第一篇:数字电子时钟开题报告
近年来,电子技术获得了飞速的发展,在其推动下,单片机的应用正在不断深入,同时带动传统控制检测技术日益更新。在实时检测和自动控制的单片机应用系统中,单片机往往作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构软硬件结合,加以完善。本设计利用单片机及外围接口电路实现数字时钟的相应功能,并具有时间调整功能、闹钟功能和定时功能,并通过LED显示具体年、月、日、星期、时、分、秒。
一、课题任务与目的二、调研资料情况
时钟,自从它发明的那天起,就成为人类的朋友,但随着科技的飞速发展,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。人们对时间计量的精度要求也越来越高,应用越来越广。怎样让时钟更好地为人民服务,这就要求人们不断设计出新型时钟。现今,高精度的计时工具大多数都使用了石英晶体振荡器,由于电子钟,石英表,石英钟都采用了石英技术,因此走时精度高,稳定性好,使用方便,不需要经常调校,数字式电子钟用集成电路计时时,译码代替了机械式转动,用LED显示器代替指针显示进而显示时间,减小了计时误差。
目前,单片机正朝着高性能和多品种方向发展的趋势进一步向CMOS化、低能耗、小体积、大容量、高性能、低价格和外围电路内装化等几个方面发展。
单片机应用的重要意义还在于,它从根本上改变了传统的控制系统设计思想和设计方案。从前必须由模拟电路或数字电路实现的大部分功能,现在已能用单片机通过软件方法来实现了。这种软件代替硬件的控制技术也称为微控制技术,是传统控制技术的一次革命。
数字时钟在单片机模块里比较常见,数字时钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,因此得到了广泛的使用。
数字时钟是采用数字电路实现对时、分、秒、数字显示的计时装置,广泛用于个人家庭,车站,码头办公室等公共场所,成为人们日常生活中不可少的必需品,犹豫数字集成电路的发展和石英晶体振捣器的广泛使用,使得数字时钟的精度,远远超过老式钟表,钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动开启闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电器的自动启用等,所有这些,都是以钟表数字化为基础的。因此,研
究数字时钟及扩大其应用,有着非常现实的意义
参考文献:
[1] 林凌,李刚,丁茹,李小霞.新型单片机接口器件与技术[M].西安:西安电子科技大学出版社,2005年.[2] 高伟.AT89单片机原理及应用[M].北京:国防工业出版社,2008年.[3] 蔡朝阳.单片机控制实习与专题制作[M].北京:北京航空航天大学出版社,2006年.[4] 杨凌霄.微型计算机原理及应用[M].江苏:中国矿业大学出版社,2004年.[5] 胡学海.单片机原理及应用系统设计[M].北京:北京电子工业出版社,2005年.[6] 边春远,王志强.《MCS-51单片机应用开发实用子程序》人民邮电出版社
[7] 李朝青.《单片机原理及接口技术》第3版北京航空航天大学出版社
[8] 张毅坤,陈善久.单片微型计算机原理及应用.西安电子科技大学出版社,2002.[9] 张友德,赵志英,徐时亮.单片微机原理应用与实验.复旦大学出版社,2000.[10] 张毅刚,彭善元,董继承.单片机原理及应用.高等教育出版社,2003.
第二篇:数字电子时钟实验报告
华大计科学院
数字逻辑课程设计说明书
题目:
多功能数字钟
专业:
计算机科学与技术
班级:
网络工程1班
姓名:
刘群 学号:
1125111023
完成日期:
2013-9
一、设计题目与要求
设计题目:多功能数字钟 设计要求:
1.准确计时,以数字形式显示时、分、秒的时间。2.小时的计时可以为“12翻1”或“23翻0”的形式。
3.可以进行时、分、秒时间的校正。
二、设计原理及其框图 1.数字钟的构成
数字钟实际上是一个对标准频率1HZ)进行计数的计数电路。由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路。图 1 所示为数字钟的一般构成框图。
图1 数字电子时钟方案框图 ⑴多谐振荡器电路
多谐振荡器电路给数字钟提供一个频率1Hz 的信号,可保证数字钟的走时准确及稳定。⑵时间计数器电路
时间计数电路由秒个位和秒十位计数器、分个位和分十位计数器及时个位和时十位计数器电路构成。其中秒个位和秒十位计数器、分个位和分十位计数器为60 进制计数器。而根据设计要求,时个位和时十位计数器为24 进制计数器。⑶译码驱动电路
译码驱动电路将计数器输出的8421BCD 码转换为数码管需要的逻辑状态,并且为保证数码管正常工作提供足够的工作电流。⑷数码管
数码管通常有发光二极管(LED)数码管和液晶(LCD)数码管。本设计提供的为LED数码管。2.数字钟的工作原理 ⑴多谐振荡器电路
555 定时器与电阻R1、R2,电容C1、C2 构成一个多谐振荡器,利用电容的充放电来调节输出V0,产生矩形脉冲波作为时钟信号,因为是数字钟,所以应选择的电阻电容值使频率为1HZ。⑵时间计数单元
六片74LS90 芯片构成计数电路,按时间进制从右到左构成从低位向高位的进位电路,并通过译码显示。在六位LED 七段显示起上显示对应的数值。⑶校时电源电路
当重新接通电源或走时出现误差时都需要对时间进行校正。通常,校正时间的方法是:首先截断正常的计数通路,然后再进行人工出触发计数或将频率较高的方波信号加到需要校正的计数单元的输入端,校正好后,再转入正常计时状态即可。
根据要求,数字钟应具有分校正和时校正功能。因此,应截断分个位和时个位的直接计数通路,并采用正常计时信号与校正信号可以随时切换的电路接入其中。图8所示即为带有基本RS 触发器的校时电路。
三、元器件
1.实验中所需的器材 单刀双掷开关4 个.5V 电源.共阴七段数码管 6 个.74LS90D 集成块 6 块.74HC00D 6个 LM555CM 1个 电阻 6个 10uF 电容 2个
2.芯片内部结构及引脚图
