平均数教学设计

2024-04-03下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《平均数教学设计》及扩展资料,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《平均数教学设计》。

平均数教学设计

平均数教学设计1

教学目标

1、结合生活实际再进一步理解平均数的意义的基础上,掌握求平均数的方法。

2、能运用平均数解决简单的实际问题,体会平均数在实际生活中的应用。

3、在探索知识的过程中,增强学好数学的信心,提高自主学习的能力。

教学重点

难点 掌握求平均数的方法。

体会平均数在实际生活中的应用。

教具准备

多媒体课件

教学课时

1课时

教学过程

一、情境引入。

1、出示课件:根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足1.2米的儿童免费乘车。1.2米这个数据是如何得到的呢?

2、学生质疑,说一说你的看法。

二、新授。

1、解决疑惑。

学龄前儿童,即0-6岁的儿童,而这就意味着0-6岁的儿童身高普遍不会超过1.2米,那么我们首先就要调查一下0-6岁儿童的身高数据,但是我们无法确定一个准确数值,这就需要计算出数据的'平均数来解决问题。

出示平均数的意义:一组数据中所有数据之和除以数据的个数。它是反映数据集中趋势的一项指标,具有代表性。

2、求平均数的方法。

出示课件:“新苗杯”少儿歌手大奖赛的成绩统计表。

评委1 评委2 评委3 评委4 评委5平均分

选手1 92 98 94 96 100

选手2 97 99 100 84 95

选手3 90 98 87 85 90

(1)把统计表填写完整,并排出名次。

(2)在实际比赛中,通常采取去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你能说出其中的道理吗?

(3)按照上述的记分方法重新计算3位选手的最终成绩,然后排出名次。

3、教授解题策略。

题中数据众多,无法直接比较,可以先求出每位选手的平均成绩,再进行比较,这样就容易排出名次。

求平均数的方法:总数量÷总份数=平均数。

选手1:(92+98+94+96+100)÷5=96(分)

选手2:(97+99+100+84+95)÷5=95(分)

选手3:(90+98+87+85+90)÷5=96(分)

4、计算完毕请补充统计表,并排出最终名次。

板书设计

平均数的再认识

平均数的意义。

求平均数的方法:总数量÷总份数=平均数。

平均数教学设计2

【教学内容】

苏教版《义务教育课程标准实验教科书数学》三年级(下册)第92~94页。

【教学目标】

1.在具体问题情境中,感受求平均数是解决一些实际问题的需要,通过操作和思考体会平均数的意义,学会并能灵活运用方法求简单数据的平均数(结果是整数)。

2.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。

3.进一步发展学生的思维能力,增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。

【教具、学具准备】

教具:课件、男女生套圈成绩图。

学具:每四位学生一副男女生套圈成绩学具板。

【教学过程】

一、创设情境,激趣导入。

谈话:很多同学都知道套圈游戏,一起来看。(媒体出示:三年级一班的.男女生进行套圈比赛,每人套15个圈。下面的统计图表示他们套中的个数。)想请大家来当裁判,愿意吗?可要比比哪个裁判最公正哦!

二、合作探索,解决问题。

(一)两队人数相同,每人套中的个数不同。

屏幕出示第一小组男、女生套圈成绩统计图。提问:要知道男生套得准一些还是女生套得准一些,你认为可以比什么呢?

学生回答后教师相机引导并小结。

(二)两队人数不同,每队中每人套中的个数相同。

屏幕出示第二小组男、女生套圈情况统计图。请学生一起回答是哪个队套得准一些。提问:有同学认为可以比比他们套中的总个数,你们觉得公平吗?

结合媒体演示小结。

(三)两队人数不同,每人套中的个数也不完全相同。

1.提出问题,自主探究。

出示第三小组的套圈成绩图(例题),引导比较,得出与第二小组套圈成绩图的异同。

小小组四位同学利用学具板探索解决问题的方法,教师巡视。全班交流比的结果。

指出:其实,象这样移了以后再比,是分别求出了男、女生平均每人套中的个数再去比的。结合电脑演示教师讲解揭示平均数的含义。

2.提问:你还能用其他方法求出男生平均每人套中了几个吗?女生呢?

指名列式并说说想法。

3.理解平均数的意义。

谈话引导学生观察、比较,加深对平均数意义的理解。

4.小结。

三、巩固深化,拓展应用

1.辨一辨、说一说。

2.移一移、估一估、算一算。

(1)“想想做做”第1题。

(2)“想想做做”第2题。

(三条丝带的长度分别改成6厘米、44厘米、13厘米。)

3.想一想,选一选。

平均数教学设计3

以往在教学平均数的概念时,教师往往把教学重点放在平均数的求法上,整理了平均数的教学设计,希望可以帮助到老师。

[教学目标]

1、在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。

2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

3、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,树立学习数学的信心。

[教学重、难点]理解平均数的意义,学会求简单数据的平均数。

[教具准备]多媒体课件等

[教学时间]1 课时

[教学过程]

一、创设情境,提出问题

(屏幕出示)看,三(1)班的几个男女生正在进行套圈比赛呢,他们每人套了 15 个圈,老师用两幅统计图分别表示出了男生和女生套中的个数。

从图中你得到了哪些信息?

二、自主探究,理解新知

1、初步引出平均数

问:你们的眼睛真亮!那根据这些信息你知道男生套得准一些还是女生套得准一些吗? 猜猜看。

师:到底事实情况怎样?我们必须想个方法来说服对方,请你们开动脑筋, 有了想法后小组内相互交流。

小组讨论,教师行间巡视。

问:有结果了吗?谁来说一说你的想法?你认为应该比什么?

师:你觉得哪一种比法更加合理?说明你的理由。 指名回答。

师: 在刚才的讨论中, 我们明白了参加比赛的人数不一样多, 算总数不好比, 也不公平,就不能用这种方法。只有求出男生平均每人套中的个数,女生平均每 人套中的.个数,才能一比胜负。

(出示:男生平均每人套中的个数、女生平均每人套中的个数)

2.移多补少法。

⑴(出示:男生统计图)问:你能看图说说男生平均每人套中多少个圈呢?小组里讨论一下。

(预设 :把张明的 9 个移 1 个给陈晓杰,1+6=7,张明还有 8 个,再移 1 个 给李小钢,1+6=7,最后大家都是 7 个。(生答,师演示) )

师:通过把多的移一些补给少的,使每个人都一样多。我们给这种方法起个 名字。

⑵你能用移多补少法看出女生平均每人套中的个数吗?(生答,师演示)

3、先合再分

⑴提问:还有其它办法得到男生平均每人套中多少个吗?

(生答,师演示) 会列式吗?板书:6+9+7+6=28 (个),28÷4=7(个)

师:这种方法是先怎样,再怎样的?也给它取个名字“先合再分”。这里的 28 指的是什么?为什么要除以 4?不管用什么方法,最后都求出了男生平均每人套中 7个圈,反映了男生套中的平均水平。

⑵.求女生平均每人套中的个数。

(出示:女生统计图)那么你会计算女生平均每人套中多少个圈吗?自己算一算。 (指名答,师板书)10+4+7+5+4=30(个) ,30÷5=6(个)。

问:刚才男生中用总数除以 4,到了女生中,怎么就除以 5 了呢?(因为女 生是 5 个人) 通过算平均成绩, 现在你能比较出是男生套得准一些还是女生套得准一些了吧?(出示:答:男生套得准一些。)

4、揭示课题。

(出示男、女生统计图)同学们,刚才我们算出男生每人套中 7 个,这个 7 就是 6、9、7、6 这一组数据的平均数。(出示课题:平均数)这个 6 是哪几个数的平均数呢?

5、理解平均数的范围。

(1)比较。 男生实际上是不是每个人都套中 7 个?把这 7 个跟男生实际套中的个数比一比,哪些人套中的个数比 7 个多?哪些人套中的个数比 7 个少? 女生中哪些人套中的个数比平均数多?哪些人套中的个数比平均数少?

(2)提问:平均数会比这里最大的数大吗?会比最小的数小吗?

(3)小结:平均数是通过把多的部分移给少的部分,使大家都相等而得到的数,所以平均数在最大数与最小数之间。

三、联系生活,灵活运用

学习了平均数能为我们解决一些生活中的问题吗?让我们继续研究。

1、想想做做第1题。

指名口答。 师小结:当数据较少而且数据之间相差不大时,适合用“移多补少”的方法 来算平均数。

2、想想做做第2题。

(课件出示) 快来解决小丽的问题吧。

问:这三条彩带中最长的有多长?最短的呢?这道题要求什么?想一想,你能不能估计出这三条丝带的平均长度在( )cm——( )cm 之间?当数据之间相差较大时,适合用先求和再平均分的方法。 学生尝试练习后评讲。 (实物投影)

3、想想做做第3题。

(课件出示) 看,篮球队员们的比赛多么激烈呀,你能解决这里的数学问题吗?

师:我们对平均数又有了更深的了解,让我们用所学的知识一起来帮帮小明 吧!

4、95页练习九第1题。

怎么理解“平均水深110厘米”?想看看这个池塘水底下的真实情形吗?(出 示池塘水底)看来,认识了平均数,对于我们解决生活中的问题还真有不少帮 助呢。

四、全课总结

今天学习了平均数,静静地想一想,你有哪些收获?

总结:今天,我们认识了平均数,知道平均数在生活中有很大的作用,希望大家在生活中学会利用平均数解决问题。

五、拓展延伸

1、师:小玲参加歌唱比赛这是5位评委给她打得分,你能算算她的平均得分是多少吗?

学生自主计算,全班汇报。

2、出示打分规则,再次计算

平均数教学设计4

一、教学内容:平均数(数学第八册)

二、教学目标:

1、体会、感悟 “平均数”的意义。

2、感受“平均数”所蕴含的丰富的现实背景和“平均数”的作用。

3、会求“平均数”,并能解决相应的比较简单的实际问题。

4、鼓励学生自主探索、合作交流及多策略的解决问题。

三、教学重点、难点:

重点:理解“平均数”的意义。会求“平均数”。

难点:正确理解“平均数”的实际意义,能解决简单的实际问题。

四、教学过程:

(一)开展活动,产生需求

1、钓鱼比赛:

游戏:现场进行钓鱼比赛。

2、填统计表:

第 组 钓鱼情况统计表 20xx年×月×日

同学①②③④⑤合计

钓鱼条数

将各组钓鱼情况填入统计表。

3、随机抽取数据,进行比较,引出平均数:

比较①:我们先比较这两个组。(人数相同,钓鱼条数不同)

哪个组的钓鱼的水平高?为什么?学生讨论。(比钓鱼总数即可)

比较②:人数不同的两个组进行比较。

哪个组的钓鱼水平高?为什么?学生讨论。(有必要认识平均数)

4、了解学生情况:

你对平均数有哪些了解?

