起,就把培育人才当作头等大事。对于有培养前途的穷学生他总是解囊相助。著名的物理学家严济慈,因得到熊庆来资助才得以出国深造。为资助严济慈,当自己经济拮据时,熊庆来不惜让夫人当去自己御寒的皮大衣。华罗庚青年时代,因家贫念完初中就无力继续上学,熊庆来在看了他发表的《论苏子驹教授的五次方程之解不能成立》论文之后,发现华罗庚是一个数学人才,立即把他请到清华大学,安排在数学系图书馆任助理员,破格任助教工作,后直接升为教授,并前往英国留学,终于把他造就成国际知名的大数学家。熊庆来既是千里马又是伯乐,除自己在数学研究领域内攀登上科学高峰之外,还着意提携后进,让后者站在自己的肩膀上攀上另一个数学高峰,为我国数学界创建了一种识才、爱才、育才的优良传统,他的慧眼卓识是我国科学家的典范。

1937年抗日战争爆发,在缪云台、龚自知、方国瑜等人的推荐下,熊庆来接受云南省主席龙云的聘请,出任云南大学校长,为云大的发展作出了巨大贡献。当时的云大,只有3个学院,39个教授,8个讲师,302个学生,教学设备简陋,教学质量不高。熊庆来利用抗战初期各方人才大量涌入昆明的机会,广延人才,延聘了全国著名教授吴文藻、顾领刚、白寿彝、楚图南、费孝通、吴暗、赵忠尧、刘文典、张奚若、方国瑜等187名专任教授和40名兼任教授,还延聘了一些外国教授,使云大成为与西南联大同享盛名的又一处著名专家学者荟萃之地,教学质量因此跃入全国名牌大学之列,被吸收进《大英百科全书》之中;他把云大扩充成5个学院,18个系,3个专修科,1个先修班的多学院、多学科的综合大学,学生人数达1100多人,1939年又创办了云大附中;他还不断充实图。书教学设备,使图书馆藏书达十余万册,理科各系都有比较完善的实验室和标本资料室,医学院拥有附属医院及解剖室,农学院有实验农场,数学系在东郊凤凰山建立了天文台,工学院有实习工厂,航空系有飞机3架,这在全国高校中是罕有的;他亲自作了《云南大学校歌》,制定了“诚、正、敏、毅”的校训,要求每一个学生都要诚实、正直、聪敏又有坚毅的学习精神。在熊庆来任校长的12年里,云大各项工作井然有序,日新月异,被认为是云南大学历史上的第一个“黄金时代”。【陈示性类】数学家陈省身关于示性类的研究成果被国际上称为“陈示性类”。

陈省身1911年10月26日生于中国浙江嘉兴,1926年入天津南开大学数学系,先后受教于姜立夫与孙鎕,由他们引导至微分几何这一领域。1934年赴汉堡就学于当时德国几何学权威W.J.E.布拉施克,1936年完成博士论文后,赴法国跟从当代微分几何学家E.嘉当继续深造。1937年回国,正值抗日战争,他任教长沙临时大学和西南联合大学,在此期间,他把积分几何理论推广到齐性空间。1943-1945年在普林斯顿高等研究所工作两年,先后完成了两项划时代的重要工作,其一为黎曼流形的高斯──博内一般公式,另一为埃尔米特流形的示性类论。在这两篇论文中,他首创应用纤维丛概念于微分几何的研究,引进了后来通称的陈示性类,為大范围微分几何提供了不可缺少的工具,成为整个现代数学中的重要构成部份。陈省身的其他数学工作范围极为广泛,影响亦深。

陈省身于1946年第二次世界大战结束后重返中国,在上海建立了中央研究院数学研究所(后迁南京),此后两三年中,他培养了一批青年拓扑学家。1949年他再去美国,先后在芝加哥大学与伯克利加州大学任终身教授。1981年在伯克利的以纯粹数学为主的数学科学研究所任第一任所长。1985年创办南开数学研究所,并任所长。陈省身由于对数学的重要贡献而享有多种荣誉,其中有1984年获颁的沃尔夫奖(Wolf Prize,Link)。给他教过的学生,计有吴文俊、杨振宁、廖山涛、丘成桐、郑绍远等著名学者。

【周氏坐标】数学家周炜良在代数几何学方面的研究成果被国际数学界称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环”。周炜良 1911年10月1日生于上海.代数几何.