图2 LM555CM集成块
图3 74LS90D集成块
五、各功能块电路图
1秒脉冲发生器主要由555 定时器和一些电阻电容构成,原理是利用555 定时器的特性,通过电容的充放电使VC 在高、低电平之间转换。其中555 定时器的高、低电平的门阀电压分别是2/3VCC 和1/3VCC电容器充电使VC 的电压大于2/3VCC 则VC 就为高电平,然
而由于反馈作用又会使电容放电。当VC 小于1/3VCC 时,VC 就为低电平。同样由于反馈作用又会使电容充电。通过555 定时器的这一性质我们就可以通过计算使他充放电的周期刚好为1S这样我们就会得到1HZ 的信号。其中555 定时器的一些功能对照后面目录。其中 555 定时器组成的脉冲发生器电路见附图4.图4 555 定时器组成的脉冲发生器
由于我们要得到1HZ 的信号,所以我们就可以通过555 定时器充放电一次所需的时间的公式。将那时间设为1S然后设定两个电阻计算出另外那个电容值.在设定电阻值时我们要记住将电阻值设为比较常用的那种电阻值,得到的电容值也尽可能让它是比较普遍使用 的。这样就避免了在实际组装过程中很难买到当初设定的那电阻和计算出 的电容值。
在这次设定中我们设定的电阻值RA=10KΩ,RB=62kΩ,C=10uF 经公式
f = 1.43 ÷【(RA + 2RB)×C 】 可得近似为1HZ。
2、利用一个LED 数码管一块74LS90D 连接成一个十进制计数器,电路在晶振的作用下数码管从0—9 显示见图5。
图5、利用2 片74LS90D 芯片连接成一个六十进制电路,电路可从0—59 显示。第一片74LS90D芯片构成10 进制计数器,第二片74LS90D 芯片构成6 进制计数器。74LS90D 具有异步清零功能。
在第一片74ls90 构成的十进制计数器中,当第十个脉冲来到时。此时他的四级触发器的状态为“1001”。这时他就会自动清零。同时给第二片74ls90 构成的6 进制计数器进一,第六个脉冲进位到来时,此时第二片74ls90 芯片的触发器的状态为“0110”,这时QB,QC 均为高电平。将QB 与RO1 相连,将Ro2 与Qc 相连,就会进行异步清零。如此循环就会构成60 进制计数器.见附图6.图6 十六进制电路
4、利用2 片74LS90D 芯片构成24 进制计数器。一片构成二进制计数器,一片构成四进制计数器。由于74LS90D 芯片清零是由两个清零端控制的,所以当第24 个脉冲到来时,第一片74lLS90D芯片的Qc 为高电平。第二片74LS90D 芯片的Qb 为高电平,让第一片74LS90D 芯片的Qc 与两片芯片的Ro1 相连.让第二片74ls90 芯片的QB 与两片芯片的Ro2 相连。当第24 个脉冲到来时就会进行异步清零。如此循环就会构成24 进制计数器。见附图7.图7 24进制电路
5、数字钟电路由于秒信号的精确性和稳定性不可能坐到完全准确无误,又因为电路中其他的原因数字钟总会产生走时误差的现象。所以,电路中就应该有校准时间功能的电路。在这次设计中教时电路用的是一个RS 基本触发器的单刀双置开关,每搬动开关一次产生一个计数脉冲.实现校时功能。见附图8。
7、利用两个六十进制和一个二十四进制连接成一个时、分、秒都会进位的电路总图。见附图8
图8 总电路图
六、心得体会
在这次设计中我们深深地体会到了理论跟实践的不同,理论学的再好不会动手那也只能是纸上谈兵。我们了解了集成电路芯片的型号命名规律,懂得了没有某种芯片时的替代方法,以及在网上查找电子电路资料的方法,掌握了各芯片的逻辑功能及使用方法,进一步熟悉了集成电路的引脚安排,掌握了数字钟的设计方法,明白了数字钟的组成原理以及工作原理。掌握了计数器的工作原理,以及计数器进制的组成方法和级联方法,实现了一次理论指导实践、理论向实践过渡的跨越,虽然期间遇到一些困难,但这些困难却增强了我们分析问题、解决问题的能力,使我们以后不仅只学习书本中的理论知识,而且知道学以致用,动过动手实践是我们对书本中的理论知识掌握地跟牢固、理解地跟深刻,这对我们今后的工作及学习有积极的影响。这次课程设计不仅再次复习了数字电子和模拟电子,而且让我对于芯片的使用更加了解。增加了我的动手操作能力,加深了对该软件的了解。这就是这次课程设计的成果,相信这些实际的操作经验会是我们以后的宝贵财富。
第三篇:数字电子时钟设计
(电子技术课程)
设计说明书
数字电子时钟
起止日期:
2016 年
11月23日 至
2016年 11月 27 日
学生姓名
班级 学号
成绩
指导教师(签字)
交通工程学院(部)2016年
11月
29日
数字电子钟
设计一个数字电子钟,具体要求:
1、以24小时为一个计数周期;具有“时”、“分”、“秒”数字数码管显示电路;
2、具有校时功能;
3、整点前10秒,数字钟会自动报时,以示提醒;
4、设计+5V直流电源。(设计220V输入,+5V输出)
5、启动电路。
6、用PROTEUS画出电路原理图仿真成功再用数字电子技术实验箱验证。;
设计步骤及内容:
一、首先对本次设计所需要用到的器件的引脚及功能进行详细的了解 1、555定时器
“1”脚为公共接地端GND;“8”脚为正电源电压VCC;“2”脚是触发端;“4”脚为复位输出端; “7”脚为放电端;“6”脚位阈值端;“5”脚为控制电压输入端;“3”脚是输出端。2、74LS163
CEP、CET:计数使能输入端,高电平有效;CLK:时钟脉冲,上升沿触发;
MR:清零端,低电平有效;LOAD:并行置数使能端,低电平有效;RCO:进位信号输出端; D[0:3]:并行二进制数据输入端;Q[3:0]:计数状态输出端。
二、实验步骤
1、连接555定时器,产生1Hz方波。
首先将555定时器按照如图所示的接法连接起来,并根据555定时器电容充放电时间的计算确定各元件的取值。
电容充电时间T=0.7(R1+R2)C1 为使555定时器输入1Hz的方波,经计算各元件的取值为 R1=43K,R2=51K,C1=10u F,C2=0.01u F。3脚作为时钟脉冲的输出连接到各个计数器的CLK。
2、时钟电路的连接
本次设计使用的是74LS163芯片,因为它是16进制计数器,所以需要在控制端加上适当的门电路使其构成十进制计数器,将计数器按照如图所示的方式连接起来。
