第一篇:奥数不好的孩子如何备战小升初
奥数对于小升初的孩子来说是个非常重要的学科,但是有些基础不好的同学却是“谈奥数色变”。其实只要掌握恰当的学习方法,基础不好的孩子一样可以学好奥数,并在小升初中升上不错的初中。
杜绝负面的自我暗示
首先对奥数习不要抱有放弃的想法。有些同学认为奥数差一点没关系,只要英语、语文多用功就可以了,这种想法是非常错误的。教育界有一个“木桶原理”:一只木桶盛水量的多少取决于它最短的一块木板。小升初也是如此,只有各科全面发展才能受到重点中学的青睐,跟何况很多学校都喜欢要奥数好的孩子。
其次是要杜绝负面的自我暗示。临近小升初,在小学的奥数班上会有许许多多的考试,不可能每一次都取得自己理想的成绩。在失败的时候不要有“我肯定没希望了”、“我是学不好了”这样的暗示,相反地,要对自己始终充满信心,最终成功会来到你的身边。
抄笔记别丢了“西瓜”
其实小升初考察的奥数题大部分都是基础题,只要把这些基础题做好,分数便不会低了。要想做好基础题,平时上课时的听课效率便显得格外重要。一般教奥数的都是有着丰富经验的老师,他们上课时所用的讲义内容可谓是精华,认真听讲1个小时要比自己在家复习两个小时还要有效。
听课时可以适当地做些笔记,但前提是不影响听课的效果。有些同学光顾着抄下题目的步骤解法却忽略了老师解题的思路,这样就是“捡了芝麻丢了西瓜”,反而有些得不偿失。题目最好做两遍
要想学好奥数,平时的练习必不可少,但这并不意味着要进行题海战术,做练习也要讲究科学性。在选择参考书方面可以听一下老师的意见,一般来说老师会根据自己的教学方式和进度给出一定的建议,数量基本在1—2本左右,不要太多。
在选好参考书以后要认真完整地做,每一本好的参考书都存在着一个知识体系,有些同学这本书做一点,那本书做一点,到最后做了许多本书但都没有做完,无法形成一个完整的知识体系,效果反而不好。做题的时候要多做简单题,并且要定好时间,这样可以提高解题速度。
在小升初的冲刺阶段要保证1—2天做一套试卷来保持状态。最重要的是要通过做题发现并解决自己已有的问题,总结出各类题目的解题方法并且熟练掌握。
在这里有两个小建议:一是在做填空选择题时可以在旁边的空白处写一些解题过程以方便以后复习;二是题目最好做两遍以上,可以加深印象。
应考时要舍得放弃
对于大部分奥数基础不是很扎实的同学来说,放弃难题应该是一个比较明智的选择。试卷的最后两题一般比较难,奥数较弱的同学不要花太多的时间在这里,而应把精力放在前面的基础题上。
每一次考试的试卷和各校的模拟卷都是珍贵的复习资料,一定要妥善保存。
第二篇:奥数学习起步晚如何备战小升初
奥数学习起步晚如何备战小升初
奥数目前已经成为小升初中的一个重要的角色。很多的同学学习奥数起步比较晚,基础不是很好,说到奥数可能就会头大。其实只要掌握恰当的学习方法,基础不好的孩子一样可以学好奥数,并在小升初中升上不错的初中学校。下面来具体说说如何做:
一、题目最好做两遍
要想学好奥数,平时的练习必不可少,但这并不意味着要进行题海战术,做练习也要讲究科学性。根据自己的进度,找到1―2本左右,不要太多。(网校的课程中,要把例题、在线测试、周周练的题都要做对做会)。选择一些参考书后要认真完整地做,每一本好的参考书都存在着一个知识体系,有些同学这本书做一点,那本书做一点,到最后做了许多本书但都没有做完,无法形成一个完整的知识体系,效果反而不好。做题的时候要多做简单题,并且要定好时间,这样可以提高解题速度。
在小升初的冲刺阶段要保证1―2天做一套试卷来保持状态。最重要的是要通过做题发现并解决自己已有的问题,总结出各类题目的解题方法并且熟练掌握。
二、应考时要舍得放弃
对于大部分奥数基础不是很扎实的同学来说,放弃难题应该是一个比较明智的选择。试卷的最后两题一般比较难,奥数较弱的同学不要花太多的时间在这里,而应把精力放在前面的基础题上。
