第一篇:DSP学习总结
DSP学习总结
根据一学期以来对DSP这门课程的学习,学到了很多DSP相关的知识。了解了如何根据实际需求选择DSP芯片,也知道了C54x的汇编和链接过程,还掌握了C54x的寻址方式。对于老师的授课方法也有一定的见解。
开始学DSP的时候比较着急,因为也感觉什么都不会,不知道从哪里下手。手上的资料只有书,后来去图书馆看了两本,一本是《DSP原理与开发》,除了有详细的理论说明之外,还会在每个章节之后配上一个例程,缺点就是错误也不少,估计时间太仓促,校对没做好。另一本书是清华大学出版社的《TMS320C28X系列DSP的CPU与外设》,是从TI的英文的技术手册翻译过来的,分上、下两册,可以作为工具书,很实用,缺点是没有例子。书看了一两遍,觉得还是一头雾水。后来有相应的实验开课,慢慢对DSP有点了解了,刚开始都不知道怎么建PROJECT,后来问了同学,然后再看TI的例程,仿照它的程序框架,边看例程,边对着实验指导书,看得主要是如何初始化,需要对每个外设进行哪些寄存器的初始化,寄存器为什么这样设置,程序如何进中断,如何出中断等等。边看书边做实验,效率会高很多,也就能慢慢理解了。
对于刚学DSP的新手我觉得掌握一些初级知识就差不多了。
第一步:硬件入门。1.先学习DSP的硬件基础:了解CPU结构、中断、EMIF、HPI、GPIO、SPI、Timer、供电方式、时钟;2.了解DSP互连的存储器:SDRAM、FLASH、FIFO、双口RAM、SDSRAM等不需深入研究;3.了解CPLD/FPGA的硬件结构、连接原理、VerilogHDL编程语言需深入研究;4.了解DSP Bootloader不需深入研究;5.了解DSP和外部通信的接口:PCI、USB、LAN、UART等,有时间可以看看DM642的VideoPort
第二步:工具入门。1.学习数字电路、模拟电路、电路分析的知识;2.学好一种PCB绘制软件如Protel DXP2006;3.学习信号完整性、学习传输线理论,特性阻抗知识;
关于老师上课的方式我认为:1.太多的理论知识枯燥乏味,因为有实验课,我觉得老师可以根据实验要做的内容在课堂上深入讲解,这样在讲述的同时能让同学们认真听,认真记以便于实验课程的顺利完成,比纯理论效果会好点。2.课上应该多讲解一些例子,由浅而深,我觉得上课关键是调动同学的积极性,能吸引学生的很多是夹杂着现实生活中的事,中国的DSP才刚刚起步,发展正方兴未艾,严格意义上符合DSP两大核心特征的公司,更是非常之少,整个国内网络展示广告领域对于DSP的理解都远远没有达到普及的程度,有很大的发展潜力,让同学们意识到学习DSP是有用的。
第二篇:DSP学习小结
根据一学期以来对DSP这门课程的学习,学到了很多DSP相关的知识。了解了如何根据实际需求选择DSP芯片,也知道了C54x的会变和链接过程,还掌握了C54x的寻址方式,尤其是直接和简介寻址。在参考技术手册时也能读懂C54x的汇编和C例程,了解C54x的终端系统和片内外设的控制方式。
DSP是Demand-Side Platform的缩写,即需求方平台。这一概念起源于网络广告发达的欧美,是伴随着互联网和广告业的飞速发展新兴起的网络广告领域。它是一种独特的微处理器,是以数字信号来处理大量信息的器件。其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,源源超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。它的强大数据处理能力和高运行速度,是最值得称道的两大特色。
DSP核心特征:一个真正意义的DSP,必须拥有两个核心特征,一是拥有强大的RTB(Real-Time Bidding)的基础设施和能力,二是拥有先进的用户定向(AudienceTargeting)技术。
