第一篇:《初中数学新课程标准》的学习体会
《初中数学新课程标准》的学习体会
随着新课程改革在全国各地千万所中小学有计划地推进,课改的幸福曾给我们带来不少新鲜与激动。我作为一名数学教师,很荣幸参加了几次新教材的培训,在06年的新学期,我又教上了新课改的数学教材,虽然时间很短,但是,对于新课程理念下的数学教学也有了自己的一些体会。
(一)新旧教材的对比:从教材与以往教材对比来说,有以下几点:(1)新旧课本内容上,新教材较以往更广泛,它涉及到了概率,视图与投影,专门增设了图形的平移与旋转,数据的处理等内容.从内容体系上来看,编排顺序与以往也有较大差别,比如在几何证明中,把学生学会证明书写格式及要求放在全等三角形,四边形内容之后学习。
(2)新旧课本在知识深度上相比,新教材有一定程度下降,例如删掉繁杂的分母有理化运算,立方差,立方和公式.三元一次方程组的解法,在进行因式分解时,直接用公式不超过两次,在初二上学期前对几何证明基本上不作要求,对数学用表的要求取消,删掉三角形外角的性质等。
(3)新课本较旧课本知识理解程度要求进一步加强.例如:课本中专门设计了100万有多大,公园有多长、多宽(即估算面积有多大),多边形外角和的理解等以往的学生来不及或几乎从未思考过的深度.比如:学生体会百万分之一有多大本教材就从各个角度进行了描述,学生就会对百万分之一有较为深刻的认识。教材也更贴近生活。
1例如课本设计了图形的密铺,以及各种各样图案设计,利用对称,中心对称,轴对称,平移与旋转等进行图案设计的作业共有六套.学生对此能有许多创意进而激发出其学习热情。
(4)新教材更注重学生探索未知世界的方法及学生亲身经历知识的探索发现过程.例如课本在设计“平方差公式”和“完全平方公式”时,注重了从几何图形方面对公式的理解,利用面积相等的原理进行拼图。学习勾股定理时,利用直角三角形三边为边的正方形面积关系来引导学生发现勾股定理,用拼图来引导学生证明勾股定理,最后引导学生自己动手证明勾股定理的多种方式,使认知更符合学生实际.又比如在无理数教材编排中,先通过学生认识边长为1的正方形对角线及非整数又非分数,引起学生的认知冲突。而后通过该对角线究竟有多长,利用无限逼近的数学思想来理解 有多大,并最后引入无理数的概念。
(5)新教材的练习量较以往大幅减少。阅读材料更丰富,涵盖数学趣题,例如柳卡趣题.博奕问题,数学史,数学方法,计算机解方程组的原理,WORD中图形的平移与旋转等诸多方面。
(二)教师教法的转变:在应试教育和旧的教育观念的影响下,教师一般采用的是满堂灌的教学方法,讲课追求讲深讲透,一步到位。对精讲多练的理解也有所偏差,认为精讲多练就是把公式、定理告诉给学生,然后相对于公式、定理的应用,编拟出很多题目要求学生做,大搞题海战术,从而使学生理解为学数学就是做题,而做题就是如何套用公式、定理。学生学到的不是数学,而只是解题技巧。数学新教
材的最大特点是体现素质教育的要求,以数学源于生活又用于生活为主线,着重培养学生的创新意识和动手能力,培养学生学数学、用数学的意识,使其养成良好的学习习惯。在新课标的指导下,我认为新的课堂教学应该注意以下问题:(1)教师应发扬教学民主,成为学生数学活动的组织者、引导者与合作者。例如在《探索三角形全等的条件》教学过程中,要学生自己动手,从一个条件(即已知一角或一边)能否确定一个三角形的形状开始,逐渐增加条件,并由学生回答哪些肯定不可以,哪些暂时无法确定,在此应到学生适当的分类,再进行讲解。在学生探索已知两边及其中一边所对角对应相等的两个三角形是否全等时,学生很难举出反例,此时应及时帮助学生出示反例。使学生很好的掌握这一知识。在探索《轴对称》中角的对称轴时注意纠正学生对称轴是直线等都是教师在指导学生过程中应该去做的。在《镜子改变了什么》中,注意让学生自己探索实践,教师只需适时纠正就可以了!