在对待粗心这个常见问题上,有两个建议:一是少打草稿,把步骤都写在试卷上;二是规范草稿,让草稿一目了然,这样便不太会出现看错或抄错的现象了。
每一次考试的试卷和各区的模拟卷都是珍贵的复习资料,一定要妥善保存。
三、杜绝负面的自我暗示
首先对奥数习不要抱有放弃的想法。有些同学认为奥数差一点没关系,只要英语、语文多用功就可以了,这种想法是非常错误的。教育界有一个“木桶原理”:一只木桶盛水量的多少取决于它最短的一块木板。小升初也是如此,只有各科全面发展才能受到重点中学的青睐,跟何况很多学校都喜欢要奥数好的孩子。
其次是要杜绝负面的自我暗示。临近小升初,在小学的奥数班上会有许许多多的考试,不可能每一次都取得自己理想的成绩。在失败的时候不要有“我肯定没希望了”、“我是学不好了”这样的暗示,相反地,要对自己始终充满信心,最终成功会来到你的身边。
四、小升初时抄笔记别丢了“西瓜”
其实小升初考察的奥数题大部分都是基础题,只要把这些基础题做好,分数便不会低了。要想做好基础题,平时上课时的听课效率便显得格外重要。一般教奥数的都是有着丰富经验的老师,他们上课时所用的讲义内容可谓是精华,认真听讲1个小时要比自己在家复习两个小时还要有效。
听课时可以适当地做些笔记,但前提是不影响听课的效果。有些同学光顾着抄下题目的步骤解法却忽略了老师解题的思路,这样就是“捡了芝麻丢了西瓜”,反而有些得不偿失。
第三篇:六年级小升初奥数
奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。小升初可以通过奥数这门竞赛来为自己争取到更好的机会。下面就是小编为大家梳理归纳的内容,希望能够帮助到大家。
六年级小升初奥数
1、一个两位数除72,余数是12,那么满足要求的所有两位数有几个?分别是多少?
解答:由题意知,所求的两位数应是7212=60的约数,还应大于12。在60的约数中,两位数有10、12、15、20、30、60这六个数,大于12的有:15、20、30、60这四个数。所以满足要求的两位数有4个,分别是15、20、30、60。
2、有写着5、9、17的卡片各8张,现在从中任意抽出5张,这5张卡片上的数字之和可能是()。
A、31 B、39 C、55 D、41
解答:5、9、17三个数除以4都是余1的,任取5张,也是除以4余1的,所以是D。
3、某校五年级学生排成一个实心方阵,最外一层总人数为60人,问方阵最外层每边有多少人?这个方阵共有学生多少人?
解答:方阵最外层每边人数:604+1=16(人)
整个方阵共有学生人数:1616=256(人)
4、12张乒乓球台上共有34人在打球,那么正在进行单打和双打的台子各有多少张?
解答:利用鸡兔同笼的想法,假设都在进行单打,那么应有122=24人,多出34-24=10人。把单打变为双打,每个台子需要增加2人,所以双打的台子有102=5张,单打的台子有12-5=7张。
5、一队学生站成20行20列方阵,如果去掉4行4列,那么要减少多少人?
解答:20-4=16(人),2020=400(人),1616=256(人),400-256=144(人)
6、有黑白两种棋子共300枚,按每堆3枚分成100堆。其中只有1枚白子的共27堆,有2枚或3枚黑子的共42堆,有3枚白子的与有3枚黑子的堆数相等。那么在全部棋子中,白子共有多少枚?
解答:271+432+153=158(枚)
7、有336个苹果、252个桔子、210个梨,用这些水果最多可以分成多少份同样的礼物?每份礼物中的三样水果各有多少个?
解答:(336,252)=(84,252)=84
(84,210)=(84,42)=42所以可以分成42份礼物
苹果:33642=8(个)桔子:25242=6(个)梨:21042=5(个)
8、正方形操场四周栽了一圈树,每两棵树相隔5米。甲乙二人同时从一个角出发,向不同的方向走去,甲的速度是乙的2倍,乙在拐了第一弯之后的第5棵树与甲相遇。操场四周一共栽了多少棵树?