周炜良的父亲周达(美权)是清末民初著名数学家、集邮家,家境比较富裕.周炜良幼年在上海生长,从未进过学校.5岁开始学中文,11岁学英文,都由家庭教师讲授.20年代上海的大中学校颇多使用美国的原文课本,周炜良即自学各种知识:从数学到物理,从历史到经济.1924年,周炜良恳求父亲送他到美国读书,先在肯塔基州的阿斯伯里学院补习,后来进入肯塔基大学.那时的主要兴趣在政治经济.直到1929年10月进入芝加哥大学时,仍然主修经济学.可是此后两年内发生了变化.

1931年夏天,一位在芝加哥大学得到博士学位后又去普林斯顿工作一年的中国数学家,劝周炜良到普林斯顿去,或者去德国的格丁根大学——那时的世界数学中心.于是在1932年10月,周炜良带着研究数学的模糊想法去了格丁根.补了半年的德文后,希特勒法西斯上台,格丁根衰落了.周炜良在芝加哥时曾读过B.L.范·德·瓦尔登(Van der Waerden)写的《代数学》(Algebra),十分欣赏,于是转到莱比锡大学随范·德·瓦尔登研究代数几何,这是1933年夏天的事.次年夏天,周炜良到汉堡渡暑假,遇到维克特(Margot Victor)小姐,成为好友.周炜良滞留汉堡大学,随数学家E.阿丁(Artin)听课.直至1936年初才回到莱比锡,在范·德·瓦尔登指导下完成博士论文,并和维克特完婚.婚礼上,正在汉堡大学留学的陈省身是唯一的中国宾客. 周炜良成家立业之后,遂返回上海,在南京的中央大学任数学教授.一年后,抗日战争爆发,不得已留在上海.周炜良的岳父在德国曾有很好的工作,由于希特勒的种族迫害而流亡上海,几乎身无分文.这时的周炜良必须自立挣钱,供养太太、两个孩子,以及岳父母. 抗日战争胜利后,周炜良计划经营进出口贸易.大约在1946年春天,陈省身从美国返回上海.他力劝周炜良重返数学研究,并留下许多战时发表的论文,特别是O.扎里斯基(Zariski)和A.韦伊(Weil)的论文预引本.周炜良虽然离开数学已近10年之久,但他终于作出了他一生中最重要的决定:回到数学领域.

由于陈省身写信给普林斯顿的S.莱夫谢茨(Lefschetz)作了推荐,周炜良在上海同济大学短期任教之后,便于1947年春天到达普林斯顿.他在那里做了一些相当好的工作.次年,范·德·瓦尔登访问位于美国马里兰州的约翰·霍普金斯大学,周炜良去看他,恰好该校有一个教职的空缺,周炜良遂应聘到那里就任副教授.1950年升任正教授.当年,战后首次恢复的国际数学家大会在美国举行,周炜良作为该校的正式代表与会,会后曾在哈佛大学短期讲学.1955年再度去普林斯顿进行访问研究,返回霍普金斯大学之后就任数学系主任,前后达11年之久(1955—1966).1959年,他当选为台北中央研究院院士.1977年,周炜良退休,成为霍普金斯大学的荣退教授. 周炜良把毕生精力奉献给代数几何的研究,成为20世纪代数几何学领域的主要人物之一,以周炜良名字命名的数学名词,仅在日本《岩波数学词典》里就收有7个.回顾20世纪中国数学的历史,能在世界数坛上留下痕迹的华人数学家并不多,周炜良是其中杰出的一位. 代数几何学是解析几何的深入和发展.正如二元二次代数方程。x2+y2=r2的解集(x,y)可以表示半径为r的圆,代数几何的研究对象仍是高次多元代数方程或代数方程组的解集,即系数在某域k内的n元多项式F1,F2,…,Fn所形成的代数方程组F1(x1,…,xn)=0,F2(x1,…,xn)=0,…,Fn(x1,…,xn)=0的位于域k内的公共解集合V,我们称之为代数簇(algebraicvariety),最简单的代数簇就是平面曲线.椭圆函数、椭圆积分、阿贝尔(Abel)积分等都与平面曲线有关,复变量的代数函数论及黎曼曲面论进一步推动了现代代数几何学的发展.

