第一篇:NCRE四级网络工程师知识点自我总结1
网络系统统结构与设计的基本原则 计算机网络按地理范围划分为局域网,城域网,广域网
局域网提供高数据传输速率10mbps-10gbps,低误码率的高质量传输环境 局域网按介质访问控制方法角度分为共享介质式局域网和交换式局域网 局域网按传输介质类型角度分为有线介质局域网和无线通信信道的无线介质局域网 早期的计算机网络主要是广域网,分为主计算机与终端(负责数据处理)和通信处理设备与通信电路(负责数据通信处理)计算机网络从逻辑功能上分为资源子网和通信子网
资源子网(计算机系统,终端,外网设备以及软件信息资源)
负责全网数据处理业务,提供网络资源与服务
通信子网(通信处理控制机—即网络节点,通信线路及其他通信设备)网络数据传输,转发等通信处理任务
网络接入(局域网,无线局域网,无线城域网,电话交换网,有线电视网)
广域网投资大管理困难,由电信运营商组建维护
广域网技术主要研究的是远距离,宽带,高服务质量的核心交换技术,用户接入技术由城域网承担。
广域网典型网络类型和技术(公共电话交换网,综合业务数字网,数字数据网,x.25分组交换网,帧中继网,异步传输网,以太网)
交换局域网的核心设备是局域网交换机
城域网概念:网络运营商在城市范围内提供各种信息服务,以宽带光传输网络为开放平台,以TCPIP协议为基础 密集波分复用技术的推广导致广域网主干线路带宽扩展
城域网分为核心交换层(高速数据交换),边缘汇聚层(路由与流量汇聚),用户接入层(用户接入和本地流量控制)
层次结构优点:层次定位清楚,接口开放,标准规范,便于组建管理 核心层基本功能:(设计重点:可靠性,可扩展性,开放性)
连接汇聚层,为其提供高速分组转发,提供高速安全QoS保障的传输环境; 实现主干网络互联,提供城市的宽带IP数据出口;
提供用户访问INTERNET需要的路由服务;
汇聚层基本功能:
汇聚接入层用户流量,数据分组传输的汇聚,转发与交换;
本地路由过滤流量均衡,QoS优先管理,安全控制,IP地址转换,流量整形; 把流量转发到核心层或本地路由处理;
设计初期只需要采用核心层与汇聚层 城域网设计重要出发点:在降低网络造价的前提下,系统能够满足当前的数据交换量,接入的用户数与业务类型的要求,并具有可扩展能力。
组建运营宽带城域网原则:可运营性,可管理性,可盈利性,可扩展性
管理和运营宽带城域网关键技术:带宽管理,服务质量QoS,网络管理,用户管理,多业务接入,统计与计费,IP地址分配与地址转换,网络安全
宽带城域网在组建方案中一定要按照电信级运营要求(考虑设备冗余,线路冗余以及系统故障的快速诊断与自我恢复)
服务质量QoS技术:资源预留,区分服务,多协议标记转换
管理带宽城域网3种基本方案:带内网络管理,带外~~,同时使用带内带外~~ 带内:利用传统电信网络进行网络管理,利用数据通信网或公共交换电话网拨号,对网络设备进行数据配置。
带外:利用IP网络及协议进行网络管理,利用网络管理协议建立网络管理系统。对汇聚层及其以上设备采用带外管理,汇聚层一下采用带内管理
宽带城域网要求的管理能力表现在电信级的接入管理,业务管理,网络安全 网络安全技术方面需要解决物理安全,网络安全和信息安全。
宽带城域网基本技术与方案(SDH城域网方案;10GE城域网方案,基于ATM城域网方案)光以太网由多种实现形式,最重要的有10GE技术和弹性分组环技术 同样规模城域网,光以太网造价是SONET的1/5 是ATM的1/10
IEEE已经对10mbps 100mbps 1gbps到 10gbps以太网技术标准正在研究
弹性分组环(RPR):直接在光纤上高效传输IP分组的传输技术
标准:IEEE802.17 目前城域网主要拓扑结构:环形结构
核心层有3—10个结点的城域网使用环形结构可以简化光纤配置
功能:简化光纤配置;解决网络保护机制与带宽共享问题;提供点到多点业务
弹性分组环采用双环结构这点与FDDI结构相同
RPR结点最大长度100km,顺时针为外环,逆时针为内环
RPR技术特点:(带宽利用率高;公平性好;快速保护和恢复能力强;保证服务质量)
用户接入网主要有三类:计算机网络,电信通信网,广播电视网
接入网接入方式主要为五类:地面有线通信系统,无线通信和移动通信网,卫星通信网,有线电视网和地面广播电视网
三网融合:计算机网络,电信通信网,电视通信网
用户接入角度:接入技术(有线和无线),接入方式(家庭接入,校园接入,机关与企业人)
目前宽带接入技术:数字用户线XDSL技术,光纤同轴电缆混合网HFC技术,光纤接入技术,无线接入技术,局域网技术
无线接入分为无线局域网接入,无线城域网接入,无线Ad hoc接入
局域网标准:802.3 无线局域网接入:802.11无线城域网:802.16
数字用户线XDSL又叫 数字用户环路,基于电话铜双绞线高速传输技术
技术分类:ADSL 非对称数字用户线速率不对称1.5mbps/64kbps-5.5kmRADSL 速率自适应数字用户线 速率不对称1.5mbps/64kbps-5.5km
HDSL 高比特率数字用户线速率对称1.544mbps(没有距离影响)
VDSL 甚高比特率数字用户线 速率不对51mbps/64kbps(没有影响)
光纤同轴混合网HFC是新一代有线电视网
电话拨号上网速度33.6kbps—56.6kbps
有线电视接入宽带,数据传输速率10mbps—36mbps
电缆调制解调器Cable modem 专门为利用有线电视网进行数据传输而设计 上行信道:200kbps-10mbps下行信道: 36mbps
类型:传输方式(双向对称传输和非对称式传输)
数据传输方向(单向,双向)
同步方式(同步和异步交换)
接入角度(个人modem和宽带多用户modem)
接口角度(外置式,内置式和交互式机顶盒)
无源光网络技术(APON)优点
系统稳定可靠
可以适应不同带宽,传输质量的要求
与CATV相比,每个用户可占用独立带宽不会发生拥塞
接入距离可达20km—30km
802.11b定义直序扩频技术,速率为1mbps 2mbps 5.5mbps 11mbps 802.11a 提高到54mbps