解答:由于甲速是乙速的2倍,所以乙在拐了第一弯时,甲正好拐了两个弯,即两个人开始同时沿着最上边走。
乙走过了5棵树,也就是走过了5个间隔,所以甲走过了10个间隔,四周一共有(5+10)4=60个间隔,根据植树问题,一共栽了60棵树。
9、有甲乙丙三种货物,若购甲3件,乙7件,丙1件共需315元。若购甲4件,乙10件,丙1件共需420元。现购甲乙丙各一件共需多少元?
解答:设甲、乙、丙每件分别为x、y、z元
3x+7y+z=315
4x+10y+z=420
可知x+3y=105,2x+6y=210,x+y+z=105,即三种货物各一件需要105元。
10、某年一月份有4个星期四、5个星期五,这一年1月4日是星期几?
解答:画一个日历表,从表中马上看出:1月4日星期一。
说明:根据“有五个星期五”,可知从第一个星期五到第五个星期五之间共有29天。31-29=2(天),这多余的2天是在第一个星期五前,还是在第五个星期五之后呢?如果在第一个星期五之前,那就多一个星期四,这与题中条件不符。
小学六年级奥数小升初测试题
1、一个三位数除以43,商是a,余数是b(a、b都是整数)则a+b的值是。
2、上底是10厘米,下底是25厘米的梯形,如果下底减少8厘米,而上底不变,面积就减少84平方厘米,那么原梯形的面积是平方厘米。
3、有甲、乙、丙三个数,甲、乙两数的和是147,丙、乙两数的和是123,甲、丙两数的和是132,则甲数是,乙数是,丙数是。
4、用一个小数减去一个末尾数字不为零的整数,如果给整数添上一个小数点,使它变成小数,差就增加154.44,那么这个整数是。
5、一个表面积为54平方分米的正方体,切成两个完全相等的长方体后,表面积总和是。
6、把一根长3米的长方体木料,平均锯成3段,表面积增加了2.4平方米,这根木料的体积是立方米。
7、有一筐苹果,第一次取出全部的一半多2个,第二次取出余下的一半少2个,筐中还剩20个,筐中原有苹果个。
8、小军期末考试,语文、英语(论坛)、科学三门的平均成绩是78分,数学成绩公布后,四门的平均成绩提高了5分,小军数学考了分。
二、应用题(每题6分,共60分)
1、甲、乙两列火车从相距470千米的两城相向而行,甲车每小时行驶38千米,乙车每小时行驶40千米。乙车先出发两小时后,甲车才出发,甲车行驶多少小时后与乙车相遇?
2、某小队学生参加工厂劳动,平均每人生产76个零件,已知每个人至少做70个,其中一人做了88个,如果不把这个同学计算在内,那么平均每人做74个,这个小队做得最多的同学可以做多少个零件?
3、已知两个自然数的积是5766,它们的公因数是31,求这两个数。
4、把一根长2.4米,宽0.8米,高0.4米的木料锯成体积相等的两份,它的表面积最少增加多少平方米?
5、甲、乙、丙、丁四个数,每次去掉一个数,将其余三个数求平均数,这样算了四次,得到以下四个数:45,60,65,70,求甲、乙、丙、丁四个数的平均数。
6、小明前几次数学测验的平均成绩是84分,这次要考100分才能把平均成绩提高到86分,问这次是第几次测试?
7、小红每分钟行80米,小英每分钟行60米,两人在同一地点同时相背而行,走了三分钟后,小红调头去追小英,追上小英时,两人各行了多少米?
8、张老师找甲、乙、丙三名学生来办公室谈话,甲要10分钟谈完,乙要12分钟谈完,丙要8分钟谈完,怎么样安排三人的谈话顺序,使三人花的总时间最少?最少是几分钟?
小升初面试经典奥数思维题
1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?
2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?
3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?
4、李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?
5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)
6、学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?
7、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
8、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?
9、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?
10、一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?
11、某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?
12、五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?
13、某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?
14、妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?