a、秒各位
将输出端的Q3、Q1用与门(74LS08)连接起来并输入到清零端MR,其目的是为了构成十进制,当计数器计数到9时,与门U1打开,经过非门U1A输出低电平使得MR在下一个脉冲上升沿时清零。
b、秒十位
与秒各位不同的是,秒十位的使能端是由各位Q3、Q1相与的电平控制的,秒十位的进位的条件是当各位为9时,在下一个脉冲的上升沿来临时进位。秒十位的清零需要等到个位为9且十位为5时,U2与U3经过U4输出高电平再经过U3A输出低电平,是的MR在下一个脉冲上升沿是清零。
c、分个位
分各位的构成原理与秒个位相似,不同的是控制端上的门电路换成了与非门U4(为了使之后方便连接门电路),分个位的使能信号由U3输入,清零条件为分个位为9,秒为59时清零,清零信号由U5A输出的低电平提供。
d、分十位
分十位的构成原理与秒十位相似,使能信号由U4输出的高电平提供,清零条件为分为59,秒为59,清零信号由U7A输出的低电平提供。
e、时
时个位的使能信号由U7提供,时十位的使能信号由U9提供。时个位有两个清零信号,一个是当它自身为9时,等到下一个时钟脉冲的上升沿时清零,另一个是当十位为2,个位为3时,十位和个位同时清零。用与非门U12将个位Q2和十位Q1相连,再将两个清零信号相与,实现清零工作。
完整的时钟电路如下图所示
3、校准电路
校准电路连线图如图所示,当开关打在右边时,U14B关闭不工作,U14C送出一个高电平信 6
号,等到秒对分的进位信号来临时和进位信号通过U15A送出一个低电平,使得U15B打开,又因为U15B接入了分个位的使能端,所以相当于开关打在右边时校准电路成为分个位的使能信号进位信号;开关打在左边时,U14C关闭不工作,U14B送出一个高电平信号,然后与秒脉冲信号通过U14D送出一个低电平接入分个位的使能端,所以相当于开关打在左边时,分个位接收了一个秒脉冲信号,使得它能像秒钟一样计时并且能向十位进位,就相当于校准功能,当分钟跳到你想要的时间时把开关打到右边(此时时钟电路照常工作)从你调整好的时间继续计数,达到校准的目的。(时的校准电路与分的校准电路一样)
但是直接把校准电路这样连入时钟电路会出现一些问题,就是在校准的时候分会出现16进制,所以就需要在电路中加入反馈,将它控制到10进制,具体的反馈连接方式如图所示(不能接在MR端,不然会使电路出现问题)时钟电路与校准电路如图所示 将开关打到左边进行校准:
完成之后将开关打到右边继续计数:
4、报时电路
报时电路使用的是74HC30芯片,它是一个8输入与非门芯片,只有当所有输入都为1时输出为0,使得喇叭能够正常工作(喇叭一端接高电平一端接低电平),因为是整点报时,所以秒个位就不用接入芯片,只需在多余的两个引脚接入电源就可以实现在59分50秒到59秒的报时,具体接法如下图所示
整个可校准可报时的数字电路如图所示
三、心得体会
本次数字电子课程设计是我觉得收获非常大的一次实习,而这次课程设计给我们提供了一个应用自己所学知识来设计作品的平台。
在本次课程设计中,我更加熟悉Proteus软件的操作了,同时对74LS163、74LS161、74HC30、555等芯片加深了了解,和对它们的使用,对于数字、模拟电路的综合运用有了更深一步理解,为以后的电路分析和设计奠定了一定的基础。
本次课程设计很遗憾没能选择最有挑战性的课题来做,因为基础知识不够扎实,做数字电子时钟也是费了很大劲。
这次设计我主要觉得有两个难点:
一、从一开始没选择十进制计数器来做,所以使设计的电路看起来很复杂,并且进位需要考虑的很周全,越高位必要条件越多,所以用了许多门电路;
二、校准电路直接连入电路会产生十六进制,所以需要加反馈,在最开始不太理解反馈的意思,又去翻了数电书还问了老师很多次,接了很多遍才将反馈接出来。
但是最后成功了看着自己能把理论知识运用到实际,心里还是非常开心的,在做课题的这几天学会了很多,对仿真也产生了浓厚的兴趣,想自己试着在课余时间再做做几个课题。
第四篇:数字电子时钟课程设计2
数字电子时钟课程设计
题目:
数字电子时钟课程设计
目录
一、设计任务及设计要求…………………………………………(3)
二、设计方案论证
…………………………..………….(3)1.总体方案及框图 2.各部分论证
三、单元电路设计…………………………………………………(4)1.振荡器 ………………………………………………………(4)2.秒、分、时计数器…………………………………………(5)
3.显示译码/驱动器和LED七段数码显示管……………….(6)
4.分频器……………………………………………………(7)5.报时电路…………………………………………………(9)
四、总体电路设计及原理………………………………………(13)
五、元器件明细表………………………………………………(10)
六、心得体会……………………………………………………(11)
七、参考文献……………………………………………………(11)
一、设计任务及设计要求 1.设计任务
数字电子钟的逻辑电路 2.设计要求
(1)由晶振电路产生1HZ的校准秒信号。
(2)设计一个有“时”、“分”、“秒”(23小时59分59秒)显示切且具有校时、校分、校秒的功。
(3)整点报时功能。要求整点差10秒开始每隔1秒鸣叫一次,共五次,每次持续时间为一秒,前五次为500赫兹的声音,最后依次为1000赫兹的声音。(4)用中小规模集成电路组成电子钟,并在实验箱上进行组装和调试。(5)划出框图和逻辑电路图,写出设计,实验总结报告。
二、设计方案论证
数字钟原理框图如图1所示,电路一般包括以下几个部分:振荡器、分频器、译码显示电路、时分秒计数器、校时电路、报时电路。
图一
对于各个部分而言
数字钟计时的标准信号应该是频率相当稳定的1HZ秒脉冲,所以要设置标准时间源。
数字钟计时周期是24小时,因此必须设置24小时计数器,他应由模为60的秒计数器和分计数器及模为24的时计数器组成,秒、分、时由七段数码管显示。
为使数字钟走时与标准时间一致,校时电路是必不可少的。设计中采用开关控制校时直接用秒脉冲先后对“时”“分”“秒”计数器进行校时操作。