第二篇:网络工程师知识点自我总结3-4
无类域间路由技术需要在提高IP地址利用率和减少主干路由器负荷两个方面取得平衡
网络地址转换NAT最主要的应用是专用网,虚拟专用网,以及ISP为拨号用户提供的服务
NAT更用应用于ISP,以节约IP地址
A类地址:1.0.0.0-127.255.255.255 可用地址125个 网络号7位
B类地址:128.0.0.0-191.255.255.255 网络号14位
C类地址:192.0.0.0-223.255.255.255 网络号21位允许分配主机号254个 D类地址:224.0.0.0-239.255.255.255 组播地址
E类地址:240.0.0.0-247.255.255.255 保留
直接广播地址:
受限广播地址:255.255.255.255
网络上特定主机地址:
回送地址:专用地址
全局IP地址是需要申请的,专用IP地址是不需申请的专用地址:10;172.16-172.31;192.168.0-192.168.255
NAT方法的局限性
(1)违反IP地址结构模型的设计原则
(2)使得IP协议从面向无连接变成了面向连接
(3)违反了基本的网络分层结构模型的设计原则
(4)有些应用将IP插入正文内容
(5)Nat同时存在对高层协议和安全性的影响问题
IP地址规划基本步骤
(1)判断用户对网络与主机数的需求
(2)计算满足用户需求的基本网络地址结构
(3)计算地址掩码
(4)计算网络地址
(5)计算网络广播地址
(6)计算机网络的主机地址
CIDR地址的一个重要的特点:地址聚合和路由聚合能力
规划内部网络地址系统的基本原则
(1)简洁
(2)便于系统的扩展与管理
(3)有效的路由
IPv6地址分为 单播地址;组播地址;多播地址;特殊地址
128位每16位一段
000f可简写为f 后面的0不能省
::只能出现一次
Ipv6不支持子网掩码,它只支持前缀长度表示法
路由设计基础
默认路由成为第一跳路由或缺省路由
发送主机的默认路由器又叫做源路由器,目的主机所连接的路由叫做目的路由 路由选择算法参数
跳数
带宽(指链路的传输速率)
延时(源结点到目的结点所花费时间)
负载(单位时间通过线路或路由的通信量)
可靠性(传输过程的误码率)
开销(传输耗费)与链路带宽有关
路由选择的核心:路由选择算法
算法特点:
(1)算法必须是正确,稳定和公平的(2)算法应该尽量简单
(3)算法必须能够适应网络拓扑和通信量的变化
(4)算法应该是最佳的路由选择算法分类:
静态路由选择算法(非适应路由选择算法)特点:简单开销小,但不能及时适应网络状态的变化
动态路由选择算法(自适应路由选择算法)特点:较好适应网络状态的变化,但实现复杂,开销大
一个自治系统最重要的特点就是它有权决定在本系统内应采取何种路由选择协议
路由选择协议:内部网关协议IGP(包括路由信息协议RIP,开放最短路径优先协议OSPF);外部网关协议EGP(主要是BGP)
RIP是内部网关协议使用得最广泛的一种协议;特点:协议简单,适合小的自治系统,跳数小于15
OSPF特点:
OSPF使用分布式链路状态协议(RIP使用距离向量协议)
OSPF要求路由发送本路由与哪些路由相邻和链路状态度量的信息(RIP和OSPF都采用最短路径优先的指导思想,只是算法不同)
OSPF要求当链路状态发生变化时用洪泛法向所有路由发送此信息(RIP仅向相邻路由发送信息)
OSPF使得所有路由建立链路数据库即全网拓扑结构(RIP不知道全网拓扑)OSPF将一个自治系统划分若干个小的区域,为拉适用大网络,收敛更快。每个区域路由不超过200个
区域好处:洪泛法局限在区域,区域内部路由只知道内部全网拓扑,却不知道其他区域拓扑
主干区域内部的路由器叫主干路由器(包括区域边界路由和自治系统边界路由)BGP路由选择协议的四种分组
打开分组;更新分组(是核心);保活分组;通知分组;
第三篇:网络工程师知识点自我总结5
局域网技术
交换机采用采用两种转发方式技术:快捷交换方式和存储转发交换方式
虚拟局域网VLA N组网定义方法:(交换机端口号定义;MAC地址定义;网络层地址定义;基于IP广播组)
综合布线特点:(兼容性;开放性;灵活性;可靠性;先进性;经济性)
综合布线系统组成:(工作区子系统;水平子系统;干线子系统;设备间子系统;管理子系统;建筑物群子系统)
综合布线系统标准:
(1)ANSI/TIA/EIA 568-A
(2)TIA/EIA-568-B.1 TIA/EIA-568-B.2TIA/EIA-568-B.3
(3)ISO/IEC 11801
(4)GB/T 50311-2000GB/T50312-2000
IEEE802.3 10-BASE-5表示以太网10mbps 基带传输使用粗同轴电缆 max=500m IEEE802.3 10-BASE-2200m
IEEE802.3 10-BASE-T使用双绞线
快速以太网 提高到100mbps
IEEE802.3U 100-BASE-TXMAX=100M
IEEE802.3U 100-BASE-T4针对建筑物以及按结构化布线
IEEE802.3U 100-BASE-FX使用2条光纤 max=425M
支持全双工模式的快速以太网的拓扑构型一定是星形
自动协商功能是为链路两端的设备选择10/100mbps与半双工/全双工模式中共有的高性能工作模式,并在链路本地设备与远端设备之间激活链路
自动协商功能只能用于使用双绞线的以太网,并且规定过程需要500ms内完成中继器工作在物理层,不涉及帧结构,中继器不属于网络互联设备
10-BASE-5协议中,规定最多可以使用4个中继器,连接3个缆段,网络中两个结点的最大距离为2800m
集线器特点:
(1)以太网是典型的总线型结构
(2)工作在物理层 执行CSMA/CD介质访问控制方法
(3)多端口
网桥在数据链路层完成数据帧接受,转发与地址过滤功能,实现多个局域网的数据交换
透明网桥IEEE 802.1D 特点:
(1)每个网桥自己进行路由选择,局域网各结点不负责路由选择,网桥对互联