15、学校组织外出参观,参加的师生一共360人。一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。都乘卡车需要几辆?都乘大客车需要几辆?
16、某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?
17、某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?
18、某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?
19、学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?
20、两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?
21、一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千米?
22、一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?
23、用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?
24、小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?
25、有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?
26、把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?
27、一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?
28、李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?
29、甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?
30、有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?
31、在一根粗钢管上接细钢管。如果接2根细钢管共长18米,如果接5根细钢管共长33米。一根粗钢管和一根细钢管各长多少米?
32、水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?
33、学校举办歌舞晚会,共有80人参加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?
34、学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人?
35、学校买了4张桌子和6把椅子,共用640元。2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元?
36、父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?
37、有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?
38、光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答?
39、甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒?
40、一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分?
41、小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。问小明从家里到学校有多远?
42、有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?
43、有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长方形纸板原来的面积是多少?
44、妈妈买苹果和梨各3千克,付出20元找回7.4元。每千克苹果2.4元,每千克梨多少元?
45、甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇。甲的速度是乙的2倍,甲乙两人每小时各行多少千米?
46、盒子里有同样数目的黑球和白球。每次取出8个黑球和5个白球,取出几次以后,黑球没有了,白球还剩12个。一共取了几次?盒子里共有多少个球?
47、上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。
48、父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?
49、王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。问这盒铅笔最少有多少支?
50、一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。求这块平行四边形地原来的面积?
小升初的奥数题精选
1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?
考点:列方程解含有两个未知数的应用题;差倍问题。
专题:和倍问题;列方程解应用题。
分析:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据等量关系:“一张桌子比一把椅子多288元”,列出方程即可解答.解答:解:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据题意可得方程:
10x﹣x=288,9x=288,x=32;
则桌子的价格是:32×10=320(元),答:一张桌子320元,一把椅子32元.点评:此题也可以用算术法计算:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10﹣1)倍,由此可求得一把椅子的价钱.再根据椅子的价钱,就可求得一张桌子的价钱,所以:一把椅子的价钱:288÷(10﹣1)=32(元)一张桌子的价钱:32×10=320(元);答:一张桌子320元,一把椅子32元.2.3箱苹果重45千克.一箱梨比一箱苹果多5千克,3箱梨重多少千克?
考点:整数、小数复合应用题。
专题:简单应用题和一般复合应用题。
分析:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量.据此解答
解答:解:45+5×3,=45+15,=60(千克);
答:3箱梨重60千克.点评:本题的关键是先求出3箱梨比3箱苹果多的重量,然后再根据加法的意义求出3箱梨的重量.3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇.甲比乙速度快,甲每小时比乙快多少千米?
考点:简单的行程问题。
专题:行程问题。
分析:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇.即可求甲比乙每小时快多少千米.解答:解:4×2÷4
=8÷4,=2(千米);
答:甲每小时比乙快2千米.点评:解答此题的关键是确定甲比乙在4小时内多走了多少千米,然后再根据路程÷时间=速度进行计算即可.4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱.每支铅笔多少钱?
考点:整数、小数复合应用题。
专题:简单应用题和一般复合应用题。
分析:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱.据此解答.解答:解:0.6÷[13﹣(13+7)÷2],=0.6÷[13﹣20÷2],=0.6÷3,=0.2(元);
答:每支铅笔0.2元.点评:本题的关键是求出李军给张强0.6元钱,是几支铅笔的价钱.5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸.由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点.甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)
考点:简单的行程问题。
专题:行程问题。
分析:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间.根据两车的速度和行驶的时间可求两车行驶的总路程.解答:解:下午2点是14时.往返用的时间:14﹣8=6(时)
两地间路程:(40+45)×6÷2
=85×6÷2,=255(千米);
答:两地相距255千米.点评:解答此题的关键是确定两车行驶的时间,然后再根据公式速度×时间=路程计算出两车行驶的总路程,再除以就是两地相距的距离.6.学校组织两个课外兴趣小组去郊外活动.第一小组每小时走4.5千米,第二小组每小时行3.5千米.两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组.多长时间能追上第二小组?
