全国高中数学教师说课大赛一等奖-《古典概型》说课(人民大学附中王海)

时间:2019-05-13 03:52:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《全国高中数学教师说课大赛一等奖-《古典概型》说课(人民大学附中王海)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《全国高中数学教师说课大赛一等奖-《古典概型》说课(人民大学附中王海)》。

第一篇:全国高中数学教师说课大赛一等奖-《古典概型》说课(人民大学附中王海)

人教A版必修3《3.2.1古典概型》教学设计说明

人民大学附属中学王海

一、本课数学内容的本质、地位、作用分析

本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3.2.1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。

二、教学目标及重难点分析

根据本节课在本章中的地位和课程标准的要求以及学生实际,本节课的教学目标制定如下:

1.知识与技能

(1)理解基本事件的特点;(这是为了给古典概型下定义的语言表达而铺垫)

(2)通过实例,理解古典概型及其概率计算公式;(由于课标要求计算不是本节课的重点,故结合实例理解并能判断古典概型是关键)

(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。(由于还没有学习排列组合,故初中学习的列举法(树状图等)是计算的关键手段)

2.过程与方法

根据本节课的内容和学生的实际水平,通过两个试验的观察让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比骰子试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。

3.情感态度与价值观

概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。

《古典概型》这一节分为两课时,本节课是第一课时。主要内容为古典概型的概念、概率计算公式及三个例题。古典概型概念中的核心是它的两个特点:(1)试验中所有可能出现的基本事件只有有限个(有限性);(2)每个基本事件出现的可能性相等(等可能性)。这两个特点是判断某试验是否为古典概型的依据,也是得出概率计算公式的基础。三个例题是围绕着对概念的理解与辨析而选取的。因此确定本节课的教学重难点如下:

教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

三、教学问题诊断分析

学生已经学习了随机事件的概率,经历了抛硬币、掷骰子等试验,初步从中体验到每个试验结果出现 “机会均等”。这为学习古典概型奠定心理基础。但同时学生也会认识到通过试验的方法来得到一些事件的概率费时耗力,而得到的只是概率的近似值。那么寻找一种能得到精确的结果并且简便易行的操作方法成了学生内在的迫切需要。这时学习古典型正是恰到好处。

预想到我校学生在学习中可能存在以下问题。

(1)在例1教学中,求古典概型中基本事件总数是难点,原因是由于前面没有学习排列组

合知识,此时教师可引导学生用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了这一难点。

(2)在本节课例2和例3的教学中,学生往往不会讨论这个问题该在什么情况下可以看成古典概型,往往会忽视古典概型的两个特征,错用古典概型概率计算公式,因此学生给出的答案可能会有两种,原因是有些问题中的每个基本事件不是等可能的。因此本节课教师始终抓住掷硬币和掷骰子两个经典古典概型作为背景进行教学,让学生通过实例模型观察、验证某个试验是否满足古典概型的两个条件,这也是本节课的教学难点。

四、本节课的教法学法特点以及预期效果分析

(1)教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。最后在例题中加入模型的展示,帮助学生突破教学难点。

(2)学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

(3)预期效果:本节课的教学通过提出问题,引导学生发现问题,经历思考交流概括归纳后得出古典概型的概念,由两个问题的提出进一步加深对古典概型的两个特点的理解;再通过学生观察类比推导出古典概型的概率计算公式。这一过程能够培养学生发现问题、分析问题、解决问题的能力。在解决概率的计算上,教师鼓励学生尝试列表和画出树状图,让学生感受求基本事件个数的一般方法,从而化解由于没有学习排列组合而学习概率这一教学困惑。对于古典概型的判断,两个条件的缺一不可,尤其是例题中等可能性的判断,教师通过实例模型的给出,帮助学生突破思维难点。整个教学设计的顺利实施,达到了教师的教学目标。

第二篇:临海市中等职技校许月桂老师荣获全国教师说课比赛一等奖

临海市中等职技校许月桂老师荣获全国教师说课比赛一等奖

12月14-17日,“创新杯”2012年全国中等职业学校财经类专业教师说课比赛在宁波经贸学校举行,临海市中等职业技术学校许月桂老师以出色的表现荣获一等奖。

据悉,本次比赛采取现场随机抽题的方式,根据抽签内容,选手必须在短时间内制作说课课件、撰写说课稿,对参赛选手提出了极大的挑战。许月桂老师的说课题目为《周转材料-包装物》,在教学设计中她树立变“教我学”为“我会学”的教学理念,让学生课前收集生活中的实物,并在课堂上展示、讨论,让学生从生活中走进会计,激发学生的学习兴趣;教学过程中,引导学生利用已学知识,通过自主合作与探究解决未知,较好地培养了学生自主学习的能力。最终,许月桂凭借其扎实的教学基本功、娴熟的专业技能和巧妙的教学构思赢得了评委的高度认可。

第三篇:第五届全国高中数学青年教师观摩与评比活动-《正弦定理》说课(内蒙古王晓慧)

正弦定理教学设计说明

内蒙古包头市第一中学

王晓慧

一、本课的教学内容及其地位和作用

《正弦定理》共2课时,本课是第1课时,学生在初中已经学习了直角三角形中的边角关系和三角形全等的判定,本课是在此基础上继续研究任意三角形中的边角关系,教师带领学生从已有的知识出发,通过探究得到正弦定理,理解定理的内容并能运用正弦定理解三角形的两类问题,结合三角形全等的判定,理解在已知边边角的情况下,三角形解的个数不确定。学生在此之前已经学习了三角函数、平面向量、圆等内容,使得这部分内容的处理有了比较多的工具,教学过程中按照从简原则和最近发展区原则,采用“作高”的方式证明了正弦定理,之后,为了发展学生的思维,学会思考数学问题,又引导学生从向量、作外接圆、三角形面积计算等几个角度找到证明的途径,渗透了事物间普遍联系的辩证唯物主义观点。