能进行整点报时。在从59分50秒开始,每隔2秒钟发出一次低音“嘟”的信号,连续五次,最后一次要求最高音“嘀”的信号,此信号结束即达到正点。
三、单元电路设计 1.各独立功能部件的设计(1)、振荡器 振荡器是计时器的核心,其作用是产生一个标准频率的脉冲信号振荡频率的精度和 稳定度决定了数字钟的质量。第一种方 案采用石英晶体振荡器,如图二。使用 振荡频率为32768HZ的石英晶体和反 向器构成一个稳定性极好、精度较高 的时间信号源。改变电容C可以
图 二
石英晶体振荡器
振荡器的频率进行微调,再通过一个反相器,输出32768HZ的方波将此方波的频率进行15次二分频后,在输出端刚好可得到频率为1HZ的脉冲信号。
第二种方案如图三采用集成电路555定时器与RC组成的多谐振荡器。输出的脉冲频率为fS=1/[(R1+2R2)C1ln2]=1KHZ,周期T=1/fS=1ms。若参数选择:R1=R2=10K欧姆,C1=47uF时,可以得到秒脉冲信号。
图三 方波信号发生器
附555定时器的功能表 输
出 输
出
阀值输入(v11)触发输入(v12)复位(RD)输出(VO)发电管T × × 0 0 导通
<2/3VCC <1/3VCC 1 1 截止 >2/3VCC >1/3VCC 1 0 导通 <2/3VCC >1/3VCC 1 不变 不变
(2)秒、分、时计数器
U1到U6 六个74LS161构成数字钟的秒、分、时计数器。
U1、U2共同构成秒计数器,它由两个74LS161构成六--十进制的计数器,如图四。U1作为秒个位十进制计数器,它的复位输入RD、和置位输入LD都接低电平,秒信号脉冲作为计数脉冲输入到CP1端,输出端C控制U2秒十位计数器的计数脉冲输入。Q1、Q2、Q3、Q4作为秒个位的计时值送至秒个位七段显示译码/驱动器。
U2作为秒十位六进制计数器,它的计数脉冲输入受到秒个位U1的控制,其计数器使能端EP、ET与U1的输出端C相连接。当U2计数器计到0011,即清零信号到复位输入端时,Q1、Q2、Q3、Q4输出的都是零。Q1、Q2、Q3、Q4作为秒十位的计时值送至秒十位七段显示译码/驱动器。U3、U4分别构成分个位十进制和分十位六进制计数器,如图四。U3、U4与U1、U2的连接方法相似。当计数器输出为01011001状态,U3(U1)、U4(U2)的LD端同时为“0”,使计数器立即返回到00000000状态。这样就构成了六十进制计数器。
图四 六十进制计数器
U5、U6共同构成时计数器,它由两个74LS161构成六十进制的计数器
如图五。U5作为时十位计数器,它的复位输入RD、和置位输入LD都接低电平,时信号脉冲作为计数脉冲输入到CP1端,输出端C控制U6秒十位计数器的计数脉冲输入。Q1、Q2、Q3、Q4作为秒个位的计时值送至秒个位七段显示译码/驱动器。当计数器输出为00100100状态,U5、U6的LD端同时为“0”,使计数器立即返回到00000000状态。这样就构成了二十四进制计数器。
U12
图五
二十四进制计数器
(3)显示译码/驱动器和LED七段数码显示管
六个74LS248集成电路构成数字钟的七段数码显示管显示译码/驱动器。74LS248七段显示译码器输出高电平有效,将8421BCD码译成七段(a、b、c、d、e、f、g)输出,用以直接驱动LED七段数码显示对应的十进制数。74LS248的显示功能:
显示功能见功能表的上半部分。[DCBA]是二进制码输入,要正确的执行显示功能,有关的功能端必须接合适的逻辑电平,这些功能端的作用随后介绍。对于0~9输入,[DCBA]相当BCD8421码。当超过9以后,译码器仍然有字型输出,具体见图六。当[DCBA]=1111时,数码管熄灭。实验时要在笔划段电极串联电阻,以保护LED数码管。表1 中规模显示译码器74LS248的功能表 十进制
或功能 输
入
输
出
D
C
B
A
a
b
c
d
e
f
g 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 H H H H H H H H H H H H H H H H H ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´
´ L
L L
L L
L L
L L
H L
L L
H H
L H
H L
L
L
H
L
H L
H
H
L L
H
H
H H H H H H H H H H H H H H H H H
H
H
H
H
H
H
L
L
H
H
L
L
L
L
H
H
L
H
H
L
H
H
H
H
H
L
L
H
L
H
H
L
L
H
H
H
L
H
H
L
H
H
H
L
H
H
H
H
H
H
H
H
L
L
L
L
图六 74LS248显示字型与输入的对应关系
如图七,六个LED七段数码显示管利用不同发光段组合的方式显示不同数码,都采用+5V电源作为每段发光二极管的驱动电源。需要发光的段为高电平,不发光的段为低电平。设计中采用共阴极数码管,每段发光二极管的正向降压,随显示光的颜色有所不同,通常约2V~3V,点亮电流在5~10mA。六个LED七段数码显示管分别显示秒个位、十位;分个位、十位;时个位、十位的计数十进制数
图七 显示译码/驱动器和数码显示管(4)分频器
分频器电路是由三个74LS90构成,如图八。74LS90是异步十进制计数器,它由一个一位二进制计数器和一个异步五进制计数器组成。将QA与CP2相连,计数脉冲由CP1端输入,输出由QA~QD引出,即得到十进制计数器。只有在复位输入R0(1)= R0(2)=0和置位输入S9(1)= S9(2)=0时,才能够在计数脉冲(下降沿)作用下实现二—五—十进制加计算。因为要对输入的脉冲进行三次10分频,三片74LS90的复位输入R0(1)、R0(2)和置位输入S9(1)、S9(2)都接低电平。振荡器输出的方波脉冲计数器作为U1的CP1端的输入时钟脉冲,U1的QD端的输出脉冲作为U2的CPA端的输入时钟脉冲,U2的QD端的输出脉冲作为U3的CP1端的输入时钟脉冲,U3的QD端的输出脉冲fO=fS/103¬¬¬¬¬¬¬=1HZ,即为秒信号方波脉冲,成为秒、分、时计数器的计数脉冲和时间校准信号。