考点:追及问题。
专题:行程问题。
分析:第一小组停下来参观果园时间,第二小组多行了[3.5﹣(4.5﹣3.5)]千米,也就是第一组要追赶的路程.又知第一组每小时比第二组快(4.5﹣3.5)千米,由此便可求出追赶的时间.解答:解:第一组追赶第二组的路程:
3.5﹣(4.5﹣3.5),=3.5﹣1,=2.5(千米);
第一组追赶第二组所用时间:
2.5÷(4.5﹣3.5),=2.5÷1,=2.5(小时);
答:第一组2.5小时能追上第二小组.点评:此题属于复杂的追击应用题,此类题的解答方法是根据“追及路程÷速度差=追及时间”,代入数值,计算即可
7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨.甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
考点:列方程解含有两个未知数的应用题;和倍问题。
专题:简单应用题和一般复合应用题;和倍问题。
分析:设乙仓库的存粮是x吨,则甲仓库的存粮是4x﹣5吨,则根据等量关系:“两个仓库的存粮一共有32.5×2=65吨”,由此列出方程解决问题.解答:解:设乙仓库的存粮是x吨,则甲仓库的存粮是4x﹣5吨,根据题意可得方程:
x+4x﹣5=32.5×2,5x=70,x=14,则甲仓库存粮:14×4﹣5=51(吨),答:甲仓库有51吨,乙仓库有14吨.点评:此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米.甲、乙两队每天共修多少米?
考点:简单的工程问题。
专题:工程问题。
分析:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的.由此可求出乙队每天修的米数,进而再求两队每天共修的米数.解答:解:乙每天修的米数:
(400﹣10×4)÷(4+5),=(400﹣40)÷9,=360÷9,=40(米);
甲乙两队每天共修的米数:
40×2+10=80+10=90(米);
答:两队每天修90米.点评:本题不能直接求出甲乙的工作效率和,要采取假设法,假设甲乙的工作效率相同,找出由此引起的工作量的变化,再根据工作效率=工作量÷工作时间求解.9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?
考点:简单的等量代换问题。
专题:简单应用题和一般复合应用题。
分析:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价.解答:解:每把椅子的价钱:
(455﹣30×6)÷(6+5),=(455﹣180)÷11,=275÷11,=25(元);
每张桌子的价钱:
25+30=55(元);
答:每张桌子55元,每把椅子25元.点评:解答此题的关键是根据“每张桌子比每把椅子贵30元,”得出总价里面减去每张桌子多的30元,剩下的就相当于是(6+5)=11把椅子的价格,从而求出椅子的价格即可解答问题.10.一列火车和一列慢车,同时分别从甲乙两地相对开出.快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?
考点:简单的行程问题。
专题:行程问题。
分析:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程.解答:解:(75+65)×[40÷(75﹣65)],=140×[40÷10],=140×4,=560(千米);
答:甲乙两地相距560千米.点评:解题的关键是理解用快车比慢车多行的路程÷两车的速度差=两车行驶的时间,再根据速度和×两车行驶的时间求出两地的距离.11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元.运后结算时,共付运费4400元.托运中损坏了多少箱玻璃?
考点:盈亏问题。
专题:简单应用题和一般复合应用题。
分析:根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数.根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,则损坏一个就少收运费100+20元,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱.解答:解:(20×250﹣4400)÷(100+20),=600÷120,=5(箱)
答:损坏了5箱.点评:明确损坏一个就少收运费100+20元是完成本题的关键.12.五年级一中队和二中队要到距学校20千米的地方去春游.第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米.第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?
考点:追及问题。
专题:行程问题。
分析:因第一中队早出发2小时比第二中队先行4×2千米,即此时两个中队之间的距离是8千米,而每小时第二中队比第一中队多行(12﹣4)千米,由此即可求第二中队追上第一中队的时间.解答:解:4×2÷(12﹣4);
=4×2÷8;
=1(时);
答:第二中队1小时能追上第一中队.点评:本题体现了追及问题的基本关系式:路程差÷速度差=追及时间.13.某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天.这堆煤有多少千克?