19世纪下半叶,德国的R.克莱布施(Clebsch)、J.普吕克(Plcker)、M.诺特(Noether)以及意大利学派曾做出很大贡献.经过J.H.庞加莱(Poincar)、C.E.皮卡(Picard)、J.W.R.戴德金(Dedekind)和A.凯莱(Cayley)的发展,到20世纪20—30年代,E.诺特(Noether)、E.阿廷(Artin)和他们的学生范·德·瓦尔登创立了抽象代数学,为代数几何学的研究注入了新的活力.周炜良的代数几何学研究正是在这样的背景下开始的. 周炜良坐标 1937年,周炜良最初的两篇论文发表在德国《数学年刊》(Mathematische Annalen)上.第一篇是与范·德·瓦尔登合作的,第二篇则是周炜良的博士论文.这两篇文章继承了凯莱和普吕克的工作,并将其推广到n维射影空间Pn上的代数簇.其中指出,任何n维射影空间Pn中的不可约射影族X可唯一地由一个配型(associated form)Fx所决定,配型的坐标即著名的周炜良坐标.该坐标是普吕克坐标的推广,现已成为代数几何学研究的一项基本工具.

抗日战争开始后,周炜良在上海闲居,继续研究数学.1939年,他发表了一篇重要论文“关于一阶线性偏微分方程组”,将C.卡拉西奥多里(Carathodory)的一项工作(1909)推广到一般的高维流形.当时并未引起人们注意,事隔30余年之后,这篇文章成为非线性连续时间系统可控性数学理论的基石之一.控制论表达的周炜良定理(或称卡拉西奥多里-周定理)可以写成:

设V(M)是解析流形M上所有解析向量场的全体,D是V(M)中对称子集,T(D)是V(M)中含D的最小子代数,I(D,x)是通过x的极大积分流形.那么,对任何x∈M,y∈I(D,x),都存在一条积分曲线α:[0,T]→M,T≥0,使得α(0)=x,且α(T)=y.

抗日战争后期,周炜良曾有论文涉及代数基本定理的拓扑证明和电网络理论等,似乎已偏离了代数几何学的方向.信息断绝和乏人讨论,恐是主要原因. 周炜良于1947年到达普林斯顿高级研究院,开始了他的黄金创作期.他首先撰文阐明,E.嘉当(Cartan)意义下的对称齐次空间可以表示为代数簇,因而能用代数几何的框架研究其几何学性质.该文所附文献中包括华罗庚的有关矩阵几何学的论文多篇.1947—1948年间,法国数学家C.谢瓦莱(Chevalley)也在普林斯顿,他对周炜良的这篇论文做了很长的评论性摘要,发表于美国的《数学评论》(Mathematical Review).谢瓦莱曾邀请周炜良证明下列猜想:“任何代数曲线,在一个代数系统中的亏数,不会大于该系统中一般曲线的亏数”.周炜良使用纯代数的方法给出了证明,其主要工具之一仍然是范德瓦尔登-周炜良形式. 关于解析簇的周炜良定理

周炜良于1949年发表了一篇重要论文“关于紧复解析簇”.所谓解析簇V,是指对任何p∈V,总存在一组解析函数g1,g2,…,gn,和点p的一个邻域B(p),使得V∩B(p)中的点x都是g1,g2,…,gn的零点.这是一种局部性质.由于多项式都是解析函数,所以代数簇都是解析簇.周炜良证明了某些情形下的逆命题:

“若V是n维复射影空间CPn中的闭解析子簇,那么它一定是代数簇,而且所有闭解析子簇间的半纯映射,一定是有理映射”. 这一反映由局部性质向整体性质过渡的深刻结论,被称为周炜良定理(Chow Theorem),在代数几何学著作中广受重视.在许多论文里,常常把它作为新理论的出发点. 复解析流形