局域网各结点是透明
(2)一般用于两个MAC层协议相同的网段之间的互联
透明网桥使用了生成树算法
评价网桥性能参数主要是:帧过滤速率,帧转发速率
按照国际标准,综合布线采用的主要连接部件分为建筑物群配线架(CD);大楼主配线架(BD);楼层配线架(FD),转接点(TP)和通信引出端(TO)
TO到FD之间的水平线缆最大长度不应超过90m
设备间室温应保持在10度到27度 相对湿度保持在30%-80%
第四篇:网络工程师知识点总结
网络工程师知识点总结
线路交换
1、线路交换进行通信:是指在两个站之间有一个实际的物理连接,这种连接是结点之间线路的连接序列。
2、线路通信三种状态:线路建立、数据传送、线路拆除
3、线路交换缺点:典型的用户/主机数据连接状态,在大部分的时间内线路是空闲的,因而用线路交换方法实现数据连接效率低下;为连接提供的数据速率是固定的,因而连接起来的两个设备必须用相同的数据率发送和接收数据,这就限制了网络上各种主机以及终端的互连通信。
分组交换技术
1、分组交换的优点:线路利用率提高;分组交换网可以进行数据率的转换;在线路交换网络中,若通信量较大可能造成呼叫堵塞的情况,即网络拒绝接收更多的连接要求直到网络负载减轻为止;优先权的使用。
2、分组交换和报文交换主要差别:在分组交换网络中,要限制所传输的数据单位的长度。报文交换系统却适应于更大的报文。
3、虚电路的技术特点:在数据传送以前建立站与站之间的一条路径。
4、数据报的优点:避免了呼叫建立状态,如果发送少量的报文,数据报是较快的;由于其较原始,因而较灵活;数据报传递特别可靠。
5、几点说明:
路线交换基本上是一种透明服务,一旦连接建立起来,提供给站点的是固定的数据率,无论是模拟或者是数字数据,都可以通过这个连接从源传输到目的。而分组交换中,必须把模拟数据转换成数字数据才能传输。
6、外部和内部的操作
外部虚电路,内部虚电路。当用户请求虚电路时,通过网络建立一条专用的路由,所有的分组都用这个路由。
外部虚电路,内部数据报。网络分别处理每个分组。于是从同一外部虚电路送来的分组可以用不同的路由。在目的结点,如有需要可以先缓冲分组,并把它们按顺序传送给目的站点。
外部数据报,内部数据报。从用户和网络角度看,每个分组都是被单独处理的。
外部数据报,内部虚电路。外部的用户没有用连接,它只是往网络发送分组。而网络为站之间建立传输分组用的逻辑连接,而且可以把连接另外维持一个扩展的时间以便满足预期的未来需求.帧中继交换
1、X.25特性:(1)用于建立和终止虚电路的呼叫控制分组与数据分组使用相同的通道和虚电路;(2)第三层实现多路复用虚电路;(3)在第二层和第三层都包含着流控和差错控制机制。
2、帧中继与X.25的差别:(1)呼叫控制信号与用户数据采用分开的逻辑连接,这样,中间结点就不必维护与呼叫控制有关的状态表或处理信息;(2)在第二层而不是在第三层实现逻辑连接的多路复用和交换,这样就省掉了整个一层的处理;(3)不采用一步一步的流控和差错控制。
3、在高速H通道上帧中继的四种应用:数据块交互应用;文件传输;低速率的复用;字符交互通信。
信元交换技术
1、ATM信元
ATM数据传送单位是一固定长度的分组,称为信元,它有一个信元头及一个信元信息域。信元长度为53个字节,其中信元头占5个字节,信息域占48个字节。
信元头主要功能是:信元的网络路由。
2、ATM采用了异步时分多路复用技术ATDM,ATDM采用排队机制,属于不同源的各个信元在发送到介质上之前,都要被分隔并存入队列中,这样就需要速率的匹配和信元的定界。
3、应用独立:主要表现在时间独立和语义独立两方面。时间独立即应用时钟和网络时钟之间没有关联。语义独立即在信元结构和应用协议数据单元之间无关联,所有与应用有关的数据都在信元的信息域中。
3、ATM信元标识
ATM采用虚拟通道模式,通信通道用一个逻辑号标识。对于给定的多路复用器,该标识是本地的,并在任何交换部件处改变。
通道的标识基于两种标识符,即虚拟通路标识VPI和虚拟通道标识VCI。一个虚拟通路VP包含有若干个虚拟通道VC
4、ATM网络结构
虚拟通道VC:用于描述ATM信元单向传送的一个概念,信元都与一个惟一的标识值-虚拟通道标识符VCI相联系。
虚拟通路VP:用于描述属于虚拟通路的ATM信元的单向传输的一个概念,虚拟通路都与一个标识值-虚拟通路标识符相联系。
虚拟通道和虚拟通路者用来描述ATM信元单向传输的路由。每个虚拟通路可以用复用方式容纳多达65535个虚拟通道,属于同一虚拟通道的信元群,拥用相同虚拟通道标识VCI,它是信元头一部分。
网络体系结构及协议的定义
1、网络体系结构:是计算机之间相互通信的层次,以及各层中的协议和层次之间接口的集合。
2、网络协议:是计算机网络和分布系统中互相通信的对等实体间交换信息时所必须遵守的规则的集合。
3、语法(syntax):包括数据格式、编码及信号电平等。
4、语义(semantics):包括用于协议和差错处理的控制信息。
5、定时(timing):包括速度匹配和排序。开放系统互连参考模型
1、国际标准化组织ISO在1979年建立了一个分委员会来专门研究一种用于开放系统的体系结构,提出了开放系统互连OSI模型,这是一个定义连接异种计算机的标准主体结构。
2、OSI简介:OSI采用了分层的结构化技术,共分七层,物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。
3、OSI参考模型的特性:是一种异构系统互连的分层结构;提供了控制互连系统交互规则的标准骨架;定义一种抽象结构,而并非具体实现的描述;不同系统中相同层的实体为同等层实体;同等层实体之间通信由该层的协议管理;相信层间的接口定义了原语操作和低层向上层提供的服务;所提供的公共服务是面向连接的或无连接的数据服务;直接的数据传送仅在最低层实现;每层完成所定义的功能,修改本层的功能并不影响其他层。
4、物理层:提供为建立、维护和拆除物理链路所需要的机械的、电气的、功能的和规程的特性;有关的物理链路上传输非结构的位流以及故障检测指示。