考点:有关计划与实际比较的三步应用题。
专题:简单应用题和一般复合应用题。
分析:由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500﹣1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量.解答:解:原计划烧煤天数:
(1500+1000)÷(1500﹣1000),=2500÷500,=5(天);
这堆煤的重量:
1500×(5﹣1),=1500×4,=6000(千克);
答:这堆煤有6000千克.点评:解答此题的关键是求原计划烧的天数,用前后烧煤总数相差除以每天烧煤量之差即原计划烧的天数,进而求出这堆煤的数
六年级小升初奥数
第四篇:经典小升初奥数题及答案
都江堰戴氏精品堂数学教师辅导讲义
学生姓名:_______ 任课教师:何老师(Tel:***)
1、某次数学测验共20题,作对1题得5分,做错1题扣1分,不做得0分,小华得了76分,他对了多少题?
2、一班有学生45人,男生2/5和女生的1/4参加了数学竞赛,参赛的共有15人,男女生各几人
3、一列火车长200米,通过一条长430的隧道用了42秒,以同样的速度通过某站台用25秒,这个站台长多少米?
4、一项工作,甲单独做需15天完成,乙单独做需12天完成。这项工作由甲乙两人合做,并且施工期间乙休息7天,问几天完成?
5、本骑车前往一座城市,去时的速度为x,回来时的速度为y。他整个行程的平均速度是多少?
6、游泳池里,参加游泳的学生,小学生占30%,又来一批学生后,学生总数增加20%,小学生占学生总数的40%,小学
7、将37分为甲、乙、丙三个数,使甲、乙、丙三个数的乘积为1440,并且甲、乙两数的积比丙数多12,求甲、乙、丙各是几?
8、在800米环岛上,每隔50米插一面彩旗,后来又增加了一些彩旗,就把彩旗的间隔缩短了,起点的彩旗不动,重新插后发现,一共有四根彩旗没动,问现在的彩旗间隔多少米?
9、小学组织春游,同学们决定分成若干辆至多可乘32人的大巴车前去。如果打算每辆车坐22个人,就会有一人没有座位;如果少开一辆车,那么,这批同学刚好平均分成余下的大巴。那么原来有多少同学?多少辆大巴?
10、一块正方体木块,体积是1331立方厘米。这块正方体木块的棱长是多少厘米?(适于六年级)
11、李明是个集邮爱好者。他集的小型张是邮票总数的十一分之一,后来他又收集到十五张小型张,这时小型张是邮票总数的九分之一,李明一共收集邮票多少张
12、两堆沙,第一堆25吨,第二堆21吨。这两堆中各用去同样多的一部分后,第二堆剩下的是第一堆的3/4,每堆用多
13、幼儿园买来的苹果是梨的3倍,吃掉10个梨和6个苹果后,还有苹果正好是梨的5倍。原来买来苹果和梨共多少个?
14、在一个圆里画一个最大的正方形,已知圆的面积是628平方厘米,求正方形的面积。
15、在一个正方形内画一个最大的圆,已知正方形的面积是20平方厘米,圆的面积是多少?
16、小明看一本故事书,第一天看的页数与总页数的比是3:7,如果再看15页,正好是这本书的一半,这本书有多少页?
17、某服装店出售某种服装,已知售价比进价高20%以上才能出售。为了获得更高的利润,该店老板以高出进价80%的格标价。若你想买下标价360元的这种服装,店老板最多降价多少元?
18、李大爷靠墙围了一个半径是10米的半圆形养鸡场,用了多长的篱笆?面积是多少?
19、甲书架上的书是乙书架上的5分之4,从这两个书架上各借出112本后,甲书架上的书是乙书架上的7分之4,原来甲、乙两个书架各有多少本书?(解方程,要有过程)
20、六1班订阅数学报,订窗报纸人数占年级人数的百分之四十,订数学报人数占订阅人数的百分之四十订语文报人数 的四分之三,两报都订的有15人,全年级有几人
21、六年级有三个班,一班占全年级的1/3,二班和三班的比是1:13,二班比三班少8人,三个班各有几人?
22、张叔叔家种月季花36棵,种菊花的棵树是月季花的53,种兰花的棵树是菊花的,128张叔叔家种了多少棵兰花(40棵)23、4吨葡萄在新疆测得含水量是99%,运抵南京后测得含水量是98%,问葡萄运抵南京后还剩几吨?