(2)教师应善于激发学生的学习潜能,鼓励学生大胆创新与探索。例如“绝对值”一节的教学,我按四人一组把学生分成若干小组,通过合作学习,学生不难得出:①一个正数的绝对值是它本身②零的绝对值是零 ③一个负数的绝对值是它的相反数。在此基础上,我继续提问:①绝对值等于本身的数有哪些?②任何一个数的绝对值都是正数吗?③若a>0,则a=________;若a=0, 则a=________;若a<0, 则 a =________ ④你还能得出其他结论吗?通过学生思考探索,让他们总结出绝对值的一些重要性质。
(3)教师应努力培养学生的学习兴趣,培养学生终身学习的观念。例如在学习“生活中的立体图形”时,我提前两天布置学生收集有关生活中的立体图形的一些图片、实物,用硬纸片制作柱体、锥体等模型。教学中,让每个学生都先展示自己收集到的图片、实物和制作好的各种各样的立体模型,然后再按每两人一组把这些实物或模型进行归类并说出它们各自的特点,最后选派一些代表作总结发言,老师点评,对做得较好的同学进行表扬。通过这样教学,学生在愉快中学到了知识,收到了良好的效果。
(4)教师应关注学生的个体差异,使每个学生都得到充分的发展。新教材设计了不少如“思考”、“探索”、“试一试”、“想一想”、“议一议”等问题,教师可根据学生实际情况进行选用。对于数学成绩较好的学生,教师也可另外选择一些较灵活的问题让他们思考、探究,以扩大学生的知识面,提高数学成绩。
(5)教师应充分利用现代教育技术辅助教学,提高教学效益。例如对“图案设计”的教学,我要求学生利用计算机完成以下问题:①我喜欢的数学图形②收集一些公司或企业的标志图案③为我们班设计班徽。学生的积极性很高,在网上找到了相当丰富的素材,上课前我先把每个学生搜集到的材料加以整理,教学中再进行分类展示。这样做可拓宽学生的视野,丰富教学内容,使学生学到很多书本上学不到的知识,提高教学效益。
在传统教学中,教师扮演着单一的角色——知识的传授者,而新课标要求“教师是数学学习的组织者、引导者与合作者”。即组织学生发
现、寻找、搜集和利用学习资源,组织学生营造和保持教室中和学习过程中积极的心理氛围。引导学生激活进一步探究所需的先前经验,引导学生实现课程资源价值的超水平发挥。建立人道的、和谐的、民主的、平等的师生合作关系,让学生在尊重、信任、理解和宽容的氛围中受到激励和鼓舞,得到指导和建议。
(三)学生学法的转变:在教与学的关系中,学生的地位如何确定?传统的提法是“以教师为主导,以学生为主体”,但在教学实施中不尽人意,教师主导,导得过多,导得过细,学生总是在教师铺设好的平坦道路上接受教育,学生围绕教师转,学生的主体地位并没有真正得到体现。而新课标明确指出“学生是数学学习的主人”,同时新课标强调,要把传统的“以学科为中心”转移到“以学生为中心”,“一切为了学生的发展”,不要过多地考虑课程知识结构体系,而是要考虑以学生发展为最终目的。传统的学习方式单一,以接受性学习为主,即:老师讲,学生听,靠单纯的记忆、模仿和训练,学生完全处于一种被动接受的状态,教师注重的是如何把知识结论准确地给学生讲清楚,学生只要当收音机全神贯注地听,把教师讲的记下来,考试时准确无误地答在卷子上,就算完成了学习任务,当他们进入大学或参加工作时就难以适应新的学习,缺乏创新的激情与活力。因此新课标强调“动手实践、自主探索、合作交流是学生学习数学的重要方式”。教师应引导学生主动地从事观察、实验、猜测、验证、推理与交流等数学活动
总之,本次课程改革与以前的七次课程改革不同,不只是课程内容的加减调整和教科书的替换,而是牵涉到教育观念、教学方式的改革更新,牵涉到学生学习方式的转变,评价方式的转变等诸多方面。
第二篇:初中物理新课程标准学习体会
教研组长研读新课标体会
物理组 罗晓洁
从教以来到,开始的教学依据教学大纲,后来依据新课程标准,至今居然已经有二十几个年头了。手里捧着物理新课程标准,在思考一个久远的问题,物理这门学科的意义是什么?我们老师在传播着什么?如何传播?这是一个永远需要思考的问题!只要教学生涯没有结束,这个问题的思考也就不能停止。
通过对新课标的深入学习,我有了新的体会。我认为教学是面向全体同学的,是为了学生的终生发展服务的。对不同年龄特点的学生,应该采用最适合他们的教学方法,对不同层次的学生应设计不同层次的教学内容,以便最大限度地调动学生的学习积极性。让学生最大限度地参与教学,老师不要替代了学生的学习过程,让学生在学习过程中成为一个旁观者。我认为我们现在进行的新课改下的双案导学,其宗旨就是最大限度地调动学生学习积极性,老师是学生学习过程中的合作者,帮助者,老师起引导和引领作用,学生是学习的主体。
物理科学作为自然科学的重要分支,不仅对物质文明的进步和人类对自然界认识的深化起了重要的推动作用,而且对人类的思维发展也产生了不可或缺的影响。从亚里士多德时代的自然科学,到牛顿时代的经典力学,直至现代物理中的相对论和量子力学等,都是物理雪家科学素质、科学精神以及科学思维的有形体现。
在义务教育阶段,物理课程不仅应该注重科学知识的传授和技能的训练,注重将物理科学的新成就及其对人类文明的影响等纳入课程,而且还应重视对学生终身学习愿望、科学探究能力、创新意识以及科学精神的培养。因此物理课程的构建应注重让学生经历从自然到物理、从生活到物理的认识过程,经历基本的科学探究实践,注重物理学科与其他学科的融合,使学生得到全面发展!