1950年前后,复解析流形的研究形成热门课题.日本数学家小平邦彦(K.Kodaira)是这方面的专家,当时也在美国工作,与周炜良有交往.1952年,周炜良证明了如下结果:“若V是复r维的紧复解析流形,F(V)是V上半纯函数所构成的域,则F(V)是有限的代数函数域,其超越维数s不会大于r.此外,还存在一s维的代数簇V'以及V到V'的半纯变换T,使T可诱导出F(V)和F(V')间的同构.特别地,如果可选择V'使得T还是双正则变换,那么V必是代数簇.这就把复解析流形和代数簇联系起来了.

把这个一般的结论用于二维的克勒(Khler)曲面,并用小平邦彦所建立的克勒流形上的黎曼-罗赫(Riemann-Roch)定理,就可以得出如下结论:“具有两个独立的半纯函数的克勒曲面(即s=r=2的情形)一定是代数曲面.”这是周炜良和小平邦彦合作的论文中的一个结论,被称为周-小平(Chow-Kodaira)定理. 周炜良簇和周炜良环 用周炜良坐标可以对平面曲线和空间曲线进行分类.只要由已知的次数d和亏数g,从非奇异的空间射影曲线的周炜良坐标形成所谓周炜良簇,就能很自然地用有限个拟射影簇将它参数化.

在射影簇研究上,另一个为人们称道的周炜良引理(ChowLemma),涉及完全簇和射影簇的关系.苏联数学家И.Р.沙法列维奇(ЩaфapeВИЧ)在其名著《代数几何基础》中曾提到这一引理:

“对于每一个不可约的完全簇X,总有一个射影簇X',使得X和X'之间有一双有理同构”.

周炜良在射影簇方面最著名的工作是提出周炜良环(ChowRing).他于1956年发表的论文“关于代数簇上闭链的等价类”中,提出了射影代数簇上代数闭链的有理等价性的系统理论.大意是:设V是n维射影空间Pn上的代数簇,其上的s维闭链所成的群为G(V,s),与零链等价的闭链成子群Gr(V,s).令Hr(V,s)是二者的商群.将s从1到n作直和,得 Hr(V)=Hr(V,s).

周炜良在Hr(V)上定义一种乘法,使之构成环,这就是著名的周炜良环.它是结合的,交换的,具有单位元.这篇论文由M.F.阿蒂亚(Atiyah)写成文摘刊于美国的《数学评论》. 周炜良环具有很好的函子性质:设p是两代数簇X,V之间的模射,f:X→V,则V中闭链C的原象f-1(C)也是X中的闭链,且此运算与相截(intersection)和有理等价性能够相容.因此,它是代数几何研究中的一项重要工具.周炜良环在许多情形可以代替上同调环.在证明各种黎曼-罗赫定理时,常用周炜良环去导出陈省身类.著名的韦伊(Weil)猜想的解决,也可使用周炜良环.

另一个常被引用的结论是所谓周炜良运动定理(Chow’s Mo-ving Lemma):若Y,Z是非奇异拟射影簇X中的两闭链,则必存在与Z有理等价的闭链Z',使Y和Z'具有相交性质(inte-rsect property).1970年在奥斯陆举行的代数几何会议上,有专文论述此定理. 关于阿贝尔簇的周炜良定理

20世纪40年代,A.韦伊(Weil)等开创了阿贝尔簇的研究.他们把代数曲线上的雅可比(Jacobi)簇发展为一般代数流形上的皮卡-阿尔巴内塞(Picard-Albanese)簇理论,将过去意大利学派的含糊结果加以澄清.周炜良对此作了丰富和发展,并推广到特征p域的情形.周炜良在文献[10]中证明对一般射影代数簇都存在雅可比簇.文献[11]和[12]给出了阿贝尔簇的代数系统理论,其中有关可分(separable)、正则(regular)和本原扩张(pri-mary extention)的论述,已成为这一领域的基本文献. 周炜良还证明了以下结论:“若A是域k上的阿贝尔簇,B是定义在k的准素扩张K上的阿贝尔子簇,那么B也在k上有意义.”S.郎(Lang)称之为周炜良定理.