24、一块长方形试验田,长和宽各增加3米,它的面积就增加99平方米。现在要在扩建后的试验田四周围上一圈篱笆,25、三角形三条边分别是3厘米.4厘米.5厘米。这个三角形斜边上的高是多少厘米?
26、一辆汽车每小时行40千米,自行车每行1千米比汽车多用2.5分钟,自行车速度是汽车速度的百分之几?
28、一个圆柱形油桶的容积是60立方分米,底面积是7.5平方分米,装了五分之三桶油,油面高多少分米?30、用五个长10厘米,宽5厘米,高4厘米的长方体拼成一个表面积最大的长方体,它的表面积是多少?
31、用3个长5厘米、宽3厘米、高2厘米的长方体拼成一个表面积最小的长方体,32、同学们从学校去公园,走了全程的百分之八十时,正好到达少年宫;沿原路返回时行了全程的四分之一就过了少年宫0.3千米,学校离公园多少千米?
33、一列客车长200m,一列货车长280m,它们在平行的轨道上相向行驶,从相遇到车尾离开需18s.已知客车与货车的速度为5:3,求两车每秒各行多少千米?
34、5名同学一个组去参观少年宫,正好分成4组,每组一位教师带队,参观少年宫的一共有多少人?
35、六年级(1)班原来有学生54人,男生占全班人数的5/9,后来男生转走了几人,这时男生占全班的13/25,问男生转走了几人?
36、小猴子扒了50个香蕉,它很贪吃,每走1米就吃一个,猴子家离树林50米,最多能运回家多少根香蕉?
37、五年级一班有学生45人,其中男生人数比女生多1/7,后来又转来男生若干人,这时男生和女生人数的比是9:7,现在全班有学生多少人?
38、有一张宽6厘米,长12厘米的长方形铁皮,用它做成一个长方形无盖的盒子,盒子的容积可能是多少?(长、宽、高均为整厘米)
40、一列客车长200m,一列货车长280m,它们在平行的轨道上相向行驶,从相遇到车尾离开需18s.41、一本书的中间被撕掉了一张,佘下的各页码数的和正好是1200。这本书有()页,撕掉的一张上的页码是()和()
42、有3个非零数字,能组成的所有的三位数之和是3108,这3个数字的和是()
43、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙是共用8小时,水速每小时3千米,它从乙地返回甲地用()小时?
44、圆锥形容器中装有2升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?
45、修一条路,第一天修了全长的1/2多2千米,第二天修了余下的1/3还少1千米,第三天修了全长的1/4多1千米,这时还剩20千米,求公路总长。
46、一对孪生姐妹今年的年龄的和、差、积、商相加的和为100,她们今年多少岁? 年龄为X,则:
47、将14拆成几个自然数的和,再求出这些数的乘积,可以求出的最大乘积是多少?
48、只布袋中装有大小相同,但颜色不同的手套若干只。已知手套的颜色有黑白灰三种。最少要取多少只手套才有保证有3副手套是同色的?
49、一个时钟的时针长20厘米,如果走一昼夜,那么它的尖端所走过的路程有多长?时针所扫过的面积有多大?
50、参加数学竞赛的男生比女生多28人,女生全部优胜,男生的3/4得优胜,男女生各优胜的共42人,求男女生参加竞赛的各多少人?
过桥问题(1)
1.一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?
2.一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?
3.一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?和倍问题
1.秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?
2.甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少?
3.弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?
4.甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?
第五篇:小升初奥数题
过桥问题(1)
1.一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?
分析:这道题求的是通过时间。根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。路程是用桥长加上车长。火车的速度是已知条件。
总路程:(米)
通过时间:(分钟)
答:这列火车通过长江大桥需要17.1分钟。
2.一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?
分析与解答:这是一道求车速的过桥问题。我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。
总路程:(米)
火车速度:(米)
答:这列火车每秒行30米。
3.一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?
分析与解答:火车过山洞和火车过桥的思路是一样的。火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程。
总路程:
山洞长:(米)答:这个山洞长60米。
和倍问题
1.秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?