将JK触发器的J、K端都接在高电平,Qn+1=JQn+KQn=Qn,每输入一个时钟脉冲后,触发器翻转一次,触发器处于计数状态。经过触发器的二分频,Q端输出为500HZ的脉冲作为低音脉冲。
经过U1、U2计数器的二次十分频,输出的脉冲频率为10HZ,作为秒校时脉冲。
图八
分频器 附74LS90二—五—十进制计数器功能图 复位输入 置位输入 输出
R0(1)R0(2)S9(1)S9(2)QA QB QC QD H H L × L L L L H H × L L L L L × × H H H L L H L × L × 计数 L × × L 计数 × L L × 计数 × L × L 计数
JK触发器的功能表 J K Qn Qn+1 说明 0 0 0 0 输出状态不变 1
0 1 0 0 输出状态与J端状态相同
0 0 0 1 输出状态与K端状态相同
1 1 0 1 每输入一个脉冲输出状态改变一次
0
(五)报时电路
整点报时电路要求在每个整点发出音响,因此需要对每个整点进行时间译码,以其输出驱动音响控制电路。如图九。
若要在每一整点发出五低音、一高音报时,需要对59分50秒到59分59秒进行时间译码。QD4~QA4是分十位输出,QD3~QA3是分个位输出,QD2~QA2是秒十位输出,QD1~QA1秒个位输出。在59分时,A= QC4 QA4 QD3 QA3=1;在50秒时,B= QC2 QA2=1;秒个位为0、2、4、6、8秒时,QA1=0,C= QA1=1;因而F1=ABC= QC4QA4 QD3 QA3 QC2 QA2 QA1仅在59分50秒、52秒、54秒、56秒、58秒时等于1,故可以用F1作低音的控制信号。当计数器每计到59分59秒时,A= QC4 QA4 QD3QA3=1,D= QC2 QA2 QD1 QA1=1,此时F2=AD=1。把F2接至JK触发器控制端J端,CP端加秒脉冲,则再计1秒到达整点时F3=1,故可用F3作一次高音控制信号。
用F1控制5次低音、F3控制高音,经音响放大器放大,每当“分”和“秒”计数器累计到59分50、52、54、56、58秒发出频率为500HZ的五次低音,0分0秒时发出频率为1000HZ的一次高音,每次音响的时间均为一秒钟,实现了整点报时的功能。
图九
整点报时电路
四、原理图(见最后一页)
五、元器件明细表
序号 元器件名称 型号规格 数量(个)备注 U0 集成定时器 5G555定时器 1 构成多谐振荡器 U1~U6 同步加法计数器 74161 6 构成模加法计数器 U7~U9 异步十进制计数器 74LS90 3 构成分频器
U10 七端显示译码器 74LS248 6 分别显示秒、分、时的数字 U11~U12 与非门 多输入与非门 2 U13 J-K触发器
C1、C2 电容C1=C2=104pf R1 R2 电阻R1 =2K、R2=5.1K R、R` 电阻R=1k,R`=47 U14 U20 门器件 非门 1
U15~U19 门器件 与门 6 多输入与门 U21~U23 门器件 与非门 3 多输入与非门 U24 触发器 J-K触发器 1 U25 晶体三级管 U26 喇叭实现闹铃
六、设计体会
在整个课程设计完后,总的感觉是:有收获。以前上课都是上一些最基本的东西,而现在却可以将以前学的东西作出有实际价值的东西。在这个过程中,我的确学得到很多在书本上学不到的东西,如:如何利用现有的元件组装得到设计要求,如何找到错误的原因,如何利用计算机来画图等等。但也遇到了不少的挫折,有时遇到了一个错误怎么找也找不到原因所在,找了老半天结果却是芯片的管脚接错了,有时更是忘接电源了。在学习中的小问题在课堂上不可能犯,在动手的过程中却很有可能犯。特别是在接电路时,一不小心就会犯错,而且很不容易检查出来。但现在回过头来看,还是挺有成就感的。
七、参考文献
姚福安.电子电路设计与实践.山东科学技术出版社第一版.2002 杨志亮.电路原理图设计技术.西北工业大学出版社第一版.2003 阎石.数字电子技术基础..高等教育出版社第四版.1998 童诗白.模拟电子技术基础.高等教育出版社第三版.2001 康华光.电子技术基础.高等教育出版社.2002 苏止丽.数字电子电路实验.武汉理工大学.2003 陈明义.电子技术课程设计使用教程 中南大学出版社第一版.2002
回答者: 命途多舛0913-一
级
2008-1-5 21:54
数字电子时钟课程设计
题目: 数字电子时钟课程设计
目 录
一、设计任务及设计要求…………………………………………(3)
二、设计方案论证 …………………………..………….(3)
1.总体方案及框图
2.各部分论证
三、单元电路设计…………………………………………………(4)
1.振荡器 ………………………………………………………(4)
2.秒、分、时计数器…………………………………………(5)
3.显示译码/驱动器和LED七段数码显示管……………….(6)
4.分频器……………………………………………………(7)
5.报时电路…………………………………………………(9)
四、总体电路设计及原理………………………………………(13)
五、元器件明细表………………………………………………(10)
六、心得体会……………………………………………………(11)
七、参考文献……………………………………………………(11)
一、设计任务及设计要求
1.设计任务
数字电子钟的逻辑电路
2.设计要求
(1)由晶振电路产生1HZ的校准秒信号。
(2)设计一个有“时”、“分”、“秒”(23小时59分59秒)显示切且具有校时、校分、校秒的功。
(3)整点报时功能。要求整点差10秒开始每隔1秒鸣叫一次,共五次,每次持续时间为一秒,前五次为500赫兹的声音,最后依次为1000赫兹的声音。
(4)用中小规模集成电路组成电子钟,并在实验箱上进行组装和调试。
(5)划出框图和逻辑电路图,写出设计,实验总结报告。
二、设计方案论证
数字钟原理框图如图1所示,电路一般包括以下几个部分:振荡器、分频器、译码显示电路、时分秒计数器、校时电路、报时电路。
图一
对于各个部分而言
数字钟计时的标准信号应该是频率相当稳定的1HZ秒脉冲,所以要设置标准时间源。