5、数据链路层:在网络层实体间提供数据发送和接收的功能和过程;提供数据链路的流控。
6、网络层:控制分组传送系统的操作、路由选择、拥护控制、网络互连等功能,它的作用是将具体的物理传送对高层透明。
7、传输层:提供建立、维护和拆除传送连接的功能;选择网络层提供最合适的服务;在系统之间提供可靠的透明的数据传送,提供端到端的错误恢复和流量控制。
8、会话层:提供两进程之间建立、维护和结束会话连接的功能;提供交互会话的管理功能,如三种数据流方向的控制,即一路交互、两路交替和两路同时会话模式。
9、表示层:代表应用进程协商数据表示;完成数据转换、格式化和文本压缩。
10、应用层:提供OSI用户服务,例如事务处理程序、文件传送协议和网络管理等。
TCP/IP的分层
1、TCP/IP的分层模型
Internet采用了TCP/IP协议,如同OSI参考模型,TCP/IP也是一种分层模型。它是基于硬件层次上的四个概念性层次构成,即网络接口层、IP层、传输层、应用层。
网络接口层:也称数据链路层,这是TCP/IP最底层。功能:负责接收IP数据报并发送至选定的网络。
IP层:IP层处理机器之间的通信。功能:它接收来自传输层的请求,将带有目的地址的分组发送出去。将分组封装到数据报中,填入数据报头,使用路由算法以决定是直接将数据报传送至目的主机还是传给路由器,然后把数据报送至相应的网络接口来传送。
传输层:是提供应用层之间的通信,即端到端的通信。功能:管理信息流,提供可靠的传输服务,以确保数据无差错的地按序到达。
2、TCP/IP模型的分界线
协议地址分界线:以区分高层和低层的寻址,高层寻址使用IP地址,低层寻址使用物理地址。应用程序IP层之上的协议软件只使用IP地址,而网络接口层处理物理地址。
操作系统分界线:以区分系统与应用程序。在传输层和应用层之间。
3、复用与分解
发送报文时,发送方在报文中加和了报文类型、选用协议等附加信息。所有的报文以帧的形式在网络中复用传送,形成一个分组流。在接收方收到分组时,参考附加信息对接收到的分组进行分解。
IP协议
1、Internet体系结构
一个TCP/IP互联网提供了三组服务。最底层提供无连接的传送服务为其他层的服务提供了基础。第二层一个可靠的传送服务为应用层提供了一个高层平台。最高层是应用层服务。
2、IP协议: 这种不可靠的、无连接的传送机制称为internet协议。
3、IP协议三个定义:
(1)IP定义了在TCP/IP互联网上数据传送的基本单元和数据格式。
(2)IP软件完成路由选择功能,选择数据传送的路径。
(3)IP包含了一组不可靠分组传送的规则,指明了分组处理、差错信息发生以及分组德育的规则。
4、IP数据报:联网的基本传送单元是IP数据报,包括数据报头和数据区部分。
5、IP数据报封装:物理网络将包括数据报报头的整个数据报作为数据封装在一个帧中。
6、MTU网络最大传送单元:不同类型的物理网对一个物理帧可传送的数据量规定不同的上界。
7、IP数据报的重组:一是在通过一个网络重组;二是到达目的主机后重组。后者较好,它允许对每个数据报段独立地进行路由选择,且不要求路由器对分段存储或重组。
8、生存时间:IP数据报格式中设有一个生存时间字段,用来设置该数据报在联网中允许存在的时间,以秒为单位。如果其值为0,就把它从互联网上删除,并向源站点发回一个出错消息。
9、IP数据报选项:
IP数据报选项字段主要是用于网络测试或调试。包括:记录路由选项、源路由选项、时间戳选项等。
路由和时间戳选项提供了一种监视或控制互联网路由器路由数据报的方法。用户数据报协议UDP
1、UDP协议功能
为了在给定的主机上能识别多个目的地址,同时允许多个应用程序在同一台主机上工作并能独立地进行数据报的发送和接收,设计用户数据报协议UDP。
使用UDP协议包括:TFTP、SNMP、NFS、DNS
UDP使用底层的互联网协议来传送报文,同IP一样提供不可靠的无连接数据报传输服务。它不提供报文到达确认、排序、及流量控制等功能。
2、UDP的报报文格式
每个UDP报文分UDP报头和UDP数据区两部分。报头由四个16位长(8字节)字段组成,分别说明该报文的源端口、目的端口、报文长度以及校验和。
3、UDP协议的分层与封装
在TCP/IP协议层次模型中,UDP位于IP层之上。应用程序访问UDP层然后使用IP层传送数据报。IP层的报头指明了源主机和目的主机地址,而UDP层的报头指明了主机上的源端口和目的端口。
4、UDP的复用、分解与端口
UDP软件应用程序之间的复用与分解都要通过端口机制来实现。每个应用程序在发送数据报之前必须与操作系统协商以获得协议端口和相应的端口号。
UDP分解操作:从IP层接收了数据报之后,根据UDP的目的端口号进行分解操作。
UDP端口号指定有两种方式:由管理机构指定的为著名端口和动态绑定的方式。
可靠的数据流传输TCP
1、TCP/IP的可靠传输服务五个特征:面向数据流、虚电路连接、有缓冲的传输、无结构的数据流、全双工的连接。
2、TCP采用了具有重传功能的肯定确认技术作为可靠数据流传输服务的基础。
3、为了提高数据流传输过程的效率,在上述基础上引入滑动窗口协议,它允许发送方在等待一个确认之前可以发送多个分组。滑动窗口协议规定只需重传未被确认的分组,且未被确认的分组数最多为窗口的大小。
4、TCP功能
TCP定义了两台计算机之间进行可靠的传输而交换的数据和确认信息的格式,以及计算机为了确保数据的正确到达而采取的措施。
5、TCP连接使用是一个虚电路连接,连接使用一对端点来标识,端点定义为一对整数(host,port)其中host是主机的IP地址,port是该主机上TCP端口号。
6、TCP使用专门的滑动窗口协议机制来解决传输效率和流量控制这两个问题,TCP采用的滑动窗口机制解决了端到端的流量控制,但并未解决整个网络的拥塞控制。
7、TCP允许随时改变窗口小,通过通告值来说明接收方还能再接收多少数据,通告值增加,发送方扩大发送滑动窗口;通告值减小,发送方缩小发送窗口。
8、TCP的报文格式