周炜良在1957年发表的关于阿贝尔簇的论文也反复被人引用.这一年,普林斯顿大学以数学名家莱夫谢茨的名义举行“代数几何与拓扑”的科学讨论会,韦伊和周炜良都参加了.他们两人在会上宣读的论文密切相关.韦伊证明任何阿贝尔簇都可嵌入射影空间,而周炜良则证明任何齐次簇(不必完备)也可嵌入射影空间.文章不长,但解决得很彻底. 其他工作

周炜良在代数几何领域的研究,涉及很广.例如扎里斯基关于抽象代数几何中的退化原理(degeneration principle)的论证,很长而且难懂,周炜良把证明作了大幅度压缩,并加以推广.他和井草准一(J.lgusa)合作,建立了环上代数簇的上同调理论.此外,还推广了代数几何中的连通性定理.在扩充由W.V.霍奇(Hodge)与D.佩多(Pedoe)证明的格拉斯曼(Grassm-ann)簇的基本定理时,指出了某些环空间上的代数特性.这些都是很有价值的工作.退休之后,周炜良仍然研究不辍.1986年,他以75岁高龄,发表了题为“齐次空间上的形式函数(formalfunction)”的论文. P.拉克斯(Lax)把周炜良列为最重要的移居美国的数学家之一.但他性情淡泊,甚至很少参加国际学术会议.他是台北中央研究院院士,却长期不参加活动.应该说,周炜良的学术成就远超过他应得的荣誉.不过,各种代数几何的论著不断地引用周炜良的工作,并以周炜良的名字陆续命名一系列术语,这也许是更有意义的褒奖了. 【吴氏方法】数学家吴文俊关于几何定理机器证明的方法被国际上誉为“吴氏方法”;另外还有以他命名的“吴氏公式”。

吴文俊,中国人,1919年5月12日生于上海。1940年毕业于交通大学,1949年在法国斯特拉斯堡大学获博士学位。1951年回国,1957年任中国科学院学部委员,1984年当先为中国数学会理事长。吴文俊在数学上作出了许多重大的贡献。

拓扑学方面,在示性类、示嵌类等领域获得一系列成果,还得到了许多著名的公式,指出了这些理论和方法的广泛应用。他还在拓扑不变量、代数流形等问题上有创造性工作。1956年吴文俊因在拓扑学中的示性类和示嵌类方面的卓越成就获中国自然科学奖一等获。机器证明方面,从初等几何着手,在计算机上证明了一类高难度的定理,同时也发现了一些新定理,进一步探讨了微分几何的定理证明。提出了利用机器证明与发现几何定理的新方法。这项工作为数学研究开辟了一个新的领域,将对数学的革命产生深远的影响。1978年获全国科学大会重大科技成果奖。

中国数学史方面,吴文俊认为中国古代数学的特点是:从实际问题出发,经过分析提高,再抽象出一般的原理、原则和方法,最终达到解决一大类问题的目的。他对中国古代数学在数论、代数、几何等方面的成就也提出了精辟的见解。

第三篇:数学家故事

蒲丰试验

一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了.蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142.蒲丰说:“这个数是π的近似值.每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确.”这就是著名的“蒲丰试验”.数学魔术家

1981年的一个夏日,在印度举行了一场心算比赛.表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜.当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛.工作人员写出一个201位的大数,让求这个数的23次方根.运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案.而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多.这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”.工作到最后一天的华罗庚

华罗庚出生于江苏省,从小喜欢数学,而且非常聪明.1930年,19岁的华罗庚到清华大学读书.华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位.他对数论有很深的研究,得出了著名的华氏定理.他特别注意理论联系实际,走遍了20多个省、市、自治区,动员群众把优选法用于农业生产.记者在一次采访时问他:“你最大的愿望是什么?”