数字钟计时周期是24小时,因此必须设置24小时计数器,他应由模为60的秒计数器和分计数器及模为24的时计数器组成,秒、分、时由七段数码管显示。
为使数字钟走时与标准时间一致,校时电路是必不可少的。设计中采用开关控制校时直接用秒脉冲先后对“时”“分”“秒”计数器进行校时操作。 能进行整点报时。在从59分50秒开始,每隔2秒钟发出一次低音“嘟”的信号,连续五次,最后一次要求最高音“嘀”的信号,此信号结束即达到正点。
三、单元电路设计
1.各独立功能部件的设计
(1)、振荡器
振荡器是计时器的核心,其作用是产生一个标准频率的脉冲信号振荡频率的精度和
稳定度决定了数字钟的质量。第一种方
案采用石英晶体振荡器,如图二。使用
振荡频率为32768HZ的石英晶体和反
向器构成一个稳定性极好、精度较高的时间信号源。改变电容C可以
图 二 石英晶体振荡器
振荡器的频率进行微调,再通过一个反相器,输出32768HZ的方波将此方波的频率进行15次二分频后,在输出端刚好可得到频率为1HZ的脉冲信号。
第二种方案如图三采用集成电路555定时器与RC组成的多谐振荡器。输出的脉冲频率为fS=1/[(R1+2R2)C1ln2]=1KHZ,周期T=1/fS=1ms。若参数选择:R1=R2=10K欧姆,C1=47uF时,可以得到秒脉冲信号。
图三 方波信号发生器
附555定时器的功能表
输 出 输 出
阀值输入(v11)触发输入(v12)复位(RD)输出(VO)发电管T × × 0 0 导通
<2/3VCC <1/3VCC 1 1 截止
>2/3VCC >1/3VCC 1 0 导通
<2/3VCC >1/3VCC 1 不变 不变
(2)秒、分、时计数器
U1到U6 六个74LS161构成数字钟的秒、分、时计数器。
U1、U2共同构成秒计数器,它由两个74LS161构成六--十进制的计数器,如图四。U1作为秒个位十进制计数器,它的复位输入RD、和置位输入LD都接低电平,秒信号脉冲作为计数脉冲输入到CP1端,输出端C控制U2秒十位计数器的计数脉冲输入。Q1、Q2、Q3、Q4作为秒个位的计时值送至秒个位七段显示译码/驱动器。
U2作为秒十位六进制计数器,它的计数脉冲输入受到秒个位U1的控制,其计数器使能端EP、ET与U1的输出端C相连接。当U2计数器计到0011,即清零信号到复位输入端时,Q1、Q2、Q3、Q4输出的都是零。Q1、Q2、Q3、Q4作为秒十位的计时值送至秒十位七段显示译码/驱动器。
U3、U4分别构成分个位十进制和分十位六进制计数器,如图四。U3、U4与U1、U2的连接方法相似。当计数器输出为01011001状态,U3(U1)、U4(U2)的LD端同时为“0”,使计数器立即返回到00000000状态。这样就构成了六十进制计数器。
图四 六十进制计数器
U5、U6共同构成时计数器,它由两个74LS161构成六十进制的计数器 如图五。U5作为时十位计数器,它的复位输入RD、和置位输入LD都接低电平,时信号脉冲作为计数脉冲输入到CP1端,输出端C控制U6秒十位计数器的计数脉冲输入。Q1、Q2、Q3、Q4作为秒个位的计时值送至秒个位七段显示译码/驱动器。当计数器输出为00100100状态,U5、U6的LD端同时为“0”,使计数器立即返回到00000000状态。这样就构成了二十四进制计数器。
U12 图五 二十四进制计数器
(3)显示译码/驱动器和LED七段数码显示管
六个74LS248集成电路构成数字钟的七段数码显示管显示译码/驱动器。74LS248七段显示译码器输出高电平有效,将8421BCD码译成七段(a、b、c、d、e、f、g)输出,用以直接驱动LED七段数码显示对应的十进制数。74LS248的显示功能:
显示功能见功能表的上半部分。[DCBA]是二进制码输入,要正确的执行显示功能,有关的功能端必须接合适的逻辑电平,这些功能端的作用随后介绍。对于0~9输入,[DCBA]相当BCD8421码。当超过9以后,译码器仍然有字型输出,具体见图六。当[DCBA]=1111时,数码管熄灭。实验时要在笔划段电极串联电阻,以保护LED数码管。
表1 中规模显示译码器74LS248的功能表
图六 74LS248显示字型与输入的对应关系
如图七,六个LED七段数码显示管利用不同发光段组合的方式显示不同数码,都采用+5V电源作为每段发光二极管的驱动电源。需要发光的段为高电平,不发光的段为低电平。设计中采用共阴极数码管,每段发光二极管的正向降压,随显示光的颜色有所不同,通常约2V~3V,点亮电流在5~10mA。六个LED七段数码显示管分别显示秒个位、十位;分个位、十位;时个位、十位的计数十进制数
图七 显示译码/驱动器和数码显示管
(4)分频器
分频器电路是由三个74LS90构成,如图八。74LS90是异步十进制计数器,它由一个一位二进制计数器和一个异步五进制计数器组成。将QA与CP2相连,计数脉冲由CP1端输入,输出由QA~QD引出,即得到十进制计数器。只有在复位输入R0(1)= R0(2)=0和置位输入S9(1)= S9(2)=0时,才能够在计数脉冲(下降沿)作用下实现二—五—十进制加计算。因为要对输入的脉冲进行三次10分频,三片74LS90的复位输入R0(1)、R0(2)和置位输入S9(1)、S9(2)都接低电平。振荡器输出的方波脉冲计数器作为U1的CP1端的输入时钟脉冲,U1的QD端的输出脉冲作为U2的CPA端的输入时钟脉冲,U2的QD端的输出脉冲作为U3的CP1端的输入时钟脉冲,U3的QD端的输出脉冲fO=fS/103¬¬¬¬¬¬¬=1HZ,即为秒信号方波脉冲,成为秒、分、时计数器的计数脉冲和时间校准信号。
将JK触发器的J、K端都接在高电平,Qn+1=JQn+KQn=Qn,每输入一个时钟脉冲后,触发器翻转一次,触发器处于计数状态。经过触发器的二分频,Q端输出为500HZ的脉冲作为低音脉冲。
经过U1、U2计数器的二次十分频,输出的脉冲频率为10HZ,作为秒校时脉冲。
图八 分频器
附74LS90二—五—十进制计数器功能图
复位输入 置位输入 输出 R0(1)R0(2)S9(1)S9(2)QA QB QC QD H H L × L L L L H H × L L L L L × × H H H L L H L × L × 计数
L × × L 计数