(二)自主探索,初建概念,探究方法

1、抛出问题,小组探讨:(任选一组能整除的数据)

例如:第×组 钓鱼情况统计表

同学①②③④合计

钓鱼条数235512

这个组平均每人钓几条鱼呢?

小组讨论。

2、班内交流信息:(根据学生汇报情况方法不分先后,还可有其他方法)

方法a —— 移多补少:学生摆一摆,说一说

方法b —— 求和均分:例如:(2+ 3+ 5 + 2)÷ 4 = 3

为什么要把这几个数加起来,再除以4?

两种方法的结果有什么相同点? (每人钓的鱼同样多了)

小结:同学们用不同的方法都研究出了这个组平均每人钓3条鱼。

这个3就是2、3、5、2的平均数。

3、解决问题:

① 确定另一组钓鱼水平。(任选一组不能整除的数据)

例如:第×组 钓鱼情况统计表

同学①②③④⑤合计

钓鱼条数2234314

a、这个组钓鱼的平均数是几呢?

有的同学用摆一摆方法,得不到平均数。

有的同学们为什么不用移的方法解决呢?

列式:(2+ 2+ 3 + 4+ 3)÷5 = 2.8 为什么要除以5?

b、这组每个人实际是钓2.8条鱼吗?

它表示什么意思呢?

c、2.8条在统计图上怎样表示?

小结:2.8不是每个人实际钓鱼的数。它表示的是这个组钓鱼的一般水平。

②小结计算方法:刚才同学们是用什么方法得到平均数的?

③各组钓鱼情况:

你们每个组钓鱼的平均数是多少呢?算一算。

④评价:各组报本组钓鱼的`平均数。

×组钓鱼水平最高。

(三)初步应用平均数,理解、内化概念。

1、尝试独立解决问题:

小强就特别喜欢打靶,他去打了两次。哪次打得好?为什么?

小强打靶成绩统计表(第一次)小强打靶成绩统计表 (第二次)

第几枪1234第几枪12345

打中分数98910打中分数771079

平均数有什么用?

2、用身边的实例,进一步理解平均数的概念:

怎么计算咱们四(1)班的平均身高?

咱们班的平均身高约为148厘米。148厘米是你的身高吗?(指某一个同学)你的身高比平均数怎么样?

这个148厘米表示什么?(同学身高的一般情况)

四(2)班同学的平均身高是146厘米。请问四(2)班任诚同学的身高一定就比咱们班某个同学矮吗?为什么?

3、估算,明确平均数的取值范围:

①提供素材:(放电视录像:欢乐总动员歌手比赛)

你能很快估计出这位歌手的最后得分吗?

(欢乐总动员评委评分为:96、95、93、94、95、95、96、93、93 )

②全班交流估的分数。

③你是怎样估的?

④为什么不估96分?93分?

⑤验证歌手得分。

a学生计算。b放录象验证歌手得分。

⑥讨论:你认为这种评分方法是否公平、合理吗?你有什么建议吗?

为什么要去掉一个最低分?一个最高分?

如果去掉一个最低分,一个最高分怎样算平均分?

(四)总结

你对平均数有了哪些新的认识?

(五)联系实际,课外延伸

我们的学习和生活中,哪儿还能用到平均数呢?举例说一说

平均数教学设计5

教学内容:

平均数

教材分析:

平均数是一个重要的刻画数据集中趋势的统计量。小学数学里所讲的平均数一般是指算术平均数,也就是一组数据的和除以这组数据的个数所得的商。我们既可以用它来反映一组数据的一般情况,也可以用它来进行不同数据组的比较,从而看出组与组之间的差别。用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常用到,如平均身高、平均成绩等等。平均数是在第一学段已经理解了平均分以及除法运算的意义基础上教学的。与实验教材相比,修订教材对平均数的处理,更加突出其统计意义。通过“两队人数不同不能用总数比较”这一思维的矛盾,促进学生进一步理解平均数的意义,进而发现运用平均数作比较的`必要性。

教学目标:

1、体会平均数的作用,掌握计算平均数的方法。

1、经历求平均数的过程,尝试用自己的语言解释其实际意义。

2、感受数学与生活的密切联系,激发学生学习数学的兴趣。

教学重点难点

重点:体会平均数的作用,掌握计算平均数的方法

难点:初步理解平均数的实际意义。

教具准备:

桃心卡片课件

教学过程

一、创设情境,初步感知

1、猴妈妈有三个孩子,这天猴妈妈在山上摘了很多新鲜的桃子,于是给大儿子6个,给了二儿子7个,给了小儿子2个,小儿子不高兴了。

(边讲边贴桃形纸片,贴三行,为下面的移多补少做铺垫)

师:小儿子没什么不高兴了?你们觉得这样分公平吗?

学生讨论,指名汇报。

2、你能帮猴妈妈重新分一分吗?怎样分的公平?指名学生演示。

3、小结:这种方法叫“移多补少”(板书)

谁还有其他的办法解决这个问题?

(先把三个人的桃子合起来有15个,再平均分给这3个小猴子,这样每个小猴子都分到5个桃子。)

这种方法也很好!我们也给它取个名字。“先合再分”

(板书)。

4、刚才我们用移多补少和先合后分的方法,都能使这三个小猴的桃子个数从不同变成相同,都是5个。这里的“5”就是“6、7、2”这三个数的平均数。像这样,几个大小不等的数,通过移多补少或者先合再分的方法,使它们变成一个相同的数,这个相同的数就是这几个数的平均数。(课件出示)

板书课题平均数

二、自主探索,解决问题。

1、出示大家在操场踢毽子的情景(PPT)

出示男女各3人一组

姓名

个数

小军

15

小强

15

小明

15

姓名

个数

小雨

18

小涵

17

小敏

16

女看哪组成绩好?怎么比?

可以比总数,可以比平均数,指名学生汇报,并说明计算方法。

2、人数不同

男生组有一个同学不服气,真正的高手没上,小飞同学每分钟踢了19个

男生队女生队

姓名

个数

小雨

18

小涵

17

小敏

16

姓名

个数

小军

15

小强

15

小明

15

小飞

19(一)现在比总数的话公平吗?

(二)怎么比?比平均数比较公平。

(三)先不计算,观察这组数据的特点,猜测一下,小飞的加入,男生队的成绩会发生什么变化?平均数会超过15个吗?会超过19个吗?平均数会在什么范围?

(四)请计算出新的男生队的平均成绩。

1、学生汇报并板书算式

(19+15+15+15)÷4=16(个)

2、对比观察,小飞的加入平均数有什么样的变化?平均数变大了。

3、为了公平起见,女生队也加入了一个队员,想一想,如果要保持领先,至少要踢多少个?

姓名

个数

小军

15

小强

15

小明

15

小飞

19

姓名

个数

小雨

18

小涵

17

小敏

16

小云

9你能计算出现在女生队的平均成绩吗?

随着小云同学的加入,平均数有什么变化?

师小结:平均数会受到较大数据或较小数据的影响。

4、质疑:平均数是16个男生队是每个人都踢了16个吗?女生队是每个人都提了17个吗?

5、小结:16这个平均数表示男生队的一般水平,17这个平均数表示女生队的一般水平。

6、结合平均成绩、平均身高、平均工资等素材理解平均数的意义。

如通过平均身高可以了解身体生长状况,平均成绩可以找到差距。

7、生活中的平均数,你还知道哪些?

8、小结:平均数可以表示一组数据的一般水平,也可以用来个数不同数据的比较。

三、巩固练习。

接下来老师看看你们能不能运用所学平均数的知识解决实际问题。

1、纸条,师估计平均长度是30厘米,你们同意吗?

2、我从体育老师哪里了解到咱们班孩子的平均身高是136厘米,有没有可能有孩子的身高是145厘米?125厘米?是不是咱们班每一个孩子的身高都是136厘米?为了让大家理解更透彻,老师带来了一张珍贵的照片。

3、讲一个平均数的小故事,一个老爷爷,70岁了,在看到报纸上说中国男性的平均寿命是71岁时,伤心地哭了,你们知道老爷爷为什么哭了吗?请你用学到的平均数的知识安慰安慰老爷爷。

4、平均水深是110厘米,小华身高140厘米学游泳,有危险吗?

四、全课总结,说说你都学到了什么,你有什么收获?

板书设计:

平均数

移多补少先合后分

(15+15+19+15)÷4

=64÷4

=16(个)

一般水平

平均数教学设计6

去年3月,有幸听了杭州市胜利小学张浩强老师的一堂示范课------求平均数。听了后感触很多,很受启发。这是一堂体现主体性教学的数学课,其教学过程是这样的:

一、创设情境:课前口算。

教师计时3分钟让学生在口算题单上口算,要求学生实事求是,按时完成。然后,教师宣布答案,生订正。

二、统计各小组做对的数量,引入平均数。

学生统计出各组做对的总数量,教师板书。师问:哪里个组最好。引导学生看出每个组人数不一样,不能看总量。师问:有没有其它办法。生说:可以求各小组的平均数,比较平均数。师问:平均数什么意思?在这里怎样求?引导学生理解平均数的含义。

每个小组把各自的平均数计算出来,计算有困难的可以用计算器。生报平均数,师板书,找出第一名,师说:第一名是口算冠军,下课后合影。

三、引入生活:你们在生活中有没有碰到过平均数。让学生举例说。师问:如果我们要算一下在座每个教师的平均年龄,怎样算?