报文分为两部分:报头和数据,报头携带了所需要的标识和控制信息。
确认号字段指示本机希望接收下一个字节组的序号;
顺序号字段的值是该报文段流向上的数据流的位置,即发送序号;
确认号指的是与该报文段流向相反方向的数据流。
9、TCP使用6位长的码位来指示报文段的应用目的和内容
URG紧急指针字段可用;ACK确认字段可用;PSH请求急近操作;RST连接复位;SYN同步序号;FIN发送方字节流结束。
10、TCP的三次握手
为了建立一个TCP连接,两个系统需要同步其初始TCP序号ISN。序号用于跟踪通信顺序并确保多个包传输时没有丢失。初始序号是TCP连接建立时的起始编号。
同步是通过交换携带有ISN和1位称为SYN的控制位的数据包来实现的。
握手可由一方发起也可以双方发起,建立就可以实现双向对等地数据流动,没有主从关系。差错控制
CRC-CCITT G(X)=X16+X12+X5+1 HDLC的帧校验用
CRC-16
G(X)=X16+X15+X2+1
CRC-32 G(X)=X32+…+X+1 用在局域网中
海明码 m+k+1<2k
数据位m,要纠正单个错误,得出冗余位k必须取的最小值。码距为m、n中最小值,它能够发现(码距-1)位错,并可纠正(码距-1-1)位错;比如8421的码距为1。要检测出d位错,码字之间的海明距离最小值应为d+1。
CRC冗余码求法:(1)、如果信息位为K位,则其K-1次多项式可记为K(x);如信息1011001,则k(x)=x6+x4+x3+1;(2)、冗余位为R位,其R-1位记为R(x);如冗余位为1011,则R(x)=x3+x+1;(3)、发送信息为N=K+R,多项式为T(x)=Xr*K(x)+R(x),Xr表示将K
(x)向左平移r位;(4)、冗余位产生过程:已知K(x)求R(x)的过程,一般应选一特定R次多项式G(x)(生成多项式)一般先事先商定好的,用G(x)去除Xr*K(x)得余式即为R(x)。R(x)=Xr*K(x)/G(x);运算规则异或运算,相同取0,不同取1。
模拟信号
à、模拟传输
b、模拟信号à数字传输 需要编码**器(Codec),模拟数据数字化分为三步:采样、量化、编码
采样:对于连续信号是通过规则的时间间隔测出波的振动幅度从而产生一系列数据。量化:采样得到的离散数据转换成计算机能够表示的数据范围的过程,即将样值量化成一个有限幅度的集合X(nT)。编码:用一**数的二进制数来表示采样所得脉冲的量化幅度的过程。常用编码方法有PCM脉冲编码调制。
c、数字信号—>数字传输 常用编码:归零码、不归零码、曼彻斯**、差分曼彻斯**
IEEE802.3以太网使用曼彻斯特编码,IEEE802.5令牌环使用差分曼彻斯特编码,两者的编码效率是50%,FDDI、100BASE-FX使用了4B/5B编码和NRZ-I(不归零码),编码效率是80%。
d、数字信号à模拟传输
需要调制和解调,调制:由发送端将数字数据信号转换成模拟数据信号的过程;解调:在接收端把模拟数据信号还原为数字数据信号的过程,调制的方法:载波的表示--y=A(t)sin(wt+Ф),分为ASK振幅调制、FSK频率调制、PSK相位调制。
曼彻斯特编码:每比特的1/2周期处要发生跳变,由高电平跳到低电平表示1,由低电平跳到高电平表示0;差分曼彻斯特编码:有电平转换表示0,无电平转换表示1(关于曼彻斯特编码,此处特别注意:
1、0的表示方式并无明确强制规定,也可以规定由高电平跳到低电平表示0,由低电平跳到高电平表示1,而且现在大多数主流教程确实按照这种方法规定的。根据百度百科--曼彻斯特编码的词条:
曼彻斯特编码,常用于局域网传输。在曼彻斯特编码中,每一位的中间有一跳变,位中间的跳变既作时钟信号,又作数据信号;从高到低跳变表示“0”,从低到高跳变表示“1”。还有一种是差分曼彻斯特编码,每位中间的跳变仅提供时钟定时,而用每位开始时有无跳变表示“0”或“1”,有跳变为“0”,无跳变为“1”。
对于以上电平跳变观点有歧义:关于曼彻斯特编码电平跳变,在雷振甲编写的<<网络工程师教程>>中对曼彻斯特编码的解释为:从低电平到高电平的转换表示1,从高电平到低电平的转换表示0,模拟卷中的答案也是如此,张友生写的考点分析中也是这样讲的,而《计算机网络(第4版)》中(P232页)则解释为高电平到低电平的转换为1,低电平到高电平的转换为0。清华大学的《计算机通信与网络教程》《计算机网络(第4版)》采用如下方式:曼彻斯特编码从高到低的跳变是 0 从低到高的跳变是 1。
数据通信的主要技术指标
传输速率 S=(1/T)log2N
T—信号脉冲重复周期或单位脉冲宽度
n—一个脉冲信号代表的有效状态数,是2的整数值
log2N--单位脉冲能表示的比特数
信道容量:表征一个信道传输数据的能力。单位:bps
信道容量的计算:
无噪声 C=2H =2Hlog2N(奈奎斯特定理)
H—信道带宽 N—一个脉冲信号代表的有效状态数
有噪声C=Hlog2(1+S/N)(香农公式)
H—信道带宽 S—信号功率 N—噪声功率
dB=10log10S/N,当S/N=1000时,信噪比为30dB
数据交换方式
延迟的计算
1、电路交换
总延迟=链路建立时间+线路延迟+发送时长
2、虚电路分组交换
总延迟=链路建立时间+(每个分组在交换结点延迟+每个分组线路延迟+每个分组发送时长)*分组数
3、数据报分组交换
总延迟=(每个分组在交换结点延迟+每个分组线路延迟+每个分组发送时长)*分组数
硬件知识
1、计算机系统的组成包括硬件系统和软件系统
硬件系统分为三种典型结构:
(1)单总线结构(2)、双总线结构(3)、采用通道的大型系统结构
中央处理器CPU包含运算器和控制器。
2、指令系统
指令由操作码和地址码组成。
3、存储系统分为 主存—辅存层次 和主存—Cache层次
Cache作为主存局部区域的副本,用来存放当前最活跃的程序和数据。
计算机中数据的表示
Cache的基本结构:Cache由存储体、地址映像和替换机构组成。
4、通道是一种通过执行通道程序管理I/O操作的控制器,它使CPU与I/O操作达到更高的并行度。