× L L × 计数
× L × L 计数
JK触发器的功能表
J K Qn Qn+1 说明
0 0 0 0 输出状态不变1
0 1 0 0 输出状态与J端状态相同0 0 0 1 输出状态与K端状态相同1 1 0 1 每输入一个脉冲输出状态改变一次0
(五)报时电路
整点报时电路要求在每个整点发出音响,因此需要对每个整点进行时间译码,以其输出驱动音响控制电路。如图九。
若要在每一整点发出五低音、一高音报时,需要对59分50秒到59分59秒进行时间译码。QD4~QA4是分十位输出,QD3~QA3是分个位输出,QD2~QA2是秒十位输出,QD1~QA1秒个位输出。在59分时,A= QC4 QA4 QD3 QA3=1;在50秒时,B= QC2 QA2=1;秒个位为0、2、4、6、8秒时,QA1=0,C= QA1=1;因而F1=ABC= QC4QA4 QD3 QA3 QC2 QA2 QA1仅在59分50秒、52秒、54秒、56秒、58秒时等于1,故可以用F1作低音的控制信号。
当计数器每计到59分59秒时,A= QC4 QA4 QD3QA3=1,D= QC2 QA2 QD1 QA1=1,此时F2=AD=1。把F2接至JK触发器控制端J端,CP端加秒脉冲,则再计1秒到达整点时F3=1,故可用F3作一次高音控制信号。
用F1控制5次低音、F3控制高音,经音响放大器放大,每当“分”和“秒”计数器累计到59分50、52、54、56、58秒发出频率为500HZ的五次低音,0分0秒时发出频率为1000HZ的一次高音,每次音响的时间均为一秒钟,实现了整点报时的功能。
图九 整点报时电路
四、原理图(见最后一页)
五、元器件明细表
序号 元器件名称 型号规格 数量(个)备注
U0 集成定时器 5G555定时器 1 构成多谐振荡器 U1~U6 同步加法计数器 74161 6 构成模加法计数器
U7~U9 异步十进制计数器 74LS90 3 构成分频器
U10 七端显示译码器 74LS248 6 分别显示秒、分、时的数字
U11~U12 与非门 多输入与非门 2 U13 J-K触发器 1
C1、C2 电容 2 C1=C2=104pf R1 R2 电阻 2 R1 =2K、R2=5.1K R、R` 电阻 2 R=1k,R`=47 U14 U20 门器件 非门 1
U15~U19 门器件 与门 6 多输入与门
U21~U23 门器件 与非门 3 多输入与非门
U24 触发器 J-K触发器 1 U25 晶体三级管 1 U26 喇叭 1 实现闹铃
六、设计体会
在整个课程设计完后,总的感觉是:有收获。以前上课都是上一些最基本的东西,而现在却可以将以前学的东西作出有实际价值的东西。在这个过程中,我的确学得到很多在书本上学不到的东西,如:如何利用现有的元件组装得到设计要求,如何找到错误的原因,如何利用计算机来画图等等。但也遇到了不少的挫折,有时遇到了一个错误怎么找也找不到原因所在,找了老半天结果却是芯片的管脚接错了,有时更是忘接电源了。在学习中的小问题在课堂上不可能犯,在动手的过程中却很有可能犯。特别是在接电路时,一不小心就会犯错,而且很不容易检查出来。但现在回过头来看,还是挺有成就感的。
第五篇:数字电子时钟课程设计报告-2
前言
20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。但是,一旦重要事情,一时的耽误可能酿成大祸。例如,许多火灾都是由于人们一时忘记了关闭煤气或是忘记充电时间。尤其在医院,每次护士都会给病人作皮试,测试病人是否对药物过敏。注射后,一般等待5分钟,一旦超时,所作的皮试试验就会无效。手表当然是一个好的选择,但是,随着接受皮试的人数增加,到底是哪个人的皮试到时间却难以判断。所以,要制作一个定时系统。随时提醒这些容易忘记时间的人。
钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、定时启闭电路、定时开关烘箱、通断动力设备,甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。因此,研究数字钟及扩大其应用,有着非常现实的意义。
论文的研究内容和结构安排
本系统采用石英晶体振荡器、分频器、计数器、显示器和校时电路组成。由LED数码管来显示译码器所输出的信号。采用了74LS系列中小规模集成芯片。使用了RS触发器的校时电路。总体方案设计由主体电路和扩展电路两大部分组成。其中主体电路完成数字钟的基本功能,扩展电路完成数字钟的扩展功能。论文安排如下:
1、绪论 阐述研究电子钟所具有的现实意义。
2、设计内容及设计方案 论述电子钟的具体设计方案及设计要求。
3、单元电路设计、原理及器件选择 说明电子钟的设计原理以及器件的选择,主要从石英晶体振荡器、分频器、计数器、显示器和校时电路五个方面进行说明。
4、绘制整机原理图 该系统的设计、安装、调试工作全部完成。
(一)设计内容要求
1、设计一个有“时”、“分”、“秒”(23小时59分59秒)显示且有校时功能的电子钟。
2、用中小规模集成电路组成电子钟,并在实验箱上进行组装、调试。
3、画出框图和逻辑电路图。4、功能扩展:(1)闹钟系统
(2)整点报时。在59分51秒、53秒、55秒、57秒输出750Hz音频信号,在59分59秒时,输出1000Hz信号,音像持续1秒,在1000Hz音像结束时刻为整点。(3)日历系统。
(二)设计方案及工作原理
数字电子钟的逻辑框图如图1所示。它由石英晶体振荡器、分频器、计数器、译码器显示器和校时电路组成。振荡器产生稳定的高频脉冲信号,作为数字钟的时间基准,然后经过分频器输出标准秒脉冲。秒计数器满60后向分计数器进位,分计数器满60后向小时计数器进位,小时计数器按照“24翻1”规律计数。计数器的输出分别经译码器送显示器显示。计时出现误差时,可以用校时电路校时、校分。
三、单元电路设计 1.秒脉冲产生电路(1)1KHZ 振荡器
振荡器由 555 定时器组成。图 3‐1 中是 由 555 定时器构成的 1KHZ 的自
激振荡器 ,其原理是
0.7(2R3+R4+R5)C4=1ms f=1/t=1KHZ。
2、计数器