他不加思索地回答:“工作到最后一天.”他的确为科学辛劳工作的最后一天,实现了自己的诺言.21世纪七大数学难题

美国的克雷数学研究所于2000年5月24日在巴黎宣布了众多数学家评选的结果:对七个“千禧年数学难题”的每一个悬赏一百万美元.“千年大奖问题”公布以来,在世界数学界产生了强烈反响.这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动.认识和研究“千年大奖问题”已成为世界数学界的热点.不少国家的数学家正在组织联合攻关.可以预期,“千年大奖问题”将会改变新世纪数学发展的历史进程.韦 达 韦达(1540-1603),法国数学家.年青时学习法律当过律师,后从事政治活动,当过议会议员,在西班牙的战争中曾为政府破译敌军密码.韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示 已知数、未知数及其乘幂,带来了代数理论研究的重大进步.韦达讨论了方程根的多种有理变换,发现了方程根与分数的关系,韦达在欧洲被尊称为“代数学之父”.1579年,韦达出版《应用于三角形的数学定律》,同时还发现,这是π的第一个分析表达式.主要著有《分析法入门》、《论方程的识别与修正》、《分析五章》、《应用于三角形的数学定律》等,由于他贡献卓著,成为十六世纪法国最杰出的数学家.高斯

印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的.高斯长大后,成为一位很伟大的数学家.高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的.数学家华罗庚

华罗庚(1910——1982)出生于江苏太湖畔的金坛县,因出生时被父亲华老祥放于箩筐以图吉利,“进箩避邪,同庚百岁“,故取名罗庚.华罗庚从小便贪玩,也喜欢凑热闹,只是功课平平,有时还不及格.勉强上完小学,进了家乡的金坛中学,但仍贪玩,字又写得歪歪扭扭,做数学作业时倒时满认真地画来画去,但像涂鸦一般,所以上初中时的华罗庚仍不被老师喜欢的学生而且还常常挨戒尺.金坛中学的一位名叫王维克的教员却独有慧眼,他研究了华罗庚涂鸦的本子才发现这许多涂改的地方正反映他解题时探索的多种路子.一次王维克老师给学生讲[孙子算经]出了这样一道题:”今有物不知其数,三三数之剩其二,五五数剩其三,七七数剩其二,问物几何?“正在大家沉默之际,有个学生站起来,大家一看,原来是向来为人瞧不起的华罗庚,当时他才十四岁,你猜一猜华罗庚他说出是多少? 16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上.瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”.这是一句既刻划螺线性质又象征他对数学热爱的双关语

第四篇:数学家故事

数学家故事:

著名数学家华罗庚读书的方法与众不同。他拿到一本书,不是翻开从头至尾地读,而是对着书思考一会,然后闭目静思。他猜想书的谋篇布局,斟酌完毕再打开书,如果作者的思路与自己猜想的一致,他就不再读了。华罗庚这种猜读法不仅节省了读书时间,而已培养了自己的思维力和想象力,不至于使自己沦为书的奴隶。

数学谜语:

1、五毛钱一次(打一数学用语)一元二次。

2、大夫提笔(打一数学名词)开方

3、丝毫不曲(打一数学名词〕绝对值

4、:加减乘除,本领真大,做道算题,眼睛一眨。(打一物)计算器

5、一对好兄弟,说像又不像,一个站着,一个倒挂就一样。(猜两数字)6、9

6、头是一,腰是一,尾是一,数到末了不是一。(打一数字)三

7、横看像把尺,竖看像根棒。年龄他最小,大哥他来当。(打一数字)1

8、一圆整(打一数学用语)百分数

9、五十分(打一数学用语)半圆

10、鱼儿多少(打一数学用语)尾数

数字成语:一目数行、不计其数、区区之数、历历可数、备位充数、如数家珍、寻行数墨、屈指可数、心中有数、恒河沙数、擢发难数、数不胜数、数典忘祖、数往知来、数短论长、二姓之好、二桃杀三士、二三其德、二满三平、二分明月、三足鼎立、三纸无驴、三贞九烈、三折肱,为良医、三灾八难、三盈三虚、三言两语、三省吾身四战之地、四通八达、四体不勤,五谷不分、四时八节、四平八稳、四面楚歌、四面八方、四马攒蹄、四脚朝天