5、总线从功能上看,系统总线分为地址总线(AB)、数据总线(DB)、控制总线(CB)。
6、磁盘容量记计算
非格式化容量=面数*(磁道数/面)*内圆周长*最大位密度
格式化容量=面数*(磁道数/面)*(扇区数/道)*(字节数/扇区)
7、数据的表示方法
原码和反码
[+0]原=000…00 [-0]原=100...00 [+0]反=000…00
[-0]反=111…11
正数的原码=正数的补码=正数的反码
负数的反码:符号位不变,其余位变反。
负数的补码:符号位不变,其余位变反,最低位加1。
计算机网络概论
滑动窗口协议规定重传未被确认的分组,这种分组的数量最多可以等于滑动窗口的大小,TCP采用滑动窗口协议解决了端到端的流量控制。
嵌入式系统基本知识
定义:以应用为中心,计算机技术为基础,软硬件可裁剪,适应于特定应用系统,对功能、可靠性、成本、体积、功耗有严格要求的计算机系统。
特点:硬件上,体积小、重量轻、成本低、可靠性高等特点、使用专用的嵌入式CPU。软件上,代码体积小、效率高,要求响应速度快,能够处理异步并发事件,实时处理能力。
应用:从航天飞机到家用微波炉。操作系统
操作系统定义:用以控制和管理系统资源,方便用户使用计算机的程序的集合。
功能:是计算机系统的资源管理者。
特性:并行性、共享性
分类:多道批处理操作系统、分时操作系统、实时操作系统、网络操作系统。
进程:是一个具有一定独立功能的程序关于某个数据集合的一次运行活动。
进程分为三种状态:运行状态(Running)、就绪状态(Ready)、等待状态(Blocked)。
作业分为三种状态:提交状态、后备运行、完成状态。
产生死锁的必要条件:
(1)、互斥条件:一个资源一次只能被一个进程所使用;
(2)、不可抢占条件:一个资源仅能被占有它的进程所释放,而不能被别的进程强行抢占;
(3)、部分分配条件:一个进程已占有了分给它的资源,但仍然要求其它资源;
(4)、循环等待条件:在系统中存在一个由若干进程形成的环形请求链,其中的每一个进程均占有若干种资源中的某一种,同时每一个进程还要求(链上)下一个进程所占有的资源。
死锁的预防:
1、预先静态分配法
2、有序资源使用法
3、银行家算法
虚拟存储器:是指一种实际上并不以物理形式存在的虚假的存储器。
页架:把主存划分成相同大小的存储块。
页:把用户的逻辑地址空间(虚拟地址空间)划分成若干个与页架大小相同的部分,每部分称为页。
页面置换算法有:
1、最佳置换算法OPT
2、先进先出置换算法FIFO
3、最近最少使用置换算法LRU
4、最近未使用置换算法NUR
虚拟设备技术:通过共享设备来模拟独占型设备的动作,使独占型设备成为共享设备,从而提高设备利用率和系统的效率。
SPOOL系统:实现虚拟设备技术的硬件和软件系统,又Spooling系统,假脱机系统。
作业调度算法:
1、先来先服务调度算法FIFO:按照作业到达系统或进程进入就绪队列的先后次序来选择。
2、优先级调度算法:按照进程的优先级大小来调度,使高优先级进程得到优先处理的调度策略。
3、最高响应比优先调度算法:每个作业都有一个优先数,该优先数不但是要求的服务时间的函数,而且是该作业为得到服务所花费的等待时间的函数。
以上三种都是非抢占的调度策略。
第五篇:2011计算机等级考试四级网络工程师知识点
考试吧整理了2011计算机等级考试四级网络工程师知识点,帮助考生梳理知识点。
网络工程师之局域网技术
主要内容:
1、局域网定义和特性
2、各种流行的局域网技术
3、高速局域网技术
4、基于交换的局域网技术
5、无线局域网技术及城域网技术
一、局域网定义和特性
局域网(Local Area Network)即LAN:将小区域内的各种通信设备互联在一起的通信网络。
1、局域网三个特性:(1)高数据速率在0.1-100Mbps(2)短距离0.1-25Km(3)低误码率10-8-10-11。
2、决定局域网特性的三个技术:(1)用以传输数据的介质(2)用以连接各种设备的拓扑结构(3)用以共享资源的介质控制方法。
3、设计一个好的介质访问控制协议三个基本目标:(1)协议要简单(2)获得有效的通道利用率(3)对网上各站点用户的公平合理。
二、以太网Ethernet IEEE802.3
以太网是一种总路线型局域网,采用载波监听多路访问/冲突检测CSMA/CD介质访问控制方法。
1、载波监听多路访问
CSMA的控制方案:(1)一个站要发送,首先需要监听总线,以决定介质上是否存在其他站的发送信号。(2)如果介质是空闲的,则可以发送。(3)如果介质忙,则等待一段间隔后再重试。
坚持退避算法:
(1)非坚持CSMA:假如介质是空闲的,则发送;假如介质是忙的,等待一段时间,重复第一步。利用随机的重传时间来减少冲突的概率,缺点:是即使有几个站有数据发送,介质仍然可能牌空闲状态,介质的利用率较低。
(2)1-坚持CSMA:假如介质是空闲的,则发送;假如介质是忙的,继续监听,直到介质空闲,立即发送;假如冲突发生,则等待一段随机时间,重复第一步。缺点:假如有两个或两个以上的站点有数据要发送,冲突就不可避免的。
(3)P-坚持CSMA:假如介质是空闲的,则以P的概率发送,而以(1-P)的概率延迟一个时间单位,时间单位等于最大的传播延迟时间;假如介质是忙的,继续监听,直到介质空闲,重复第一步;假如发送被延迟一个时间单位,则重复第一步。
2、载波监听多路访问/冲突检测
这种协议广泛运用在局域网内,每个帧发送期间,同时有检测冲突的能力,一旦检测到冲突,就立即停止发送,并向总线上发一串阻塞信号,通知总线上各站冲突已经发生,这样通道的容量不致因白白传送已经损坏的帧而浪费。
冲突检测的时间:对基带总线,等于任意两个站之间最大的传播延迟的两倍;对于宽带总线,冲突检测时间等于任意两个站之间最大传播延迟时间的四倍。
3、二进制退避算法:
(1)对每个帧,当第一次发生冲突时,设置参量为L=2;
(2)退避间隔取1-L个时间片中的一个随机数,1个时间片等于2a;
(3)当帧重复发生一次冲突时,则将参量L加倍;(4)设置一个最大重传次数,则不再重传,并报告出错。