四、教师根据板书说明原始数据,让学生比较每个小组的平均数和原始数据,发现了什么,有什么办法估计平均数。引导学生归纳出:平均数不能比最大的原始数据大,不能比最小的原始数据小,而最接近中间数。让学生根据这一规律估计各自小组的平均年龄,再计算。

五、练习书上2题和3题,每个同学独立完成,可以用计算器。

六、出示:据调查孙水河的平均水深是1、00米,木呷的身高是1、15米,木呷掉到河里可能被淹死吗?让学生讨论回答。

听了这节课,我深受启发。给我的启发有四:一是教师上课时要使用激励性语言,态度可亲,面带笑容,才能营造轻松愉快的氛围,调动学生学习的积极性。一堂课上,得体的激励性语言会让学生情绪高涨,心情愉快,更加认真的去学习。本节课上,张浩强老师就使用了诸如:“城关的孩子就是不一样,速度很快”“同意他的观点吗”“你的眼睛水灵灵的,很亮”“你其实不要急,慢慢地说,你会说的更好一些”“够厉害的”“真厉害,你比我厉害”这些激励性语言。在他的调动下,课堂气氛越来越活跃。

二是数学教学要联系生活,要充分调动学生的生活经验。众所周知,现实世界是数学的丰富源泉,小学生学习的'数学应是生活中的数学,是学生“自己的数学”。联系了生活实际,举学生自己生活中的例子进行分析解决有关数学问题,让学生从课本走进生活,会使他们真正体验到数学的应用和价值,体验到数学学习的乐趣和成就感。本课中,张浩强教师就让学生算本小组同学的平均年龄和平均身高。还出了一道学生熟悉的河流“孙水河”的数学思考题。这些都是学生生活里有的,学生熟悉的事物,学生讨论起来就很有兴趣。

三是在学习活动中,让学生去经历去体验数学知识的形成过程。学习活动中,学生更愿意自己去经历,去实践。学生或许相信你告诉他的,但他更愿意相信自己看到的、经历过的事,这就是一种体验。让学生经历学习的体验非常重要,因为它直接影响到学生对知识的主动建构的质量。比如张浩强老师上的这节课,重要的不是平均数的含义和作为代数公式的运算程序,而是它所包含的统计过程。张老师就让学生经历了统计的过程,而不是一来就出示一组数据,让学生求平均数。张老师上课时创设情景——口算比赛,让学生不知不觉地进入课堂,然后通过解决“哪个组最好”让学生去统计做对的题的数量,在比较时学生认识到必须求出平均数才能比较出谁最好,从而引出怎样求平均数。

四是教师要有很强的驾驭课堂的能力。体现主体性教学的课堂,你不知道学生会提出什么问题,会怎样去回答这个问题,有时回答的话语不着边际,有时会有奇思妙想,有些是老师完全没有想到的。这时,就要求教师课前认真的备课:不仅要备教材,还要备学生。教师在备课时一定要了解学生,吃透教材,对课上所要解决的问题要有一个估计:哪些问题学生能独立解决,哪些问题要发挥学生之间的优势互补,然后根据实际情况安排是否进行小组合作学习。同时,在课堂上教师一定要认真听学生说话,听懂孩子们的每一句话,站在学生的角度体会、思考,理解每一个学习信息。这些信息存在着有用与无用、重要与次要之分,这就需要教师具有敏锐的鉴别能力,根据知识结构的需要进行分析综合,从而选择、重组已有信息,为学生指引思维的方向。然后还要要求教师有很强的应变能力和丰富的知识,才能驾驭好课堂,不至于到时手足无措,不知道怎样应对。

平均数教学设计7

教学内容:冀教版数学三年级下册第五单元53页、54页、55页内容

教学目标

知识与能力:在具体问题情境中,感受求平均数是解决一些实际问题的需要,通过操作和思考体会平均数的意义,学会并能灵活运用方法求简单数据的平均数。

过程与方法:能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。

情感、态度与价值观:进一步发展学生的思维能力,增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。

教学重、难点:

重点:掌握平均数的意义和求平均数的方法。

难点:体会平均数的特点、能利用这些特点解释生活实际中的问题。

教学准备:多媒体课件。

教学方法

教法:动手操作,自主探索、合作交流

学法:观察法、比较法、发现法和讨论法等

一、初步建立平均数的意义

1、情境引入、激发兴趣

师:同学们喜欢打篮球吗?

生:(齐)喜欢!

师:由于场地有限,我们不能把比赛搬到课堂上来,但老师可以带大家看一场有意思的投球比赛,想看看去么?

生:想。

师:操场上有几个同学,他们相约来一场规定时间内的投球比赛,分成了两个小组,摆开了一副两军对垒的阵势。首先上场的是一组同学,一起看看他们成绩如何!期待吗?

生:恩。

师:看一组投球成绩。

课件出示:张华8个、王云7个、李英6个、赵明7个。

师:一组成绩还真不错,发挥比较稳定,四名同学投的不相上下。

师:一组投罢,换二组同学登场了,想看看二组投得咋样么?

生:想,想。

师:第一个出场的是女同学刘杰,竟然投中9个,杨立也投中了8个,二组开场就如此厉害,真为一组同学捏把汗呀,你们觉得二组能赢么?

生:不好说。

师:那我们接着看!

出示:孙梅5个,(学生唏嘘)王丽3个,(学生“啊”?)丁鹏5个。

师:两组同学都投完了,这时赛场上两组同学为谁输谁赢起了争执,双方各执一词,一起去听听。

师:二组刘杰说:“我一人投中9个,你们一组都没我多,所以我们二组胜。”同学们以为呢?

生:不能这样比,比得不是个人赛,要看整个小组的水平,更何况二组王丽同学还投了3个呢!

师:是呀,老师也觉得不能比个人成绩。这时王丽又说话了“不比个人的,就比总数,我们二组一共投进了30个球,而你们一组才投是28个,所以还是我们二组胜。”同学们这次觉得可以么?

生:不公平,二组5个人,一组才4个人。欺负人。

师:真是的。5个人打4个人,是不公平。那该怎么比呢?生:(茫然)!

师:同学们,能不能找到一个数反映两个小组的整体水平呢?先看看一组的具体投球情况!

出示:第一组同学投球成绩统计图。

2、介绍“移多补少”法

师:同学们仔细观察第一组投球数量都接近几个?用哪个数来代表一组的整体水平呢?

生:7个。

生:8和6都接近7个,所以用7表示。

师:怎样让他们投的数量匀一匀呢?

生:把8里面多的1个送给6,这样就都是7个了。

演示:移多补少的过程。

师:数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程就叫“移多补少”。[板书:移多补少]移完后,一组同学看起来好像都投中了几个?

生:(齐)7个。

师:能代表一组的整体水平吗?

生:(齐)能!

师:接下来看一下二组同学的投球情况。

3、介绍求平均数的公式。

出示:第二组投球成绩统计图。

师:能用“移多补少”的方法找一找二组同学的整体水平吗?

生:……

前后桌四人一小组互相说一说。

生:好像是6个。9个给3个3个,8个分别给两个5一个。都是6个了。

演示:移多补少的过程。

师:这样二组同学看起来好像都投了几个?

生:6个。

师:用6代表二组同学投球的整体水平合适么?

生:合适。

师:这次移多补少的过程有什么感觉?

生:很麻烦。

师:有没有别的方法很快的求出6个?

生:我先把5个人投球的个数相加,得到30个,再用30除以5等于6个。

师板书:(9 8 5 3 5)÷5

=30÷5

=6(个)

师:像这样先把每次投中的个数合起来,然后再平均分给这5人(板书:合并平分),能使每一次看起来一样多吗?

生:能!

师:其实,无论是刚才的移多补少,还是这回的先合并再平均分,目的只有一个,那就是——

生:使原来几个不相同的数变得同样多。[板书:同样多]

师:数学上,我们把通过移多补少后得到的同样多的这个数,就叫做原来这几个数的平均数。(板书课题:平均数)比如,在这里(二组图),我们就说6是9、8、5、3、5这五个数的平均数。那么,在这里(出示一组图),哪个数是哪几个数的平均数呢?同桌说说。

生:在这里,7是8、7、6、7这四个数的平均数。

师:能用算式求出它们四个的平均数吗?

生:(8 7 6 7)÷4

=28÷4

=7(个)

为什么同样是求平均数,却一个除以3,一个除以了4呢?(因为他们的人数不一样)第一组中平均每人投中7个,是不是每人都投中7个?第二组平均每人投中6个是什么意思?为什么第一组要除以4?第二组要除以5呢?让学生理解“总数量”和“总份数”的意思。

师:现在能判断哪个组胜利了吗?(一组)这就是有理不在声高,最后见输赢!

师:这个7能代表赵明投的那7个吗?

生:不能。

师:能代表张华投的那6个吗?

生:更不能!

师:奇怪,这里的平均数7它究竟代表的是哪个人的个数呢?

生:这里的4代表的是一组四人次投球的平均水平。

生:是一组投球的整体水平。

(师板书:整体水平)

二、巩固练习、知识拓展。

1、练习1:求亮亮家平均每天丢弃多少个塑料袋?

师:带着我们掌握的平均数的知识来看帮助亮亮家遇到的问题吧!

呈现亮亮家一周丢弃塑料袋统计图。完成以下问题:

问题1:从图中能发现哪些数学信息?(环保教育,少用塑料袋,多提竹篮。)

问题2:猜猜亮亮家平均每天丢弃塑料多少个?(3个)

问题3:为什么不猜1个?6个?(1个最少多的移过来肯定比1个多。最多的才6个移给少的后就不够6个啦!)

师:这样看来,尽管还没得出结果,但我们至少可以肯定,最后的平均数应该比这里最大的数——

生:小一些。

生:还要比最小的数大一些。

生:应该在最大数和最小数之间。

师:“平均数总是在最大数和最小数之间”这是平均数的一个重要特点。利用这一特点,我们还可以大概地估计出一组数据的平均数。

问题4:计算一下平均数是多少?(1 3 2 3 2 6 4)÷7

=21÷7

=3(个)

师:能指出平均数所在的位置吗?(找一名同学来指一指)

问题5:找一找平均数上面超出几个塑料袋?(4个)下面不足几个塑料袋?(4个)

师:我们发现不足的和超出的正好——(相等)。

问题6:为什么它们会相等?

生:它们若不相等,多出的`移给少的就不够,或分不完了。

师:对,超出部分就像山峰,不足部分就像山谷,削平山峰才能填满山谷?

师:其实,像这样超出平均数的部分和不到平均数的部分一样多,这是平均的第二个重要特点。把握了这一特点,我们可以巧妙地解决相关的实际问题。

5、小结过渡:刚刚我们学习了平均数,你有什么收获?(其实,移多补少也好,先合再分也好,都是为了使他们同样多,进而得出了一组数据的平均数)同学们有信心将知识活学活用吗?那就让我们一起来闯关吧!

2、练习2:冬冬下河会不会有危险?