秒脉冲信号经过6级计数器,分别得到“秒”个位、十位,“分”个位、十位以及“时”个位、十位的计时。“秒”、“分”计数器为60进制,小时为24进制。1、60进制计数器
(1)计数器按触发方式分类
计数器是一种累计时钟脉冲数的逻辑部件。计数器不仅用于时钟脉冲计数,还用于定时、分频、产生节拍脉冲以及数字运算等。计数器是应用最广泛的逻辑部件之一。按触发方式,把计数器分成同步计数器和异步计数器两种。对于同步计数器,输入时钟脉冲时触发器的翻转是同时进行的,而异步计数器中的触发器的翻转则不是同时。
(2)60进制计数器的工作原理
“秒”计数器电路与“分”计数器电路都是60进制,它由一级10进制计数器和一级6进制计数器连接构成,如图4所示,采用两片中规模集成电路74LS90串接起来构成的“
秒
”、分
”
计
数
器。
IC1是十进制计数器,QD1作为十进制的进位信号,74LS90计数器是十进制异步计数器,用反馈归零方法实现十进制计数,IC2和与非门组成六进制计数。74LS90是在CP信号的下降沿翻转计数,Q A1和 Q C2相与0101的下降沿,作为“分”(“时”)计数器的输入信号,通过与非门和非门对下一级计数器送出一个高电平1(在此之前输出的一直是低电平0)。Q B2 和Q C2计数到0110,产生的高电平1分别送到计数器的清零R0(1),R0(2),74LS90内部的R0(1)和R0(2)与非后清零而使计数器归零,此时传给下一级计数器的输入信号又变为低电平0,从而给下一级计数器提供了一个下降沿,使下一级计数器翻转计数,在这里IC2完成了六进制计数。由此可见IC1和 IC2串联实现了六十进制计数。其中:74LS90——可二/五分频十进制计数器 74LS04——非门 74LS00——二输入与非门 2、24进制计数器
小时计数电路是由IC5和IC6组成的24进制计数电路,如图5所示。当“时”个位IC5计数输入端CP5来到第10个触发信号时,IC5计数器自动清零,进位端QD5向IC6“时”十位计数器输出进位信号,当第24个“时”(来自“分”计数器输出的进位信号)脉冲到达时,IC5计数器的状态为“0100”,IC6计数器的状态为“0010”,此时“时”个位计数器的QC5和“时”十位计数器的QB6输出为“1”。把它们分别送到IC5和IC6计数器的清零端R0(1)和R0(2),通过7490内部的R0(1)和R0(2)与非后清零,从而完成24进制计数。
3.组合的数字时钟
数字时钟系统的组成利用上面的六十进制和二十四进制递增计数器子电路 构成的数字钟系统
4、校时电路的实现原理 当电子钟接通电源或者计时发现误差时,均需要校正时间。校时电路分别实现对时、分的校准,由于4个机械开关具有震颤现象,因此用RS触发器作为去抖动电路。采用RS基本触发器及单刀双掷开关,闸刀常闭于2点,每搬动一次产生一个计数脉冲,实现校时功能
5.整点报时电路
电路应在整点前 10 秒钟内开始整点报时,即当时间在 59 分 50 秒到 59 分59 秒期间时,报时电路报时控制信号。
当时间在 59 分 59 秒到 00分 00 秒期间时,分十位、分个位和秒十位均保持不变,分别为 5、9 和 5,因此可将分计数器十位的 Qc 和 Qa、个位的 Qd 和 Qa及秒计数器十位的 Qc 和 Qa 相与,从而产生报时控制信号。报时电路可选7个74F08D 来构成
6、电路复位
四、译码与显示电路
1、显示器原理(数码管)
数码管是数码显示器的俗称。常用的数码显示器有半导体数码管,荧光数码管,辉光数码管和液晶显示器等。
本设计所选用的是半导体数码管,是用发光二极管(简称LED)组成的字形来显示数字,七个条形发光二极管排列成七段组合字形,便构成了半导体数码管。半导体数码管有共阳极和共阴极两种类型。共阳极数码管的七个发光二极管的阳极接在一起,而七个阴极则是独立的。共阴极数码管与共阳极数码管相反,七个发光二极管的阴极接在一起,而阳极是独立的。
当共阳极数码管的某一阴极接低电平时,相应的二极管发光,可根据字形使某几段二极管发光,所以共阳极数码管需要输出低电平有效的译码器去驱动。共阴极数码管则需输出高电平有效的译码器去驱动。
2、译码器原理(74LS47)
译码为编码的逆过程。它将编码时赋予代码的含义“翻译”过来。实现译码的逻辑电路成为译码器。译码器输出与输入代码有唯一的对应关系。74LS47是输出低电平有效的七段字形译码器,它在这里与数码管配合使用,表2列出了74LS47的真值表,表示出了它与数码管之间的关系。
四、详细设计与调试
4.1 秒脉冲的产生
秒脉冲发生器
脉冲发生器是数字钟的核心部分,它的精度和稳定度决定了数字钟的质量,通常用晶体振荡器产生标准频率信号经过整形、分频获得1Hz的秒脉冲。石英晶体振荡器的特点是振荡频率准确、电路结构简单、频率易调整。如晶32768 Hz,通过15次二分频后可获得1Hz的脉冲输出。
4.2 秒计数、译码及显示部分的设计
秒计数译码电路
秒计数器为M=60的计数器,即显示00~59,采用中规模集成电路双十进制计数器至少需要2片,因为10 < M < 100。它的个位为十进制,十位为六进制。本电路采用两片74LS161实现。当个位计数至1010时,通过 74LS00 二输入与非门连至清零端达到清零,当达到0000时,产生上升脉冲送给十位。十位计数至0110时清零。调试
六.总结
通过本次实验对输电知识有了更深入的了解,将其运用到了实际中来,明白了学习电子技术基础的意义,也达到了其培养的目的。在实验中,我也遇到了很多挫折,不过我都和同伴一一克服了,大家齐心协力解决了问题,使我明白了和他人共同合作的重要性。在以后的道路上我们也必须深刻认识到团队合作精神,投入今后的发展之中。在进行电路连接的时候,在确保一切都连接无误之后,时钟显示还是有问题,经过老师的指导不断改正,还是出现这样、那样的问题,不过我们都坚持了下来,仔细测试电路,才明白原来应该这样连接。尤其是时电路达到24要清零的时候,个位清零时钟不是那么容易,后来请教了学长才明白需要经过一个与门电路,顿时茅塞顿开。成功就是在不断摸索中前进实现的,遇到问题我们不能灰心、烦躁,甚至放弃,而要静下心来仔细思考,分部检查,找出最终的原因进行改正,这样才会有进步,才会一步步向自己的目标靠近,才会取得自己所要追求的成功。