三、标记环网Toke Ring IEEE802.5
1、标记的工作过程
标记环网又称权标网,这种介质访问使用一个标记沿着环循环,当各站都没有帧发送时,标记的形式为01111111,称空标记。当一个站要发送帧时,需要等待空标记通过,然后将它改为忙标记011111110。并紧跟着忙标记,把数据发送到环上。由于标记是忙状态,所以其他站不能发送帧,必须等待。发送的帧在环上循环一周后再回到发送站,将该帧从环上移去。同时将忙标记改为空标记,传至后面的站,使之获得发送帧的许可权。
2、环上长度用位计算,其公式为
存在环上的位数等于传播延迟(5μs/km)×发送介质长度×数据速率+中继器延迟。对于1km长、1Mbps速率、20个站点,存在于环上的位数为25位。
3、站点接收帧的过程
当帧通过站时,该站将帧的目的地址和本站的地址相比较,如地址相符合,则将帧放入接收缓冲器,再输入站,同时将帧送回至环上;如地址不符合,则简单地将数据重新送入环。
4、优先级策略
标记环网上的各个站点可以成不同的优先级,采用分布式高度算法实现。控制帧的格式如下:P优先级、T空忙、M监视位、预约位。
四、光纤分布式数据接口FDDI ISO9314
1、FDDI和标记环介质访问控制标准接近,有以下几点好处:
(1)标记环协议在重负载条件下,运行效率很高,因此FDDI可得到同样的效率。
(2)使用相似的帧格式,全球不同速率的环网互连,在后面网络互加这一章将要讨论这个问题。
(3)已经熟悉IEEE802.5的人很容易了解FDDI
(4)已经积累了IEEE802.5的实践经验,特别是将它做集成电路片的经济,用于FDDI系统和元件的制造。
2、FDDI技术
(1)数据编码:用有光脉冲表示为1,没有光能量表示为0。FDDI采用一种全新的编码技术,称为4B/5B。每次对四位数据进行编码,每四位数据编码成五位符号,用光的存在和没有来代表五位符号中每一位是1还是0。这种编码使效率提高为80%。为了得到信号同步,采用了二级编码的方法,先按4B/5B编码,然后再用一种称为倒相的不归零制编码NRZI,其原理类似于差分编码。
(2)时钟偏移: FDDI分布式时钟方案,每个站有独立的时钟和弹性缓冲器。进入站点缓冲器的数据时钟是按照输入信号的时钟确定的,但是,从缓冲器输出的信号时钟是根据站的时钟确定的,这种方案使环中中继器的数目不受时钟偏移因素的限制。
3、FDDI帧格式
由此可知:FDDI MAC帧和IEEE802.5的帧十分相似,不同之处包括:FDDI帧含有前文,对高数据率下时钟同步十分重要;允许在网内使用16位和48位地址,比IEEE802.5更加灵活;控制帧也有不同。
4、FDDI协议
FDDI和IEEE802.5的两个主要区别:
(1)FDDI协议规定发送站发送完帧后,立即发送一幅新的标记帧,而IEEE802.5规定当发送出去的帧的前沿回送至发送站时,才发送新的标记帧。
(2)容量分配方案不同,两者都可采用单个标记形式,对环上各站点提供同等公平的访问权,也可优先分配给某些站点。IEEE802.5使用优先级和预约方案。
5、为了同时满足两种通信类型的要求,FDDI定义了同步和异步两种通信类型,定义一个目标标记循环时间TTRT,每个站点都存在有同样的一个TTRT值。
五、局域网标准
IEEE802委员会是由IEEE计算机学会于1980年2月成立的,其目的是为局域网内的数字设备提供一套连接的标准,后来又扩大到城域网。
1、服务访问点SAP
在参考模型中,每个实体和另一个实体的同层实体按协议进行通信。而一个系统内,实体和上下层间通过接口进行通信。用服务访问点SAP来定义接口。
2、逻辑连接控制子层LLC
IEEE802规定两种类型的链路服务:无连接LLC(类型1),信息帧在LLC实体间,无需要在同等层实体间事先建立逻辑链路,对这种LLC帧既不确认,也无任何流量控制或差错恢复功能。
面向连接LLC(类型2),任何信息帧,交换前在一对LLC实体间必须建立逻辑链路。在数据传送方式中,信息帧依次序发送,并提供差错恢复和流量控制功能。
3、介质访问控制子层MAC
IEEE802规定的MAC有CSMA/CD、标记总线、标记环等。
4、服务原语
(1)ISO服务原语类型
REQUEST原语用以使服务用户能从服务提供者那里请求一定的服务,如建立连接、发送数据、结束连接或状态报告。
INDICATION原语用以使服务提供者能向服务用户提示某种状态。如连接请求、输入数据或连接结束。
RESPONSE原语用以使服务用户能响应先前的INDIECATION,如接受连接INDICATION。
CONFIRMARION原语用以使服务提供者能报告先前的REQUEST成功或失败。
(2)IEEE802服务原语类型
和ISO服务原语类型相比REQUEST和INDICATION原语类型和ISO所用的具有相同意义。IEEE802没有REPONSE原语类型,CONFIRMATION原语类型定义为仅是服务提供者的确认。
六、逻辑链路控制协议
1、IEEE802.2
描述LAN协议中逻辑链路 LLC子层的功能、特性和协议,描述LLC子层对网络层、MAC子层及LLC子层本身管理功能的界面服务规范。
2、LLC子层界面服务规范IEEE802.2定义了三个界面服务规范:
(1)网络层/LLC子层界面服务规范;
(2)LLC子层/MAC子层界面服务规范;
(3)LLC子层/LLC子层管理功能的界面服务规范。
3、网络层/LLC子层界面服务规范
提供两处服务方式
不确认无连接的服务:不确认无连接数据传输服务提供没有数据链路级连接的建立而网络层实体能交换链路服务数据单元LSDU手段。数据的传输方式可为点到点方式、多点式或广播式。这是一种数据报服务
面向连接的服务:提供了建立、使用、复位以及终止数据链路层连接的手段。这些连接是LSAP之间点到点式的连接,它还提供数据链路层的定序、流控和错误恢复,这是一处虚电路服务。
4、LLC子层/MAC子层界面服务规范
本规范说明了LLC子层对MAC子层的服务要求,以便本地LLC子层实体间对等层LLC子层实体交换LLC数据单元。