师:一起看冬冬遇到什么问题了?

课件出示图

师:冬冬来到一个池塘边。低头一看,发现了什么?

生:平均水深110厘米。

师:冬冬心想,这也太浅了,我的身高是130厘米,下水游泳一定没危险。你们觉得冬冬的想法对吗?

生:不对!

师:怎么不对?冬冬的身高不是已经超过平均水深了吗?

生:平均水深110厘米,并不是说池塘里每一处水深都是110厘米。可能有的地方比较浅,只有几十厘米,而有的地方比较深,比如150厘米。所以,冬冬下水游泳可能会有危险。

师:说得真好!想看看这个池塘水底下的真实情形吗?

出示池塘水底的剖面图

生:真的有危险!

师:提示同学们,一定不能到不熟悉的河边、池塘边玩耍游泳!

(一)第一关:小试牛刀。

1、平均每个笔筒里有多少枝铅笔?

(1)你会用不同的方法进行思考吗?

(2)追问:哪一种方法简单?(移多补少)

4、拓展延伸:

(1)如果任意变动笔筒中铅笔的枝数,平均数会变化吗?为什么?

(2)如果去掉一个笔筒,平均数会变化吗?为什么?

(3)小结:平均数与总个数和份数有关。

小结:求平均数时,要根据具体情况灵活选择方法。

三、深化理解,延伸思维

1、彩带问题。

课件出示如下三条彩带。

师:老师大概估计了一下,觉得这三条彩带的平均长度大约是10厘米。不计算,你能根据平均数的特点,大概地判断一下,老师的这一估计对吗?

生:我觉得不对。因为第二条彩带比10厘米只长了2厘米,而另两条彩带比10厘米一共短了5厘米,不相等。所以,它们的平均长度不可能是10厘米。

师:照你看来,它们的平均长度会比10厘米长还是短?

生:应该短一些。

生:大约是9厘米。

师:它们的平均长度到底是多少,还是赶紧口算一下吧。

……

如果三条彩带的平均长度就是刚才老师估计的10厘米。那么第三条彩带应该多长呢?

(1)12-10=2 10-7=3 3-1=1 10 1=11

(2)10×3=30 30-7-12=11

五、拓展延伸,深化提高

1、刚才我们利用平均数解决了这么多的问题,其实,生活中很多问题都需要用平均数的知识来解决。想一想,你能举出生活中的实例吗?看谁是有心人,试着说一说。

2、春暖花开北京连续5天日平均气温超过10℃。

2、求各组数的平均数。

(1)7和3 14和6

(2)6、7和5 3、2和13 6、6和6(平均数相同,几个数可能不同)

(3)7、1、6和2

如果把7增加4,其它数字不变,平均数是多少?如果减少4呢?

师:难怪有人说,平均数这东西很敏感,任何一个数据的“风吹草动”,都会使平均数发生变化。现在看来,这话有道理吗?(生:有)其实呀,善于随着每一个数据的变化而变化,这正是平均数的一个重要特点。就像我们有月考中的平均成绩一样,只有每个同学都多考一点,平均分才会大幅提高。

四、看书质疑、不留死角。

师:愿大家能带上今天所学的内容,更好地认识生活中与平均数有关的各种问题。下课!

板书设计:

平均数

移多补少

合并平分

一组:(8 7 6 7)÷4二组:(9 8 5 3 5)÷5

=28÷4 =30÷5

=7(个) =6(个)

平均数教学设计8

教学目标:

1、体悟“平均数”的实际意义。

2、探索求“平均数”的多种方法,并能根据具体情况灵活解答。

3、培养学生估算的能力,能对数据分析结果作出简单的推断和预测。

4、体会“平均数”在现实生活中的实际意义及广泛应用,逐步具有自主探索与合作交流的意识和能力。

教学重点、难点:

灵活选用求平均数的方法解决实际问题。理解平均数的意义

教具、学具准备:

PPT等

教学流程:

一、谈话引入、初步感知平均数

1、学生交流课前收集到的有关平均数的.信息。

2、师提问:为什么你们认为平均年龄、平均工资、人均住房面积这些都是平均数呢?能解释一下它是什么意思吗?

3、师:看来大家对“平均数”或多或少都有些了解。这节课,我们就去数学王国探索一下有关“平均数”的奥秘。 板书:平均数 你想了解平均数的哪些知识呢?

4、师:看来同学们对平均数充满了好奇,一起进入迷宫探秘。

二、构建新知

1.理解含义,探求方法。

观察棋子,提出问题。(多媒体显示)

师提问:看着你面前的棋子,你获得了哪些信息?你还想提出什么数学问题?

2、感悟“平均数”的实际意义。

动手操作:以小组为单位研究怎样才能使三排棋子同样多。

师提问:现在每排棋子都是几个?这个数,你能给他取个名字吗?

这个平均数4与原来每排棋子的个数有什么关系呢?

3、探索求平均数的不同方法。

师:四人小组合作,想一想还有没有别的方法可以求出平均数,并且把你们小组独特的方法取个名字!等一下我们来评选最佳创意奖和最佳命名奖。比一比,哪个小组最爱动脑筋!

①小组活动讨论。

②汇报交流。(生说方法多媒体显示棋子移动过程)

移多补少! 先假设后均分。先求和再均分。

三、初步应用,内化拓展。

师:刚才同学们通过讨论、尝试不但知道了什么是平均数,而且探索出了许多求平均数的方法。那么你们能解决有关平均数的实际问题吗?

四、课堂总结

1、你现在所认识的平均数是什么?

2、理解平均数是个虚的数。

五、随堂作业

平均数教学设计9

一、教学目标:

1、结合解决问题的过程,初步认识平均数,体会平均数的必要性。

2、能读懂简单的统计图表,并能根据统计图表解决一些简单的实际问题。

3、在具体的情境中培养学生合作交流的能力,并能根据情况进行合理推测。

二、教学重点:理解平均数的意义,学会计算简单数据的平均数。

、教学难点:感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考,体会平均数的意义。

四、教学过程:

1、创设情境,体验产生平均数的必要性。

同学们平时喜欢打球吗?前些天,二(3)班有5名男生,4名女生进行了一场激烈的投篮比赛。说到比赛,你们最想知道什么?

我们一起来看看比赛情况。

出示两幅统计图:这是男生队和女生队每个人在相同时间内投中球情况统计图。(0表示投中一个)

A、观察统计图,根据比赛情况,你认为哪队的投球水平高一些?说说你的想法。

学生讨论比总数——每队总人数不相同,不公平

比最多的——个人水平,不是整队水平

B、到底怎样比才公平地体现两队的实力(投球水平)呢?

(平均每人投中多少个球)——实际就是每队队员投球的平均数

揭题板书——认识平均数

2、认识平均数

刚才同学们经过讨论,一致认为算出每队队员的投球平均数,能帮我们评判输赢。那怎样才能求出两队投球的平均数呢?

A、同桌合作完成

a、利用手中的作业纸,不用箭头在图上移一移,也可以动笔算一算,求出两队的平均数。b、再比一比,哪队赢了?

B、反馈:哪队赢了?你是用什么方法研究出来的?

a、移一移,学生板演,其他生观察:在移的过程中,什么变了,什么没变?

每人投球个数变了

每队的总个数不变

(每队内部的个数调整,不影响整个队的实力)

像这种在总个数不变的情况下,把个数多的.移给个数少的,使每人投球个数相同的方法叫:移多补少

刚才同学们用移多补少的方法求出了男生队投球的平均数是5,女生队投球的平均数是6,从而认为女生队投球的实力比男生队强一些。

还有别的方法吗?

C、算一算,(7+3+5+9)/4=6(个) (4+7+5+4+5)/5=5(个)

(1)、算式中的数都表示什么意思?

(2)、比较平均数,谁赢了?

比较两种方法,你喜欢哪一种?为什么?

小结:当数字比较小又接近的时候我们用移多补少更简便,

当数字比较大而复杂的时候我们用计算的方法更为简单。

3、理解平均数的意义

刚才在评判了两队的输赢碰到困难时,是谁帮助我们进行公正地评判的?那平均数到底是个怎样的数呢?想不想更进一步地了解它呢?

(1)、仔细观察女生队每人的投球数,和平均数相比,你发现了什么?

有的比5大――可能相等或不相等

有的比5小――

(2)、同样都是“5”,它们所表示的意义相同吗?

是个体的投球水平

是整个队的总体投球水

4、其实,我们身边也有许多平均数,你能举个例子吗?

五、在具体情境中理解、应用平均数

1、是的,正是由于平均数能体现整体状况,在生活中的作用还不少呢。前不久,学校想了解三年级同学的身高状况,该怎么办?

昨天、我从咱们班第一横排中选5个同学,了解了他们的身高,一起来看看吧。

(1)、出示身高计表

同学12345

身高cm131136134132137

(2)、估计:他们的平均身高大约是多少?你是怎么估算的?

145cm、130cm可以吗?最小数<平均数<最大数

(3)、算一算他们的平均身高(计算方法)

平均数134cm和表格中的134cm有什么不同?(5个人的整体的身高状况、3号个人的实际身高)

(4)、根据第一排同学的身高,请你推测一下咱们班同学的平均身高,并说说你的依据是什么?

(5)、看来推测的结果是否准确和我们选取哪5名同学有很大关系,如果按现在的座位(8排8列),还是选5名同学,你准备怎么选?

小结:看来平均数的作用真大,它不仅让我们了解了一个小整体的状况,还能根据小整体的状况推测出大整体的状况。

2、小熊商店

(1)、出示统计图,你知道了什么?

(2)、求出前三周的平均数

(3)、预测一下第四周进几箱?

六、拓展

淘气身高1.3米,不会游泳,到平均水深0.8米的小河洗澡,有危险吗?

七、小结

这堂课你学得开心吗?有什么收获吗?