数字脑筋急转弯:

1、从1到9哪个数字最勤劳, 1不做2不休

2、读完北京大学要多少时间?——不超过10秒

3、有一个数字,去点前面的数是13,去掉后面的数是40,这个数字是多少?43

4、有一个数字,去掉二变成十五,去掉五变成二十,去掉十变成二五,请问是啥数字?25

第五篇:数学家的故事(本站推荐)

数学家的故事;祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以“径一周三”做为圆周率,这就是“古率”.后来发现古率误差太大,圆周率应是“圆径一而周三有余”,不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--“割圆术”,用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.徐瑞云,1915年6月15日生于上海,1927年2月考入上海著名的公立务本女中读书。徐瑞云从小喜欢数学,读中学时对数学的兴趣更加浓厚,因此,1932年9月高中毕业后报考了浙江大学数学系。当时,浙大数学系的教授有朱叔麟、钱宝琮、陈建功和苏步青。此外,还有几位讲师、助教。数学系的课程主要由陈建功和苏步青担任。当时数学系的学生很少,前一届两个班学生共五人,她这届也不过十几人。

泰勒斯(古希腊数学家、天文学家)来到埃及,人们想试探一下他的能力,就问他是否能测量金字塔高度.泰勒斯说可以,但有一个条件——法老必须在场.第二天,法老如约而至,金字塔周围也聚集了不少围观的老百姓.秦勒斯来到金字塔前,阳光把他的影子投在地面上.每过一会儿,他就让人测量他影子的长度,当测量值与他身高完全吻合时,他立刻在大金字塔在地面上的投影处作一记号,然后再丈量金字塔底到投影尖顶的距离.这样,他就报出了金字塔确切的高度.在法老的请求下,他向大家讲解了如何从“影长等于身长”推到“塔影等于塔高”的原理.也就是今天所说的相似三角形定理.阿基米德

叙拉古的亥厄洛王叫金匠造一顶纯金的皇冠,因怀疑里面掺有银,便请阿基米德鉴定。当他进入浴盆洗澡时,水漫溢到盆外,于是悟得不同质料的物体,虽然重量相同,但因体积不同,排去的水也必不相等。根据这一道理,就可以判断皇冠是否掺假。

伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。

下载数学家的故事(汇编)word格式文档
下载数学家的故事(汇编).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学家的故事

    数学家的故事——苏步青 苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太......

    数学家的故事

    数学家的故事 陈景润是我国有名的数学家。他不爱逛公园,不爱遛马路,就爱学习。他学习起来,常常忘记了吃饭睡觉。有一天,陈景润在吃中饭的时候,摸摸脑袋发现头发太长了,应该快去理......

    数学家的故事

    数学家的故事 1.第一个算出地球周长的埃拉托色尼 2000多年前,有人用简单的测量工具计算出地球的周长。这个人就是古希腊的埃拉托色尼(约公元前275—前194)。 埃拉托色尼博......

    数学家的故事

    数学家的故事 华罗庚(1910——1982)出生于江苏太湖畔的金坛县,因出生时被父亲华老祥放于箩筐以图吉利,“进箩避邪,同庚百岁“,故取名罗庚。 华罗庚从小便贪玩,也喜欢凑热闹,只是功......

    数学家的故事

    高斯 在上小学的时候,有一次数学老师出了个题目,1+2+…+ 100=?由于看出1+100=101,2+99=101,…50+51=101共50个101,因而高斯立刻答出了5050的结果,此举令老师称赞不已。 对数学的痴......

    数学家的故事大全

    数学家的故事——苏步青 苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太......

    数学家的故事

    数学家的的故事 有一次,他跟邻居家的孩子一起出城去玩,他们走着走着;忽然看见路旁有座荒坟,坟旁有许多石人、石马。这立刻引起了华罗庚的好奇心,他非常想去看个究竟。于是他就对......

    数学家的故事

    数学家小故事 华罗庚从小聪明好学,念初中时,一天王维克老师给全班出了一道数学题,这是一道出自《孙子算经》的题目:“今朝有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问......