义务教育阶段的物理课程要让学生学习初步的物理知识与技能,经历基本的科学探究过程,受到科学态度和科学精神的熏陶;它是以提高全体学生的科学素质、促进学生的全面发展为主要目标的自然科学的基础课程。
(一)物理课程的基本理念是:
1、注重全体学生的发展,改变学科本位的观念,重视物理课程在情感、态度、价值观方面的教育功能。
2、从生活走向物理,从物理走向社会,新课标体现了更关注社会,更帖近学生的生活。例:北京市使用清洁燃料车;由火车时刻表计算平均速度;现代版曹冲称象;水果电池;电冰箱的技术参数;用脉搏、步长测时间和距离;学读汽车速度表; 用两个不同焦距的凸透镜制作望远镜;了解微波炉的基本原理;了
解数字信号和模拟信号的基本区别;用绝缘导线、铁钉、铁片等自制有线电报机…。
3、强调过程与方法的教学,注重科学探究,提倡学习方式的多样化。新课标强调以物理知识和技能为载体,让学生经历科学探究过程,学习科学探究的方法,培养学生的科学探究精神、实践能力、创新意识;改革以书本为主、实验为辅的传统教学模式,提倡多样化的教学方式。在义务教育的物理课程中,使学生学到获取知识的方法、增强探究未知世界的兴趣和能力,以及学生对于科学本质的理解和科学价值观的树立,是与科学知识的学习同等重要的。因此,新课标十分强调科学探究的学习。在“内容标准”中,科学探究是和科学内容并列的,它提出了科学探究的主要环节、探究能力的表现,以及探究教学的形式,并分析了探究教学的实例。
新课标把“过程与方法”作为课程目标之一,与“知识与技能”、“情感、态度与价值观”并列。与过去的教学大纲的不同之处还在于,它除了使用“知道”、“理解”等描述学习结果的行为动词外,还使用了描述学习过程的行为动词来表达对学习的要求,如“经历探究浮力大小的过程”等。这种表述体现了一种理念:与过去的义务教育物理课程相比,课程标准更强调学习的过程。
新课标还强调了知识与技能、科学能力与科学方法、情感态度和价值观都可以通过科学探究来实现。如“探究重力的大小跟什么因素有关?”实验方法设计如下:第一步,问题的提出;第二步,让学生猜想;第三步,用钩码和弹簧称进行实验;第四步,数据处理(数据表格、图象作图);第五步,探究得出结论(数学函数表达式)。
4、注重学科渗透,关心学科发展,加强STS教育
注重科学技术与社会的关系,是当今世界科学教育的一个大趋势。科技的发展促进了社会的发展,同时它又受到社会发展的制约;科学技术给我们的生活带来了福利,同时也带来了环境、资源等许多问题。过去的物理课程就科学论科学,很少涉及科学的意义,应该以物理学的内容为素材,受到科学的、技术的和人文的教育,着眼点不在于提出多少有实际价值的建议,而在于通过参与逐步树立从社会发展的角度考虑科学技术问题的意识,以这种方式把人文精神渗透到科学课程中。
2012.06.24
第三篇:初中数学新课程标准
初中数学新课程标准 第一部分 前 言
数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛 应用的过程。20世纪中叶以来,数学自身发生了巨大的变化,特别是与计算机的结合,使得数学在研究领域、研究方式和应用范围等方面得到了空前的拓展。数学可以帮助人们更好 地 探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收 集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考 虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
一、基本理念
1.义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数 学教育面向全体
学生,实现:
--人人学有价值的数学;
--人人都能获得必需的数学;
--不同的人在数学上得到不同的发展。
2.数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理 和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想 和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文
明的重要组成部分。
3.学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内 容要有利 于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富 有个性的过程。
4.数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之 上。教师应激发 学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经
验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
5.评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教 学;应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活 动中所表现出来的情感与态度,帮助学生认识自我,建立信心。