平均数教学设计10

教学内容:《义务教育课程标准实验教科书数学》三年级下册P42页 例1

教材简析:

教材从现实生活出发,选取学生身边的事例,将生活素材贯穿于整个教学活动的始终,遵循了数学源于生活、寓于生活、用于生活的理念。让学生在动手实践的活动中学会用平均数来比较两组数的总体情况,体会数学与生活的联系。平均数是统计中的一个重要概念。它通常用于表示统计对象的一般水平,它是描述数据集中程度的一个统计量。平均数的概念与平均分的意义是不完全一样的,平均数是一个“虚拟”的数,它是借助平均分的意义通过计算得到的。它具有直观、简明的特点,在生活中经常用到。

学情分析:

平均数是统计中的一个重要概念,而求平均数是统计的基本方法之一。此时的学生虽已初步具有了信息的分析、处理和对实际问题的决策能力。但他们的思维仍处于由具体形象思维过渡到抽象逻辑思维的转折时期,仍需要依据实际经验或借助具体形象的支持,通过下定义的方式获得概念。针对这一特点,在理解平均数的概念时,我让学生根据自身已有的生活经验操作实践和通过动态演示,把概念的关键属性和学生的认知结构相联系,使学生掌握概念。另外,三年级的学生好奇心强,求知欲旺,具有一定的探索意识,故在教学时,学生将通过数学活动了解数学与生活的广泛联系,学会综合运用所学的知识和方法解决问题。而教师只是作为组织者、合作者的身份引导学生从不同角度发现生活中所包含的丰富的数学信息,探索多种解决问题的方法,并鼓励学生尝试独立地解决某些简单的实际问题。 设计理念:

有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上;学生的数学学习内容应该是现实的、有趣的、富有挑战性的、动手实践、自主探索与合作交流是学生学习的重要方式。本课教学在新理念的指导下主要设计了“创设情境、初步感知—合作探究、深化理解──应用知识、解决问题──拓展延伸、深化提高”的数学学习过程。

教学目标:

1、知道平均数的含义和求法。

2、加深对“平均数”和“平均分”意义的理解。

3、运用数学思想方法解决生活中有关平均数的问题,增强数学应用意识。

4、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,建立学习数学的信心。

教学重难点:

重点:理解平均数的含义,掌握求平均数的方法:“移多补少”、“先合并再平分”的实际意义和应用。

难点:理解平均数的含义,让学生知道平均数是一个不“真实”的数。

教学过程:

一、创设情境,初步感知

1、问题引入:现在黑板上摆两排圆形磁铁第一排有9个,第二排有5个,我想请同学们帮忙,重新整理一下,使每排磁铁同样多。

2、感知。

(1)学生思考,想移的过程

(2)教师操作引导:现在每排都有7个,7是这组数的什么数?

(3)像这样把几个不同的数,通过“移多补少”、“先求和再平分”的方法,得到相同的数,就是这几个数的平均数。

师:今天,我们就来认识一下“平均数”这个新朋友。(板书课题)

[设计意图:从生活导入,自然引出平均数的概念,让学生初步感知平均数是表示一组数据的一般情况,为后面深化对平均数意义的理解做好了铺垫。]

二、合作探究,深化理解

1.操作:

师:在黑板上用圆形磁铁摆:第一排放8个,第二排放4 个,第三排放3个,注意摆的时候,要一一对应地摆齐。

2.学生合作探究:

师:平均每排有多少个圆形磁铁?你是怎样想的?

3.交流汇报

a.移多补少:只要从8 个中拿1个放到第二行的4个中,拿2个放到第三行的3个中,它们就一样多了,所以这三行圆形磁铁的平均数是5。

b.先算总数再平均分:把三行圆形磁铁合在一起,先求出一共几个,然后再除以3就可得到这三行的圆形磁铁的平均数。

[设计意图:“活动”是儿童感知世界,认识世界的主要方式,也是儿童社会交往的最初方式。在这个环节中,为学生提供了大量的活动材料──圆形磁铁,让学生通过摆来体验和感悟新知识。学生的手、脑、眼、口等多种器官直接参与了学习活动,不仅解决了数学知识高度抽象性与儿童思维发展具体形象性的矛盾,而且使全体学生都积极主动参与,培养了合作能力和探究精神,使学生在生活化的情景中感受数学,体验数学,经历了知识的形成过程,开发了学生的思维。]

4、教学例1

(1)、出示情景图,收集数学信息

师:为了保护环境,我们学校三年级6班的第一小组同学利用课余时间收集矿泉水瓶,做环保小卫士,请同学们仔细观察统计图。从图中你知道哪些数学信息?

生:小明收集15个,小亮收集11个

生:小红比小兰多收集2个

师:他们平均每人收集多少个?你是怎样理解“平均每人收集多少个”的?

生:就是让我们求出平均数。

师:你同意他的说法吗?你是怎样理解的?

(2)利用情境图,处理数学信息

A: 移多补少

师:怎样才能让他们收集的瓶子变得一样多呢?利用这个统计图,你们有什么办法解决平均每人收集了多少个矿泉水瓶这个问题?

生:小明给小亮2个,小红给小兰一个,他们收集的个数就一样多了。都是13个

师:这13个是不是他们每个人实际收集的瓶子数量?(不是)那么13应该叫做这组数的什么数?(平均数)

生:13就是14、12、11、15这组数的平均数

B:先求和再平均分

师:如果没有这个统计图,这四位同学只是告诉你自己收集了几个瓶子,你还其它方法求出他们平均每个人收集多少个瓶子吗?

生:先求和再除以4.就可以求出他们平均每人收集多少个瓶子。

生:14+12+11+15=52(个)52÷4=13(个)

师:13是这组数的什么数?(平均数)

生:13就是14、12、11、15这组数的平均数

C:理解平均数是一个不“真实”的数。

师:平均每人收集13个瓶子,表示每个同学都收集13个瓶子吗?你能举举例子说说吗? 生:不是

生:他们平均每人收集13个,但是小明实际收集了15个,小兰实际收集了12个。

师:这个平均数和平均分不一样,平均数比较好的表现了这一小组的整体水平,并不表示每一个人真的收集了13个瓶子

师:现在同学们来观察平均数13和原来这一组数,你发现了什么?

生1:小红和小明收集的'瓶子个数比平均数多的,小兰和小亮收集的瓶子个数比平均数少。 生2:平均数在最大的数和最小的数之间。

生3:“平均数是一个虚的数,比最小的数大一些,比最大的数小一些,在它们中间。”

生4:“平均数不是某一个人具体的收集瓶子数量,它代表的是几个人收集瓶子的平均水平。” D:归纳“平均数”的含义

师:同学们,你们真是太棒了!平均数正如你们所说,平均数的大小在最大的数和最小的数之间。它不是一个“真实”的数,而是表示的是这组数的平均水平,并不一定这一组数都等于平均数,有些数可能比平均数大,有些数可能比平均数小。

E:小结求平均数的方法,知道平均数在生活中的运用。

师:通过刚才的学习你能说一说求平均数有几种方法?

根据学生回答板书:

1、移多补少

2、先求和再平均分

师:虽然这两种方法都可以求出平均数,但是我们做题时要根据实际情况来选择合适的方法。数量少,相差不大,用移多补少的方法简单;数量多,相差大,用先求和再平均分。

师:用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常要用到。如平均产量、平均速度、平均成绩、平均身高等等。

『设计意图:从生活中搜集,整理数据,并求出平均数,使学生体会“平均数”反映的某段时间内具有代表的数据,在实际生活、工作中人们可以运用它对未来的发展趋势进行预测。计算的引入,使学生乐意并有更多精力投入到现实的、探索性的数学活动中去。』

三、巩固应用

1、算一算

在一次数学测验中,小芳得了98分,小强得了96分,小明和小兰都得91分。你能算出这四位同学的平均成绩吗?

2、辨一辨

(1)白沙县第一小学的老师平均年龄是38岁,那么王老师一定是38岁。

(2)白沙县第一小学全体同学向希望工程捐款,平均每人捐款3元。陈良同学不可能捐4元。

3、想一想:

星期天,小丽高高兴兴去学游泳。她碰到一个难题,原来游泳池的水平均深是126厘米,小丽身高134厘米,她在这个游泳池中学游泳会有危险吗?

□会 □不会 □可能会 □可能不会

师:平均水深只是一个代表数,他的实际水深并不知道,可能比126厘米高,可能比126厘米深,我们在对待实际问题时就应该根据实际情况分别对待。

[设计意图:深化了学生对“平均数”概念的理解,让学生体验了事件发生的可能性,提升了他们数学交流的能力。]

四、全课总结.

这节课,你有什么收获?

[设计意图:引导知识穿线,自己和大家共同分享自己的收获,对自己的学习进行自我评价。]

五、拓展延伸,深化提高

1、刚才我们利用平均数解决了这么多的问题,其实,生活中很多问题都需要用平均数的知识来解决。想一想,你能举出生活中的实例吗?看谁是有心人,试着说一说。

[设计意图:让学生用数学的眼光观察生活,让他们时刻体会原来数学在生活中无处不在。]

反思:平均数是统计中的一个重要概念,对于三年级的学生来说它也是一个非常抽象的概念。以往在教学平均数的概念时,教师往往把教学重点放在平均数的求法上。新教材更重视让学生理解平均数的意义。基于这一认识,我在设计中突出了让学生在具体情境中体会为什么要学习习近平均数,注重引导学生在故事中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决问题,了解它的价值。这节课我注重了以下几个方面:

一、创设情境,沟通数学与生活的联系

通过故事引导学生展开交流、思考。让学生感受到数学就在我们身边,从而深刻认识到数学的价值与魅力。在学生的讨论中,感受平均数是实际生活的需要,产生学习“平均数”的需求。

二、探究学习,理解平均数意义和归纳求平均数的方法

分桃子活动从多方面向学生提供充分从事数学活动的机会,让每一位学生主动从事数学活动,让学生自己探索出求平均数的方法。一种是先合再分,一种是移多补少。由于生活经验和知识基础,学生中有一部分已经知道用移多补少的方法找出平均数;还有一部分数感较强的学生,能够根据提供的一组数据感觉出平均数大概是多少;而用总数除以份数得到平均数的计算,也不难,学生肯定会有这种思维。因此,在教学过程中,我让学生自主探索,找到求平均数的方法,再小组合作学习,互相将自己探索的方法交流,达到共识。学生虽然求出了平均数,但概念也是非常模糊的,平均数”的概念比较抽象,很多人对平均数的含义不理解。移多补少对理解平均数的意义很有帮助,让学生在移多补少中建立平均数的表象,通过学生移一移、说一说,教师直观板书,从感官上理解平均数的由来,理解平均数的意义