本章的中心内容是解三角形,正弦定理是解三角形的重要工具之一,是对三角知识的应用,又是对初中解直角三角形内容的直接延伸,在日常生活和工业生产中也时常有解三角形的问题,在天文、航海测量中也有广泛应用(在下一节中专门研究),充分体现了“数学是有用的”,对培养学生应用数学的意识起到重要作用。

二、本课的数学本质与教学目标定位

在数学发展史上,受到天文测量、航海测量和地理测量等方面实

践活动的推动,解三角形的理论得到不断发展。如:怎样在航行途中测出海上两个岛屿之间的距离?怎样测量底部不可到达的建筑物的高度?怎样测出在海上航行的轮船的航向和航速?„„在生产、生活实际中也会遇到例如:怎样确定楼间距,使得一楼的住户也能得到较为充足的阳光?怎样充分利用废旧钢板来节约成本?„„这些都是学生非常感兴趣的生活现实,大千世界,数学无处不在,正如荷兰数学家弗赖登塔尔在他所著的《作为教育任务的数学》一书中所讲:“数学起源于现实”,“数学教师的任务之一是帮助学生构造数学现实,并在此基础上发展他们的数学现实。”教学中,通过“如何测出地月之间的距离”来布疑激趣,带领学生进入解三角形内容的学习,通过探究,由特殊到一般得到正弦定理,引导学生多角度思考证明正弦定理,体会数学知识彼此紧密联系的特点,从而感受数学的魅力。

教学过程中,让学生经历提出问题、解决问题、初步应用等过程,使学生成为正弦定理的“发现者”和“创造者”,《课程标准》将解三角形作为几何度量问题来展开,重在正弦定理在解三角形中的应用,而不必在恒等变换上进行过于繁琐的训练。这就要求在教学中突出几何的作用和数学量化的思想,发挥学生学习的主动性,使学生的学习过程成为在教师引导下的探究、再创造过程。

基于此,本课的教学目标定位在:1.在创设的问题情境中,引导学生发现正弦定理,推证正弦定理及简单运用正弦定理与三角形内角和定理解斜三角形的两类问题;2.通过探究在任意三角形中,边与其对角正弦的比值之间的关系,培养学生观察,猜想,由特殊到一

般归纳得出结论的能力和化未知为已知解决问题的能力;3.面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。

三、教学诊断分析

学生在初中已经学习了锐角三角函数,在必修4中又研究了任意角的三角函数,所以很容易根据直角三角形中的边角关系,得出直角三角形中的正弦定理,从而引出课题:这一结论在任意三角形中还成立吗?证明这个结论是一个难点,特别是钝角三角形中,教师通过引导学生如何化未知为已知,从而找到解决问题的途径。再引导学生思考:什么运算可以把长度和角度联系在一起?从而得到多种解决问题方法。运用定理解三角形不难做到,但是在运用定理的过程中,有一点是学生不容易想到的,也是难以理解的,就是在已知三角形中两边和其中一边的对角时,解的情况不唯一,教师通过引导学生回忆初中所学的三角形全等的判定,“边边角”不能判定三角形全等来理解,本节课只需要让学生知道这一点,详细探究在以后完成。

四、教法特点和预期效果分析

原苏联数学教育家斯托利亚尔在他所著的《数学教育学》一书中指出:“数学教学是数学活动的教学 ”,“数学活动是思维活动,对数学家而言,这是一个发现活动;对于数学教学来说,我们要教给学生的不是死记现成的材料,而是发现数学真理(自己独立的发现科学上已经发现了的东西),学生发现那些在科学上早已被发现的东西的时

候,他是像第一次发现者那样去推理的。”在弗赖登塔尔的论述中也指出:“学生通过自己努力得到的结论和创造是数学教育内容的一部分”。新课标也在倡导积极主动、勇于探索的学习方式。基于这样的理念的指导,结合本课的教学内容,本课采用探究发现式教学法,以“如何测量地月之间的距离”来创设问题情境,以问题驱动课堂,使学生的思维始终活跃于如何解决问题的探究活动中,通过师生之间、生生之间的评价来完善对问题的理解和对定理的应用,创造和谐、愉快、平等的学习氛围,体现学生的主体地位,让学生体验快乐学习,同时培养学生学习数学的兴趣和能力。

本课通过引导学生发现直角三角形中的正弦定理,进而探究在任意三角形中是否还成立?将学生带入探索新知的氛围,学生从已有的知识经验出发,探索得出新结论,体验了成功的乐趣,对如何运用定理解决问题也是跃跃欲试,例题教学中,展示学生答案之后,给全体学生一个畅所欲言的机会,互相评价,最终得到完善的答案,在集体交流中感受合作的巨大力量。这样做,对于不善于表达自己的学生可能会失去和大家交流的机会,但通过老师和学生的鼓励,也可以克服。这也体现了一个人成长、发展所必须经历的过程,对于培养意志品质起到了重要作用。

下载全国高中数学教师说课大赛一等奖-《古典概型》说课(人民大学附中王海)word格式文档
下载全国高中数学教师说课大赛一等奖-《古典概型》说课(人民大学附中王海).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