DSP系统的设计还没有非常好的正规设计方法。在设计DSP系统之前,首先必须根据应用系统的目标确定系统的性能指标、信号处理 的要求,通常可用数据流程图、数学运算序列、正式的符号或自然语言来描述。第二步是根据系统的要求进行高级语言的模拟。
在完成第二步之后,接下来就可以设计实时DSP系统,实时DSP系统的设计包括硬件设计和软件设计两个方面。
系统的软件和硬件分别调试完成后,就可以将软件脱离开发系统而直接在应用系统上运行。
DSP优点是对元件值的容限不敏感,受温度、环境等外部因素影响小;容易实现集成;VLSI可以分时复用,共享处理器;方便调整处理器的系数实现自适应滤波;可实现模拟处理不能实现的功能:线性相位、多抽样率处理、级联、易于存储等;可用于频率非常低的信号。
DSP缺点是需要模数转换;受采样频率的限制,处理频率范围有限;数字系统由耗电的有源器件构成,没有无源设备可靠。但是其优点远远超过缺点。
目前,中国的DSP才刚刚起步,发展正方兴未艾。但严格意义上符合DSP两大核心特征的公司,更是非常之少,整个国内网络展示广告领域对于DSP的理解都远远没有达到普及的程度。
第三篇:Dsp学习笔记
GPIO作为通用I/O口使用
a)EALLOW;//防止私自写或覆盖寄存器的内容,加了这句,接下来可以操作寄存器了 b)GpioCtrlRegs.GPAMUX1.bit.GPIO0 = 0;// GPIO0复用为普通I/O功能 c)GpioCtrlRegs.GPADIR.bit.GPIO0 = 1;// 1,设置为输出;0设置为输入 d)EDIS;//加了这句,接下来不可以操作寄存器
注:EALLOW,EDIS总是成对出现中断过程(代码以配置SCIB模块的接收中断为例,LSPCLK是37.5MHz)
中断共分三级,1,外设级;2,PIE级;3,CPU级;外设级的中断标志必须手动清零;PIE级和CPU级的中断标志位由硬件自动清零。中断响应例程:
第一步,配置中断源,即允许产生什么类型点中断。例如,定时器中断,串口中断,外部中断等。ScibRegs.SCICTL2.bit.RXBKINTENA =1;允许接收中断
第二步,配置PIE(外部中断扩展)
a)InitPieCtrl();//初始化Pie控制
b)InitPieVectTable();//初始化Pie向量表控制
c)EALLOW;
d)PieVectTable.SCIRXINTB=&scibreceive;//指定中断服务程序地址e)EDIS;
f)PieCtrlRegs.PIECTRL.bit.ENPIE=1;//使能从PIECTRL中读取中断向量 g)PieCtrlRegs.PIEIER9.bit.INTx3=1;//使能SCIB的接收中断
h)IER |= M_INT9;//允许外部中断
i)EINT;
j)ERTM;
第三步,中断响应
在中断服务程序里,必须用PieCtrlRegs.PIEACK.all = PIEACK_GROUP9;//清楚中断已响应标识,再写自己等程序代码串口配置
InitScibGpio();scib_echoback_init();AD转换
InitAdc();//允许ADC时钟,带隙和参考电路上电,核中模拟电路上电
AdcRegs.ADCTRL2.all = 0x2000;//ADC模块开始转换
程序在FLASH运行时,需要加如下两句代码:(不知道具体原因)
MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);InitFlash();
第四篇:DSP各种知识点总结