三、练习有坡度,让不同层次的学生得到发展

练习在学生的数学学习过程中是必须的,但新课程的背景下,练习也要注入新的内涵,在进行基本训练的同时,努力让不同层次的学生得到发展。第一个层次是巩固新知求平均数,通过先估计再验证的方法使学生感知平均数的区间,从中渗透估算的数学思想和方法;第二个层次是通过计算4个人的平均分而只给出3个数据,目的让学生进一步感受计算平均数时,总数要与份数相对应;第三个层次是课件设计通天河横截面图,让学生直观辨别平均数是一个虚拟数。

四、拓展延伸,让数学回归生活

课堂小结时,给教师表现打分及计算平均分再次强化了本节课的知识;体现了平均数在生活中的实际应用 , 又得到了这节课的真实信息的反馈;作业的布置是对课堂的拓展延伸 , 进一步激发学生继续探究生活中的平均数的兴趣。

五、不足与遗憾之处

一是在学生合作交流的细节上还要落到实处。教学中在小组合作、同桌讨论之前缺少足够的独立思考的时间,学生在小组合作中参与的程度还不完全均衡。这就需要我们教师在今后教学中要对小组合作给予必要的组织和引导,面向全体,关注个别差异,注重组际之间的评价,把合作学习的每一个细节落到实处,这样才能实现学生间的协调互助、共同发展;二是教师对课堂中的生成问题处理不够灵活。教学中我们应顺应学生的认知需求,因势利导,让我们的教学富有灵性;三是教育要以促进人的发展为本,本节课中缺少对学生润物细无声的人文感染,要加强数学与生活的紧密联系,注重对学生的人文思想教育 。

平均数教学设计11

教学内容:

数学书第90页例1、91页例2。

学习目标:

1、使学生理解平均数的意义,初步学会简单的平均数的方法。

2、理解平均数在统计学上的意义。

3、培养应用所学知识合理、灵活解决简单的实际问题。

教学重难点:

1、使学生理解平均数的.意义,初步学会简单的平均数的方法。

2、培养应用所学知识合理、灵活解决简单的实际问题。

教学过程:

一、游戏引入

男生3人,女生4人,每人10秒拍球,那一组拍的总数多哪组就获胜。女生队拍的多。老师宣布女生队获胜。男生感到不公平,该怎么比公平?那么平均数是

一个什么样的数,怎么求平均数?这就是我们这节课所要学习的内容。

二、探索新知,解决问题

1、学习例1

泉水瓶,做环保小卫士,请同学们仔细观察统计图。(出示课件)

自探提示:

(1)从图中你可以获得哪些信息?(小红比小兰多1个,小明比小亮多2个)

(2)从图中你能看出平均每人收集多少个吗?是怎样看出来的?(移多补少)

(3)你会列式计算出平均每人收集多少个吗?必须先求出什么?请试着解答。(总个数)

(5)你觉得怎样求平均数?(列式计算)

思考:在例1中,我们求出平均每个人收集13个瓶子,是表示他们4人中某一个人实际收集13个瓶子吗?每个人实际收集的瓶子数和平均数13有什么关系?

2、练习:

小明身高135厘米,河中平均水深110厘米,小明会遇到危险吗?

3、学习例2:观看两队的身高记录

(1)先看欢乐队的身高记录

列式计算,求欢乐队的平均身高;

(2)观看开心队的身高记录

列式计算,求开心队的平均身高;

(3)比较两队的平均身高;

(4)总结:平均数能较好地反映一组数据的总体情况。

4、练习:(选择)

(1)三(1)班学生植树,第一组种18棵,第二组种20棵,第三组种25棵。平均每组种几棵?

A、20棵 B、21棵 C、19棵

(2)玩具店卖玩具车,第一天卖54辆,第二天上午卖23辆,下午卖25辆。平均每天卖多少辆?正确列式是:

A、(54+23+25)÷3 B、(54+23+25)÷2

三、实践应用

下图是一个平均水深是100厘米的水池,小明的身高120厘米,小明在里面游泳有危险吗? 天气越来越热了,同学们一定要注意安全,不要到池塘里去游泳。

四、小结收获

这节课你有什么收获?

五、布置作业

请完成数学书练习十一的内容。

板 书:

平均 数

小红 小兰 小亮 小明——移多补少

( 14 + 12 + 11 + 15 )÷4 = 13(个)

↓ ↓ ↓

总 数 总人数平均数

好处:平均数能较好地反映一组数据的总体情况。

平均数教学设计12

以往对于平均数的概念引入,比较典型的是组织两组人数不等的比赛,在学生初步体会到比总数不公平的前提下,顺利过渡到比平均数的环节上来。而张齐华老师的`“平均数”一课,从比投篮技术的情境引入:首先出场的是小强,他1分钟投中5个球,可是他对这一成绩似乎并不满意,觉得好像没有发挥出自己的真实水平,想再投两次。如果你是张老师,会同意他的要求吗?这样使学时体会到由于随机误差的存在而使得一次投球的成绩很难代表小强的真实水平,应该再给他两次机会。小强又投了两次,很巧的是后两次投篮成绩都是5个,显然是张老师精心设计的,使学生意识到用5来表示小强1分钟投中的个数最合适,避免了学生不会计算平均数的尴尬。接着小林出场,小林第一次只投中了3个球,“如果你是小林,会就这样结束吗?”从而自然引出第二组数据:3个、5个、4个。可是也引出了麻烦:三次成绩各不相同。这一回,又该怎么办?在学生思维的碰撞中,发现也用5来表示小林的成绩显然对小强来说是不公平的,学生凭直觉认为4最能代表小林1分钟的成绩,这样平均数的意义悄悄地被学生自己发现了。

张老师精巧的设计,再加上他灵活、智慧地处理生成,是课堂充满生机与活力,使我受益颇多。

平均数教学设计13

教学内容:人教版四年级下第90—91页例1、例2及相关内容。

教学目标:

1、使学生理解平均数的含义,知道平均数的求法。

2、了解平均数在统计学上的意义。

3、学习解决生活中有关平均数的问题,掌握应用数学知识解决问题的能力。

教学重点:理解平均数的意义,掌握平均数的方法。

教学难点:理解平均数的意义。

教、学具准备:课件、题卡、磁扣等。

一、导入

同学们,你们喜欢做游戏吧?我们班级的同学也特别喜欢搬运玻璃球的游戏。今天老师带你们看一场30秒的运球比赛,不过看比赛有个任务,请第一、二、三组的同学分别为女1、2、3号选手计数,第四、五、六组同学分别为男1、2、3号选手计数。听清楚了吗?请看大屏幕。

二、讲授新知

1、探究平均数的方法

师:紧张的比赛结束了,请小组长统计一下选手的成绩。我们用1个磁扣表示运了1个球,请组长们汇报运球数,把运球的个数贴到黑板上。(说一个贴一个)

师:大家看,他们每人各运了几个球?

师:请同学们观察,如果比较两组同学的成绩,你认为哪组成绩好?为什么?

生:男生成绩好。女生总数12,男生总数15。

师:对,我们比较总数,可以看出男生队成绩更好。

师:大家能不能再分别找出一个数能代表每一组的平均水平,让他们比一比,还很公平。

生:用3或者2等表示,教师要抓住问其他同学,用3代表这一组每个人的成绩可不可以。(2号7个,用3不合适)

生:4.

师:用4表示可以吗?

生:可以。

师:男生队用几表示呢?

生:5.

师:那么请大家借助手中题卡,小组合作,画一画,写一写。用什么方法得到4或者5的。想一想,为什么用这个4或5可以代表每组的水平?

生:小组合作。

师:哪个小组愿意派代表汇报一下?(只出示女生的)

生:女生队2号最多,给1号2个,给3号1个。

师:结果怎样呢?

生:让他们变得同样多。

师:谁还想说说你们的方法。(两种移多补少画法),把两种画法放在一起,他们都是把多的补给少的,然后使他们变得同样多。画一条虚线。想法都一样,只是表现方式不同而已。

师:大家听清楚了吗?谁愿意到黑板上摆一摆?

生:移多补少演示。

师:大家同意吗?

师小结:在总数不变的前提下,我们把多的匀给少的,最终让它们变得同样多,(手笔画这黑板磁扣这)数学上把这叫做移多补少(板书)。通过移多补少得到的(箭头)同样多的数(板书同样多)(向上箭头),就是这组数据的平均数。(板书)今天我们就来学习习近平均数的知识。那么2、7、3这组数据的平均数就是4。

师:你们用移多补少的方法表示出男生队的平均成绩吗?

生:到前面来演示。

师:同意吗?(再移回来)同学们,除了用移多补少的方法表示出平均数,还有其他的方法吗?

生:列算式。学生到黑板上演示。

(4+5+6)÷3

=15÷3

=5(个)

师:你是怎么想的?(写的同学说说自己的.想法)

生:用男生队运球的总数除以3,就是每人平均运5个球。

师:听明白了吗?括号里的式子表示?除以三呢?结果5是?

师小结:我们先求总数,再除以三个人,也可以使这组数据变得同样多,这种方法就是合并平分。得到同样多的数,就是这组数据的平均数,它也是求平均数的一种方法。

师:你能用合并平分的方法,求出女生队的平均数吗?

生:汇报

师:现在我们来说一说哪一个队成绩更好呢?

生:男生队

师小结:比总数女生12,男生15。比平均数女生4,男生5。比总数和平均数都是男生胜,看来在人数相等的情况下,比总数比平均数都很公平。

2、平均数的作用

师:马老师看同学们玩得特别开心,也想玩一玩,我运了4个球,我看女生成绩少,就把这4个球加给女生了(操作,老师 4个)这回女生总数由12变成了15,反超了男生,我宣布了此次比赛女生获胜?我这个裁判公平吧。

生:公平,再观察一下,他们为什么不同意。

不公平,人数不同。

师:大家同意吗?人数不同的情况下,比总数不合理,那我们就比平均数吧!你们比一比,谁的平均数多呢?

生:4.

师:你们怎么这么快就知道了呢?

师:比较平均数哪一个对成绩更好呢?还是男生队。小结:在人数相同的情况下,我们比较总数和平均数。人数不相同,我们比较总数就不够公平了,比较平均数比较公平。

师:看来老师加入也没改变女生队输了这个结果,假如老师运了8个球(贴),这回女生队的平均数是几了呢?(5)

师:打平了。假如想让女生队的平均成绩是6,老师至少需要运几个玻璃球呢?

生:12个。

师小结:女生队其他人运球没变,随着老师运球数的增加,这组的平均数变大,所以说平均数随整组数据每一个数变化而变化。

3、平均数的性质

师:请大家观察女生队的成绩

我们得出来的平均数4是1号的实际运球数吗?是2、3号?(不是)

平均数4和这组数据的每一个数比较一下。(具体点)你发现了什么?