(1)服务原语是:MA-DATA.request、MA-DATA.indication、MA-DATA.confirm
(2)LLC协议数据单元结构LLC PDU:
目的服务访问点地址字段DSAP,一个字节,其中七位实际地址,一位为地址型标志,用来标识DSAP地址为单个地址或组地址。
源服务访问点地址字段SSAP,一个字节,其中七位实际地址,一位为命令/响应标志位用来识别LLC PDU是命令或响应。
控制字段、信息字段。
5、LLC协议的型和类
LLC为服务访问点间的数据通信定义了两种操作:Ⅰ型操作,LLC间交换PDU不需要建立数据链路连接,这些PDU不被确认,也没有流量控制和差错恢复。
Ⅱ型操作,两个LLC间交换带信息的PDU之间,必须先建立数据链路连接,正常的通信包括,从源LLC到目的LLC发送带有信息的PDU,它由相反方向上的PDU所确认。
LLC的类型:第1类型,LLC只支持Ⅰ型操作;第2类型,LLC既支持Ⅰ型操作,也支持Ⅱ型操作。
6、LLC协议的元素
控制字段的三种格式:带编号的信息帧传输、带编号的监视帧传输、无编号控制传输、无编号信息传输。
带编号的信息帧传输和带编号的监视帧传输只能用于Ⅱ型操作。
无编号控制传输和无编号信息传输可用于Ⅰ型或Ⅱ型操作,但不能同时用。
信息帧用来发送数据,监视帧用来作回答响应和流控。
七、CSMA/CD介质访问控制协议
1、MAC服务规范三种原语
MA-DATA.request、MA-DATA.indication、MA-DATA.confirm
2、介质访问控制的帧结构
CSMA/CD的MAC帧由8个字段组成:前导码;帧起始定界符SFD;帧的源和目的地址DA、SA;表示信息字段长度的字段;逻辑连接控制帧LLC;填充的字段PAD;帧检验序列字段FCS。
前导码:包含7个字节,每个字节为10101010,它用于使PLS电路和收到的帧定时达到稳态同步。
帧起始定界符:字段是10101011序列,它紧跟在前导码后,表示一幅帧的开始。帧检验序列:发送和接收算法两者都使用循环冗余检验(CRC)来产生FCS字段的CRC值。
3、介质访问控制方法
IEEE802.3标准提供了介质访问控制子层的功能说明,有两个主要的功能:数据封装(发送和接收),完成成帧(帧定界、帧同步)、编址(源和目的地址处理)、差错检测(物理介质传输差错的检测);介质访问管理,完成介质分配避免冲突和解决争用处理冲突。
八、标记环介质访问控制协议
标记环局域网协议标准包括四个部分:逻辑链路控制LLC、介质访问控制MAC、物理层PHY和传输介质。
1、IEEE802.5规定了后面三个部分的标准。
LLC和MAC等效于OSI的第二层(数据链路层),PHY相当于OSI的第一层(物理层)。LLC使用MAC子层的服务,提供网络层的服务,MAC控制介质访问,PHY负责和物理介质接口。
2、介质访问控制帧结构
标记环有两个基本格式:标记和帧。在IEEE802.5中帧的传输是从最高位开始一位一位发送,而IEEE802.3和IEEE802.4正好相反,帧的传输是从最低位开始一位一位发送的,这一点对于不同协议的局域网互连时要进行转换。
3、介质访问控制方法
(1)帧发送:对环中物理介质的访问系采用沿环传递一个标记的方法来控制。取得标记的站具有发送一帧或一系列帧的机会。
(2)标记发送:在完成帧发送后,该站就要查看本站地址是否在SA字段中返回,若未查看到,则该站就发送填充,否则就发送标记。标记发送后,该站仍留在发送状态,起到该站发送的所有的帧从环上移去为止。
(3)帧接收:若帧的类型比特表示为MAC帧,则控制比特由环上所有的站进行解释。如果帧的DA字段与站的单地址、相关组地址或广播地址匹配,则把FC、DA、SA、INFO以及FS字段拷贝入接收缓冲区中,并随后转送至适当子层。
(4)优先权操作:访问控制字段中的优先权比特PPP和预约比特RRR配合工作,使环中服务优先权与环上准备发送的PDU最高优先级匹配
九、快速以太网
快速以太网的类型
快速以太网(Fast Ethernet)是一个新的IEEE局域网标准,于1995年由原来制定的以太网标准的IEEE802.3工作组完成。快速以太网正式名为100Base-T。
共享介质快速以太网和传统以太网采用同样的介质访问控制协议CSMA/CD所有的介质访问控制算法不变,只是将有关的时间参量加速10倍。
快速以太网的三种标准:100Base-
4、100Base-TX、100Base-FX
快速以太网的产品:
适配器:一边是总线结构,将数据传送至主机、中继器或HUB;另一边接到所选的介质,可以是双绞线、光纤,或者是一个介质独立接口MII,MII是用来连接外部收发器用的,其功能类似于以太网的AUI。
HUB:可分为共享机制的中继器和交换机制的交换器。
十、基于交换技术的网络
1、交换网结构
交换技术的两种主要应用形式是:折叠式主干网和高速服务器联接。
2、全双工以太网
全双工运行在交换器之间,以及交换器和服务器之间,是和交换器一起工作的链路特性,它使数据流在链路中同时两个方向流动,不是所有收发器都支持它的全双工功能。
3、在下列情况下全双工最有用:
(1)在服务器和交换器之间。这是目前全双工应用最普遍的配置。
(2)在两个交换器之间。
(3)在远离的两个交换器之间。
3、多媒体
多媒体的应用基于MPEG、JPEG、H.261等视频压缩算法。
缺点:是由网络缓存产生的延迟,一方面为了平滑抖动数据要插入足够的缓存,另一方面缓存又不能太大,以至引起无法接受的视频延迟。
对视频应用的低延迟需求有四种解决方案:
(1)采用10Mbps交换器
(2)采用100Mbps中继器
(3)用100Mbps的交换器
(4)采用流控技术
4、千兆位以太网
千兆位以太网也有铜线及光缆两种标准。
铜线标准1000Base-CX,最大传输距离,25英尺,并需用150欧姆的屏蔽双绞线STP,光缆标准1000Base-SX,850nm的短波长,300m传输距离。
1000Base-LX,1300nm的波长,550m传输距离。
十一、ATM局域网
略