DSP芯片的特点:(1).哈佛结构(程序空间和数据空间分开)(2).多总线结构.(3)流水线结构(取指、译码、译码、寻址、读数、执行)(4)多处理单元.(5)特殊的DSP指令(6).指令周期短.(7)运算精度高.(8)硬件配置强.(9)DSP最重要的特点: 特殊的内部结构、强大的信息处理能力及较高的运行速度。2 三类TMS320:(1)TMS320C2000适用于控制领域(2)TMS320C5000应用于通信领域(3)TMS320C6000应用于图像处理 DSP总线结构: C54x片内有8条16位主总线:4条程序/数据总线和4条对应的地址总线。1条程序总线(PB):传送自程序储存器的指令代码和立即操作数。3条数据总线(CB、DB、EB):CB和EB传送从数据存储器读出的操作数;EB传送写到存储器中的数据。4条地址总线(PAB、CAB、DAB、EAB)传送相应指令所需要的代码 4存储器的分类: 64k字的程序存储空间、64K字的数据存储空间和64K字的I/O空间(执行4次存储器操作、1次取指、2次读操作数和一次写操作数。
5存储器空间分配 片内存储器的形式有DARAM、SARAM、ROM。RAM安排到数据存储空间、ROM构成程序存储空间。(1)程序空间:MP/MC=1
40000H~FFFFH 片外
MP/MC=0 4000H~EDDDH 片外
FF00H~FFFFH 片内 OVLY=1 0000H~007FH 保留
0080H~007FH 片内
OVLY=0 0000H~3FFFH片外(2)数据空间:DROM=1 F000H~F3FFH 只读空间 FF00H~FFFH保留
DROM=0 F000H~FEFFH 片外
6数据寻址方式
(1)立即寻址(2)绝对寻址<两位>(3)累加器寻址(4)直接寻址@<包换数据存储器地址的低7位>优点:每条指令只需一个字(5)间接寻址*按照存放某个辅助寄存器中的16位地址寻址的AR0~AR7(7)储存器映像寄存器寻址(8)堆栈寻址
7寻址缩写语 Smem:16位单寻址操作数 Xmem Ymem 16位双
dmad pmad PA16位立即数(0-65535)scr源累加器 dst目的累加器 lk 16位长立即数
8状态寄存器ST0 15~13ARP辅助寄存器指针 12TC测试标志位 11C进位位 10累积起A的一出标志位OVA 9OVB 8~0DP数据存储器页指针
9状态寄存器ST1 CPL:直接寻址编辑方式
INTM =0开放全部可屏蔽中断 =1关闭
C16 双16位算数运算方式
10定点DSP 浮点DSP:定点DSP能直接进行浮点运算,一次完成是用硬件完成的,而浮点需要程序辅助。
11重复操作:重复执行单条指令,程序块重复操作(可以响应中断)12复位操作:处理器从FF80h处取指 13中断:两大类:(1)可屏蔽:立即响应(2)非屏蔽:(满足下列条件才能响应)①优先级别最高②状态寄存器ST1中的INTM位为0③中断屏蔽寄存器IMR中的相应位为1 三个阶段:(1)接受中断请求(2)响应中断(3)执行中断服务程序
14复位的三种方式:上电复位,手动复位,软件复位
15常用汇编命令:.bss为未初始化的变量保留空间;usect在一个未初始化的有命名的段中为变量保留空间;.data通常包含了初始化的数据;.sect定义已初始化的带命名段,其后的数据存入该段;.text该段包含了可执行的代码;title.接在后面的是程序名;int用来设置一个或多个16位无符号整型常数;word用来设置一个或多个16位带符号整型常数 16.DSP系统的特点:(1)精度高、抗干扰能力强,稳定性好。(2)编程方便、易于实现复杂算法(含自适应算法)。(3)可程控。(4)接口简单。(5)集成方便。
17.CPU部分:①先进的多总线结构(1条程序总线、3条数据总线和4条地址总线)。②位算术逻辑运算单元(ALU),包括1个40位桶形移位寄存器和2个独立的40位累加器。③17×17位并行乘法器,与40位专用加法器相连,用于非流水线式单周期乘法/累加(MAC)运算。④比较、选择、存储单元(CSSU):用于加法/比较选择。⑤指数编码器:可以在单个周期内计算40位累加器中数值的指数。⑥双地址生成器:包括8个辅助寄存器和2个辅助寄存器算术运算单元(ARAU)存储器空间