生:4比7少3个,比2多2个,比3多1个。

师:所以平均数4在7和2之间,也就是平均数在最大数和最小数之间。

师:我们再来看看男生队平均成绩,是不是也有这个规律?平均数5是每位选手实际运球的数量吗?

生:不是

师:平均数5和男生队每个人实际运球数比较一下。

生:平均数5和2号选手实际运球数一样多。

师:那么这个5和2号的成绩5表示的意义一样吗?

生:不一样。一个是2号的成绩,表示他在比赛中运了5个,代表自己,一个是一组的平均水平。

师小结:我们用平均数和每个数据进行比较,在数据不等的前提下,发现平均数介于最大数和最小数之间,也可能在数值上和某个数相等。例用这个规律,我们就可以在计算平均数时,先估计平均数的大小范围,或者检验平均数是否合理。

习题:小强在20秒时间内拍球4次,分别是24下、27下、28下、29下。1、请你估一估小强拍球的平均成绩,可能是多少下?2、动笔算一下,平均成绩是多少下(27下)两张幻灯片。

师:同学们都是用哪种方法算平均成绩的?(合并平分)一般情况下,我们计算平均数时经常用合并平分的方法。

师:其实平均数在我们生活中无处不在,你知道哪些平均数呢?

生汇报:

师:对,我们经常接触的有平均身高,平均成绩,平均时间,平均气温等。早在三千年前,我国《周易》已产生了平均数的思想:

1:统计平均数就是对研究对象的某数量标志的变量,减有余而补不足所求得的一般水平。

2:计算统计平均数的作用,在于衡量事物要均等。

所以说平均数很重要,我们可以用平均数解决生活中的很多问题。

三、习题

1、课件出示“小小”冷饮店习题。

2、水深。

四、全课总结同学们,这节课我们认识了平均数,学习了平均数的计算方法。那么,让我们在以后的学习中细细去体会吧。

板书设计

平均数

合并平分 移

平均数教学设计14

教学过程:

一、理解意义

谈话:上一节课我们一起认识了平均数,也知道了如何求平均数,请大家先想一想,你是怎样理解平均数这个知识的?

【通过发表自己的理解和举例说明,使学生明白平均数反映的是一组数据的整体水平。】

二、掌握方法

1.创设情境,探讨策略。

(1)准备盛着水的4个同样带有刻度的杯子,每个杯子里分别装有6厘米、2厘米、5厘米、3厘米刻度的水,还有一个大杯子。

(2)如果把四个杯子中的水倒得同样多你有哪些方法?

2.小组合作,研究方法。(教师巡视)

3.全班交流,尝试解决。

(1)移多补少。从6厘米高的水杯中倒2厘米到2厘米高的水杯中,从5厘米高的水杯中倒1厘米到3厘米高的水杯中,这样每个杯子就有4厘米高的水了。

(2)把四个杯子中的水倒在大杯子中,再平均倒在四个杯子里。

(3)列算式解答:(6+3+2+5)÷4

4.归纳小结,优化方法。

师:在日常生产和生活中,一般用计算的方法解决平均数的问题。

总数量÷ 总份数=平均数

问:根据这个公式,你还能知道什么?

【通过小组合作交流,移多补少,加深对平均数的'理解。通过归纳总结,优化算法,掌握平均数的求法。】

三、学习新知:

下面是四年级组同学的仰卧起坐的成绩,你能算出他们的平均成绩吗:

姓名张平李东王强刘明林海黄玉个数203535243531

你计划怎样来计算:

师提示:先算什么?再算什么?

生一:20+35+35+24+35+31=180(次)

180÷6=30(次)

生二:35×3+20+24+31=180(次)

180÷6=30(次)

小组讨论两种方法的相同点和不同点

相同点:都是先算出全队的总成绩再除以全队的人数即:总数量÷总份数=平均数

不同点:第一种算法是将每一项累加,再除以人数;而第二种算法是用乘法计算出相同的身高数并相加,再除以总人数。大家更喜欢哪一种呢?能谈一谈吗?

四、实践运用

1.合情推测

四(2)班第一小组同学身高情况统计表

师问:A、明明算了他们的平均身高是143厘米,不计算,你能不能知道他算得对不对?

(让学生明白:平均数的大小应该在最大的数和最小的数之间,这里最大的数就是142,平均数不可能超过142,所以平均身高143厘米是错误的。)

B、那么我们应该怎么求他们的平均数呢?

C、指名列式,老师告诉答案为138厘米。由此,你能不能猜测一下,四(2)班全班同学的平均身高大约是多少?

D、你想了解我国四年级同学的平均身高吗?

出示:根据健康网的报道,全国四年级小学生的平均身高约是139厘米。看到全国四年级小学生的平均身高,结合自己的身高,你有什么想法?

2.师生共同解决自主练习的6、7题。

【通过实例让学生明白平均数的大小应该在最大的数和最小的数之间。是反应整体的平均水平。】

五、课堂小结

谈话:通过本节课的学习,你都有哪些收获?

平均数教学设计15

教学内容:《义务教育课程标准实验教科书数学》三年级下册P92-94页

教学目标:

1、在具体的问题情境中,感受求平均数是解决一些实际问题的需要。在操作和思考中体会平均数的意义。学会计算简单数据的平均数(结果是整数)。

2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

3、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,建立学习数学的信心。

教学重点:平均数的意义、计算简单数据的平均数

教学难点:平均数的意义

教学过程:

一、创设情境,引入问题

1、前不久,我们漆桥中心小学三年级同学举行了套圈比赛,每人套15个。老师统计了男、女生套中的个数,并制成了统计表。

2、男生套圈成绩统计表

姓名李小钢张明王宇陈晓杰

个数4896

女生套圈成绩统计表

姓名吴燕刘晓娟史敏敏孙云

个数8645

师问:男生几人参加了比赛?女生几人参加了比赛?你觉得怎样才能比出谁赢了呢?学生观察表后回答:

男生一共套了多少个?4+8+9+6=27(个)

女生一共套了多少个?8+6+4+5=23(个)

结果是男生胜了。

3、师:哎呀!男生赢了,女生输了。为了增强实力,女生再派1名代表参加比赛,和实力强大的男生进行了第二次的比赛。老师统计了第二次的比赛情况制成了统计图,我们看男、女生分别套了多少个?(板书:6、9、7、6)(10、4、7、5、4)

请你算一算这一次男、女生的总成绩分别是多少?

6+9+7+6=28(个)10+4+7+5+4=30(个)

这次比较总数,结果是女生获胜!

4、对这样的比法,你有什么想法?为什么?(人数不一样,不公平)为什么不公平呢?第一次比赛我们不是比较总数吗?

5、看来在人数不相等的'情况下,比总数行不行?

二、自主探索,解决问题

那么怎样比才公平呢?同桌交流。(分别算出男、女平均每人套中的个数)

我们怎样才能知道男生平均每人套多少个圈呢?先想,想好后同桌交流。

想出几种方法?(必要时可以写写)

6+9+7+6=28(个)28÷4=7(个)7就是6、9、7、6这组的平均数。板书:7

先求的是什么?再求的是什么?除了这种方法还有什么方法?在图上移(移多补少)板书

那么你能算出女生平均每人套中了多少个?

学生计算后汇报,师板书:10+4+7+5+4=30(个)30÷5=6(个)

6就是10、4、7、5、4这组数的什么数?(平均数)

求女生平均每人套中几个圈要除以5,而求男生时为什么除以4?

5、现在你知道男生胜了还是女生胜了吗?

男生平均每人套中的个数比女生多,表示每个男生套中的都比女生多吗?你能举举例吗?

这个平均数和平均分不一样,平均数比较好的表现了这一队套圈的整体水平,并不表示每一个人真的套了7个。

6、(1)我们算了2组数的平均数了,现在同学们来观察平均数和原来一组数,你发现了什么?先观察平均数7和原来每个男生套中的个数,你发现了什么?

a、每个男生套中的个数有比平均数多的,有比平均数少的,还有一样的三种情况。

b、平均数在最大的数和最小的数之间。

(2)小结:平均数的大小在最大的数和最小的数之间。一组数的平均数是我们计算出的结果,表示的是这组数的平均水平,并不一定这一组数都等于平均数,有些数可能比平均数大,有些数可能比平均数小,还有些数和平均数一样。

三、巩固练习,拓展应用

1、今天的数学课上,我发现了有3位同学听的特别认真,老师讲课他们听得很认真,同学发言他们也听得很认真。(三人上台领奖品,老师分别奖励他们1支、3支、5支铅笔)

师:请上台的三个小朋友数一数,手里有几只铅笔,然后大声的告诉大家。你们说老师这样奖励公平吗?怎样才公平吗?那么你能用小棒代替把它们移一移。

师:在移之前想好了怎样移?同桌的先说,再移,台上的3个小朋友互相商量一下,再移。

学生移好后,说说移的过程。

师:你还有什么方法求出来吗?

学生计算,指名说出算式,师板书。

我们知道了平均数的特点。谁来说一说,求平均数一般可以用哪些方法?你喜欢用哪种方法?

2、估一估。为了布置教室,小丽买来一些丝带,帮小丽估一估这三条丝带平均长度是多少?

同学们先估一估,平均长度在()㎝和()㎝之间,为什么?平均数在大数和小数之间。

再算一算,写在自备本上。

你是怎么算的?都是先求和再平均分吗?为什么这个题目你不用移多补少的方法?

我们要根据实际情况来选择合适的方法。数量少,相差不大,用移多补少简单;数量多,相差大,用先和再平均分。

3、平均数是分析数据的一种重要方法,在日常生活中,特别是在工农业生产中经常要用到。如平均产量、平均速度、平均成绩、平均身高等等。

4、辨一辨

(1)漆桥中心小学的老师平均年龄是38岁,那么诸老师一定是38岁。

(2)漆桥中心小学全体同学向希望工程捐款,平均每人捐款3元。马倩同学不可能捐4元。

5、说一说

(1)李强是学校篮球队队员,他身高155厘米,可能吗?

(2)学校篮球队可能有身高超过160厘米的队员吗?

平均身高是怎么算出来,把篮球队员一共的身高除以篮球队员的人数。

6、想一想:出示游泳图,平均水深110厘米,小明身高145厘米,下去游泳有危险吗?