我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)
(2)秦奋的年龄:40÷5=8岁
(3)妈妈的年龄:8×4=32岁
综合:40÷(4+1)=8岁
8×4=32岁
为了保证此题的正确,验证
(1)8+32=40岁
(2)32÷8=4(倍)计算结果符合条件,所以解题正确。
2.甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少? 已知两架飞机3小时共飞行3600千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和。看图可知,这个速度和相当于乙飞机速度的3倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度。甲乙飞机的速度分别每小时行800千米、400千米。
3.弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?
思考:(1)哥哥在给弟弟课外书前后,题目中不变的数量是什么?
(2)要想求哥哥给弟弟多少本课外书,需要知道什么条件?
(3)如果把哥哥剩下的课外书看作1倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩下的课外书的几倍?
思考以上几个问题的基础上,再求哥哥应该给弟弟多少本课外书。根据条件需要先求出哥哥剩下多少本课外书。如果我们把哥哥剩下的课外书看作1倍,那么这时弟弟的课外书可看作是哥哥剩下的课外书的2倍,也就是兄弟俩共有的倍数相当于哥哥剩下的课外书的3倍,而兄弟俩人课外书的总数始终是不变的数量。
(1)兄弟俩共有课外书的数量是20+25=45。
(2)哥哥给弟弟若干本课外书后,兄弟俩共有的倍数是2+1=3。
(3)哥哥剩下的课外书的本数是45÷3=15。
(4)哥哥给弟弟课外书的本数是25-15=10。
试着列出综合算式:
4.甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?
根据甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,可求出这时甲、乙两库共存粮多少吨。根据“这时甲库存粮是乙库存粮的2倍”,如果这时把乙库存粮作为1倍,那么甲、乙库所存粮就相当于乙存粮的3倍。于是求出这时乙库存粮多少吨,进而可求出乙库原来存粮多少吨。最后就可求出甲库原来存粮多少吨。
甲库原存粮130吨,乙库原存粮40吨。
列方程组解应用题
(一)1.用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?
依据题意可知这个题有两个未知量,一个是制盒身的铁皮张数,一个是制盒底的铁皮张数,这样就可以用两个未知数表示,要求出这两个未知数,就要从题目中找出两个等量关系,列出两个方程,组在一起,就是方程组。
两个等量关系是:A做盒身张数+做盒底的张数=铁皮总张数
B制出的盒身数×2=制出的盒底数 用86张白铁皮做盒身,64张白铁皮做盒底。
奇数与偶数
(一)其实,在日常生活中同学们就已经接触了很多的奇数、偶数。
凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数。
因为偶数是2的倍数,所以通常用 这个式子来表示偶数(这里 是整数)。因为任何奇数除以2其余数都是1,所以通常用式子 来表示奇数(这里 是整数)。
奇数和偶数有许多性质,常用的有:
性质1 两个偶数的和或者差仍然是偶数。
例如:8+4=12,8-4=4等。
两个奇数的和或差也是偶数。
例如:9+3=12,9-3=6等。
奇数与偶数的和或差是奇数。
例如:9+4=13,9-4=5等。
单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。
性质2 奇数与奇数的积是奇数。
偶数与整数的积是偶数。
性质3 任何一个奇数一定不等于任何一个偶数。
1.有5张扑克牌,画面向上。小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗? 同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。要想使5张牌的画面都向下,那么每张牌都要翻动奇数次。
5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下。而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数。
所以无论他翻动多少次,都不能使5张牌画面都向下。2.甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒。那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?
不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒。所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子。
如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个。否则甲盒子中的黑子数不变。也就是说,李平每次从甲盒子拿出的黑子数都是偶数。由于181是奇数,奇数减偶数等于奇数。所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子。
奥赛专题--称球问题
例1 有4堆外表上一样的球,每堆4个。已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。
解 :依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。
解 :第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。
第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。
第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。
例3 把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。
解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。把A、B两组分别放在天平的两个盘上去称,则
(1)若A=B,则A、B中都是正品,再称B、C。如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。如B<C,仿照B>C的情况也可得出结论。
(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。
(3)若A<B,类似于A>B的情况,可分析得出结论。奥赛专题--抽屉原理
【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么?
【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。
【例 2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么? 【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。
【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?
【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。