192 K字可寻址存储空间:64 K字程序存储空间、64 K字数据存储空间及64 K字I/O空间 ⑦功能结构上分:运算部件和控制部件 18.累加器:目的寄存器 用来存放从ALU或乘法器/加法器单元输出的数据。19.桶形移位器:立即数;asm,T低6位
20.TMS320C54X有两个通用引脚bio监视外部 xf 握手信号
21.COFF3.公共目标文件格式——COFF COFF的核心概念:使用代码块(段)和数据块(段)编程,而不是指令或数据简单的顺序编写。段的定义:就是在编写汇编语言源程序时,采用的代码块或数据块,它占据存储器的某个连续空间。21.COFF包含的三个缺省段 1text 2data 3bss 22.DSP指令系统:助记符和代数
23.Dsp开发工具:代码生成工具和代码调节工具 24.Dsp按照用途分类:通用型和专用型
AR3+是加2或者减2 25.1狭义理解为数字信号处理器,广义理解为数字信号处理方法
26.程序计数器的直可通过复位操作、顺序执行指令、分支转移、累加器转移、块重复、子程序调用、从累加器调用子程序、中断操作改变
27.MMR写操作流水线冲突时,采用推荐指令和插入空操作指令
28.定时器: 3个16位存储器映射寄存器组成:定时器寄存器(TIM)、定时器周期寄存器(PRD)、定时器控制寄存器(TCR)。
.title “example.asm”
;用双引号括起的源程序名
.mmregs
;定义存储器映射寄存器的替代符号
STACK
.usect “STACK”, 10h
;在数据存储器中留出16个单元作为
;堆栈区,名为STACK
.bss
a, 4
.bss
x, 4
;在数据存储器中空出4个存储单元存放
;变量x1,x2,x3和x4..bss
y, 1
.def
start
;在此模块中定义,可为别的模块引用
.data
;紧跟其后的是已初始化数据
table:
.word 1, 2, 3, 4
;在程序存储器标号为table开始的8个单
.word 8, 6, 4, 2
;元存放初始化数据
.text
;紧跟其后的是汇编语言程序正文
start:
STM
#0, SWWSR
;SWWSR置0,不插等待周期
S
STM
#STACK+10H,SP
;设置堆栈指针
STM
#a, AR1
;AR1指向a的首地址
RPT
#7
;从程序存储器向数据存储器
MVPD
table, *AR1+
;重复传递共8个数据
CALL
SUM
;调用惩罚累加子程序 end:
B
end
;循环等待
SUM:
STM
#a, AR3
;将洗漱的首地址附给AR3
STM
#x, AR4
;降变量x的首地址附给AR4
RPTZ
A, #3
;降累加器清零,重复执行下条指令4次
MAC
*AR3+, *AR4+, A
;乘法累加运算
STL
A, @y
;结果送往变量y的存储单元
RET
.end
;结束汇编,汇编器将忽略
5.堆栈用法:
压入操作:SP先减1,然后再将数据压入栈顶。
弹出操作:数据弹出后,再将SP加1。堆栈设置: size
.set 100 stack.usect “STK”, size
;自定义一个名为STK的保留空间,共100个单元
STM
#stack+size, SP;将这个保留空间的高地址(#stack+size)赋给SP,作为栈底,【例4.14】 对数组x[5]中的每个元素加1。
.bss
x, 5 begin:
LD
#1, 16, B
STM
#4,BRC
;BRC赋值为4
STM
#x,AR4
RPTB
next-1
;next-1为循环结束地址
ADD
*AR4,16,B,A
STH
A,*AR4+ next:
LD
#0, B
…
用next-1作为结束地址是恰当的。如果用循环回路中最后一条指令(STH指令)的标号作为结束地址,若最后一条指令是单字指令也可以,若是双字指令,就不对了。
【例4.15】 编写一段程序,首先对数组x[20]赋值,再将数据存储器中的数组x[20]复制到数组y[20]。
.title “exp15.asm”
.mmregs
STACK