教学设计

平均数

(第一课时)

一、内容和内容解析

本节教学内容源于人教版八年级下册“20.1.1平均数”第一课时.统计活动的几个环节中,数据的分析是在对数据的收集、整理基础之上进行的,是统计活动中最重要的环节.平均数是最常用、最基本的数据分析方法,反映一组数据的“平均水平”,并与中位数、众数相结合,通过对数据集中趋势的描述,体现数据向其中心值靠拢或聚集的程度,因此平均数(尤其是加权平均数)是统计中的一个重要概念.本节着重研究加权平均数,“权”的重要性在于它反映的是数据的相对“重要程度”.尽管学生在以前的学习中已初步了解了平均数的意义,并会计算权数相等情况下的算术平均数,但对加权平均数的意义以及“权”的作用理解仍将非常困难,教学中应尽量列举典型的、贴近学生生活和具有现实意义的生活例子,在对实际问题的分析和解决中加深对“权”的理解和体会,渗透平均数和“权”的统计思想,为更好地进行数据的描述与分析,为实现后继统计知识的学习目标──建立统计观念、突出统计思想奠定基础.基于上述分析,确定本节教学重点是:

以具体问题为载体,在实际问题情景中理解加权平均数的意义和作用,学会运用加权平均数解决实际问题.二、目标和目标解析

1.通过本节教与学的活动,使学生了解平均数(加权平均数)的统计意义,理解“权”的意义和作用,学会计算加权平均数.教学中,以具体实例研究为载体,了解平均数可以描述一组数据的“平均水平”,理解“权”反映数据的相对“重要程度”,体会“权”的作用,使学生更全面的理解加权平均数,正确运用加权平均数解决实际问题.2.通过对加权平均数的学习,经历运用数据描述信息,作出推断的过程,体验统计与生活的联系,形成和发展统计观念,体会权的统计思想,养成用数据说话的习惯和实事求是的科学态度.3.通过具体问题的解决,培养学生严谨的统计精神,思维的深刻性.通过设计“我来决策”等教学活动,让学生学会从不同的侧面有侧重地对评价对象进行全面的客观的考察和评价,培养科学严谨的数学精神和思维的深刻性.三、教学问题诊断分析

1.教师教学可能存在的问题:(1)就本论本,不能很恰当地列举典型的、贴近学生生活的现实例子,以具体的实际问题为载体,创设问题情景,揭示概念;(2)不能设计有效的数学问题,使学生通过有思维含量的数学活动,引导学生对“权”的意义和作用有深刻的理解;(3)过分强调知识的获得,忽略了统计思想的揭示和统计观念的建立;(4)对前两个学段中学生已经具有的相关平均数的知识经验了解不足,致使引入的问题太过简单或难度要求过高,导致学生的学习积极性不高.2.学生学习中可能出现的问题:(1)由于生活经验不足,同时受认知水平的影响,对抽象的“权”的意义和作用的理解会有所困难;(2)尽管在第一、第二学段已经学习了统计的简单知识,但对统计的意义和统计思想的理解尚处在最粗浅的认识层面,加之对“权”理解的困难,所以可能会感到这部分知识的学习比较抽象,缺少学习的激情.鉴于上述分析,确定本节的教学难点是:列举典型的、贴近学生生活的、和具有现实意义的生活例子,通过设计有效的、有思维含量的数学问题,激活学生的数学思维,深入理解数据的权的意义和作用.四、教学支持条件分析

在教学中要实现使学生理解加权平均数的意义和“权”的作用,恰当利用PPT的演示功能、Excel的数据处理功能,以及几何画板的动画和计算功能,通过设计简单的程序,直观、形象地展现“权”的意义和作用,感受过程的真实性,增强学生的参与程度.五、教学过程设计

活动一:创设情景,建立模型,揭示概念

问题1 以前的学习,使我们对平均数由有了一些了解,知道平均数可以作为一组数据的代表,描述数据的“平均水平”,本节课我们将在实际问题情境中,进一步体会探讨平均数的统计意义.在一次数学考试中,七年级1班和2班的考生人数和平均成绩如下表:

(1)谈谈表格中“86分”所反映的实际意义.(2)求这两个班的平均成绩,并和同伴交流你的计算方法.预设:问题(2)可能会出现下面两种解法:学生对比、分析、讨论,初步理解权的意义.引导

设计目的:问题(1)中,86分是七年级1班46名学生的数学成绩“取长补短”均衡的结果,反映该班46名学生数学成绩的一般“平均水平”,设计的目的是引导并体会平均数的统计意义.问题(2)中,以“任务布置──发现问题──生成问题──研究问题──解决问题”为教学程序,经历操作、观察、对比、分析、交流等探索活动,初步了解“权”的意义,解释计算加权平均数的理论依据,为概念的引入作铺垫.活动方式:以实际问题为研究载体,以自主参与、交流合作为教学形式,以多媒体动画演示辅助为教学手段,引导学生积极参与数学探究活动,发展数学思维.本活动中,教师应关注学生:①参与数学活动的主动性和数学思维的深刻性;②实际问题中体验平均数的统计意义和初步了解权的意义;③体会算术平均数与加权平均数的区别与联系.学生归纳:1.平均数反映的是数据的平均水平,;2.“权”反映了数据的相对“重要程度”;3.算术平均数与加权平均数的本质一致的,算术平均数是各数据的权为1的加权平均数,当数据的权相同时,加权平均数与算术平均数是相同的;当数据的权数不同时,加权平均数能更好地反映数据的平均水平,应当计算加权平均数.问题2 某市三个郊县的人数与人均耕地面积如下表:

求这个市三个郊县的人均耕地面积(精确到0.01公顷).追问1:用算术平均数的方法求三郊县的人均耕地面积合理吗?为什么?

追问2: 0.15、0.21和0.18这三个数中,那个数对总人均耕地面积的影响更大一些,你是怎么看出来的?这三个数的权分别是什么?你如何计算该市三个郊县的人均耕地面积的?

设计目的:以求三郊县人均耕地面积为研究载体,进一步引导学生认识加权平均数,渗透平均数的统计意义,理解权的意义以及为什么要采用加权平均数;在具体问题情景中,逐步建立并抽象出加权平均数这一数学模型;通过两种不同计算方法的比较,进一步体会算术平均数和加权平均数的区别与联系.活动方式:独立完成本问题任务,认真思考两个追问问题,交流看法和意见,教师做必要的指导或点拨,加深对权的意义的理解和用加权平均数计算的合理性;建立数学模型,抽象出加权平均数的计算方法.学生归纳:

(1)上例中15,7,10分别是0.15、0.21、0.18三个数据的权,平均数0.17称为三个数0.15、0.21、0.18的加权平均数,反映三个郊县人均耕地面积的平均水平.活动二:实例分析,指导应用,体验概念

1.统计某一植树小组所有同学的植树情况,其中有5人各植树8棵,有3人各植树7棵,有2人各植树10棵,求平均每人植树的棵数.思考:各项的权分别是多少?如何计算植树的平均棵树?

2.一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如下:

如果公司想招一名口语能力强的翻译,听、说、读、写成绩按3:3:2:2 的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看应该录取谁?

问题3 招聘口语能力强的翻译时,公司侧重于哪些方面的成绩?给出的比值是否能体现这些方面更加“重要”?听、说、读、写四种成绩的权分别是多少?数据对应的权表示的含义是什么?

设计意图:在变式中理解权的含义.问题4 如果现在要招聘一名笔译翻译,你能给各数据制定一个合适的权吗?制定的依据是什么?最后计算的结果与你设想的一样吗?试一试,比较你与其他同学设计的不同结果,谈谈你对数据权的作用的新认识.设计意图:在系统中整体理解数据、权和平均数.通过解决实际问题,加深对权的作用的理解,探究权对平均数的影响.此处,借助于Excel的数据处理功能,给数据赋以不同的权,展示出现的不同计算结果,便于学生观察分析,从而更好地体现权的“掌控”作用.问题5 若听、说、读、写的成绩分别按20%、20%、30%、30%的比例计入总成绩,如何计算应试者的平均成绩(百分制)?与(2)相比,数据权的表现形式发生了怎样的变化?

设计意图:进一步体会数据权的不同表现形式.(自主合作,共同比较,交流分析,体会权的“掌控”能力.)

活动三:拓展创新,我来决策,感悟概念

一家广告公司欲招聘广告策划人员一名,对A、B、C三名候选人进行了三项素质测试,他们的各项测试成绩如下表所示:

下载平均数教学设计word格式文档
下载平均数教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    平均数 教学设计

    平均数 教学设计 教学目标:1.知道平均数的含义和求平均数的方法 2.加深对平均数的理解 3.运用平均数知识,解决生活中有关平均数的问题,增强数学应用知识 教学重点:1.掌握求平均数......

    《平均数》教学设计

    《平均数》教学设计 唐县第四小学马金峰 教学内容 :教材第90-91页例1、例2及相关内容 教学目标 : 1、使学生理解平均数的含义,初步学会简单的求平均数的方法,2、了解平均数在统......

    “平均数”教学设计

    “平均数”教学设计 【教学内容】 教材第90页例1、第92页“做一做”第1题和第93页练习二十二的1-3题。 【教学目标】 1.结合具体情境,在动手操作、观察、讨论等活动中理解平均......

    《平均数》教学设计

    《平均数》教学设计 教学内容: 青岛版《义务教育课程标准实验教科书》四年级上册第八单元统计的第一个信息窗。 教学目标: 1、结合生活实例,理解平均数的意义,学会求“平均数”......

    《平均数》教学设计

    小学数学精品教案 《平均数》教学设计 学习内容:人教版小学数学教材第90~91页的例1、例2及相关内容。 学习目标: 1.使学生理解平均数的含义,知道平均数的求法。 2.了解平均数在统......

    平均数教学设计

    平均数 教学目标: 1、在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要 并进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数。 2、在运用平均数的知......

    《平均数》教学设计

    《平均数》教学设计 执教:戚勤莲 教学内容 : 人教版四年级数学下册第八单元教材第90~91页的内容及做一做 教学目标 : 1、使学生理解平均数的含义,初步学会简单的求平均数的方法,......

    平均数教学设计

    《求平均数》教案 上街区新建小学 孙孟玲 一、教学内容: 人教版数学三年级下册42、43页内容。 二、课程目标: 三、内容分析: “平均数”作为统计学中的一个重要概念从属于“......