.usect “STACK”, 30h
.bss
x, 20
.bss
y, 20
.data
table:
.word 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
.def start
.text Start:
STM
#x, AR1
RPT #19
MVPD
table, *AR1+;程序存储器传送到数据存储器
STM #x, AR2
STM
#y, AR3
RPT
#19
MVDD *AR2+, *AR3+;数据存储器传送到数据存储器 end:
B end
.end
计算 z=x+y-w LD @x,A ADD @y,A SUB @W, A STL A,@z 计算y=mx+b LD @m,T MPY @x,A ADD @b,A STL A,@y 计算 y=x1*a1+x2*a2 LD @x1,T MPY @a1,B LD @x2,T MAC @a2,B STL B,@y STH B, @y+1 找出最大值,并存放在累加器A中 STM #a,AR1 STM #x,AR2 STM #2, AR3 LD
*AR1+,T MPY *AR2+,A
;第一个成绩累加器A中 Loop LD *AR1+.T
MPY *AR2+,B ;其他乘积在累加器B中
MAX A
;累加器A和B比较,选大的存在A中
BANZ loop,*AR3 ;此循环中共进行三次乘法比较 数组 x【5】={1,2,3,4,5}初始化
.data TBL
.word
1,2,3,4,5
.bss
x,5
.text
STM
#x,AR5
RPT
#4
MVPD
TBL,*AR5+
第五篇:DSP调试总结
6416是定点型芯片,在项目中主要用来做下变频后数据的谱计算。FPGA中对所采数据进行下变频后通过DSP的EMIF口(64bit)传输到DSP中进行FFT运算,算完的谱数据再通过EMIF口回传至FPGA,再传至上位机进行频谱图的显示。
在这个过程中,并没有用DSP做多少事情,只是有一个FFT计算和EMIF口以及MCBSP口的数据与控制命令的传输,总体来说功能还是蛮简单的。
1、首先,FFT运算直接调用TI的C64XX的库函数就可以完成。在这个调试过程中,首先使用的是simulater环境进行软件仿真计算,根据计算出来的谱图发现结果是正确的,只是模拟数据和旋转因子在软仿真的时候耗费的时间太长(32K点)。可由MATLAB产生数据,然后导入数组,直接进行FFT验证之。
FFT消耗时间分析:在软件中可以设置观测FFT函数所消耗的时间,最后由两种结果,Total cycle 和Cpu cycle,其根据600M主频计算下来,做32K点时其耗时相差有100倍,即百毫秒与毫秒的差别,由于不确定时间应采取哪种,所以进而进行了板级实验。
在板级实验过程中,发现程序“经常偶尔”跑飞,一直也没有找到原因。最后经过多次试验用示波器检测出来的时间与用Cpu cycle计算出来的相近。此时,我们假设Cpu cycle是正确的,那换算出来的主频就只为400M。用示波器对分频时钟进行测试,发现现在CPU确实只工作在400M的主频,而不是最大600M的主频。
由此说明,芯片的配置可能有问题,并且还可以证明可以用Cpu cycle来计算程序的运行时间(当然DSP主频要确定)。
经databook查询,发现晶振的频率与其设置的主频选择有误,及用此晶振的频率,要改变外围电路配置才能达到最高频率。当然,也许maybe可能这个问题与DSP经常跑飞有关联。
改了之后发现其运行在666M的状态,超了66M,不晓得对芯片有没有影响,知道的大神可告知小弟,不胜感激...2、EMIF 与 MCBSP 的可按照自己的需要进行配置初始化。
EMIF用到了64位,在传输64位数据上纠结了很久,C语言上long即为64位,可在此只为40位。经一位大神提醒,使用long long类型搞定之,木有技术含量,发现自己基本功相当之不扎实。