6.现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式 产生了重大的影响。数学课程的设计与实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作 为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更 多的精力投入到现实的、探索性的数学活动中去。
二、设计思路
(一)关于学段
为了体现义务教育阶段数学课程的整体性,《全日制义务教育数学课程标准(实验 稿)》(以下简称 《标准》)通盘考虑了九年的课程内容;同时,根据儿童发展的生理和心理特征,将九年的学习时间具体划分为三个学段:
第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。
(二)关于目标
根据《基础教育课程改革纲要(试行)》,结合数学教育的特点,《标准》明 确了义务教育阶段数学课程的总目标,并从知识与技能、数学思考、解决问题、情感与态度等四个方
面作出了进一步的阐述。
《标准》中不仅使用了“了解(认识)、理解、掌握、灵活运用”等刻画知识技能的目 标动词,而且使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的过程性 目标动词,从而更好地体现了《标准》对学生在数学思考、解决问题以及情感与态度等方面 的要
求。
知识技能目标 了解(认识)能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体 情境中辨认出这一对象。
理解 能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。
掌握 能在理解的基础上,把对象运用到新的情境中。
灵活运用 能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。
过程性目标 经历(感受)在特定的数学活动中,获得一些初步的经验。
体验(体会)参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。
探索 主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与
其他对象的区别和联系。
(三)关于学习内容 在各个学段中,《标准》安排了“数与代数” “空间与图形” “统计与概率” “实践与 综合应用”四个学习领域。课程内容的学习,强调学生的数学活动,发展学生的数感、符号 感、空间观念、统计观念,以及应用意识与推理能力。
数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情 境中把握数的相对 大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。
符号感主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。
空间观念主要表现在:能由实物的形状想像出几何图形,由几何图形想像出实物的形状,进 行几何体与其三视图、展开图之间的转化;能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系;能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观来进行思考。
统计观念主要表现在:能从统计的角度思考与数据信息有关的问题;能通过收集数据、描述数据、分析数据的过程作出合理的决策,认识到统计对决策的作用;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。应用意识主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在 现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。
推理能力主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言合乎逻辑地进行讨论与质疑。
为了体现数学课程的灵活性和选择性,《标准》在内容标准中仅规定了学生在相应学段应该达到的基本水平,教材编者及各地区、学校,特别是教师应根据学生的学习愿望及其发展的可能性,实施因材施教。同时,《标准》并不规定内容的呈现顺序和形式, 教材可以有多种编排方式。
(四)关于实施建议
《标准》针对教学、评价、教材编写、课程资源的利用与开发提出了建议,供有关人员参考,以保证《标准》的顺利实施。第二部分 课程目标
一、总体目标
通过义务教育阶段的数学学习,学生能够:
● 获得适应未来社会生活和进一步发展所必需的重要数学知 识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能;
● 初步学会运用数学的思维方式去观察、分析现实社会,去 解决日常生活中和其他学科学习中的问题,增强应用数学的意识;
● 体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;
● 具有初步的创新精神和实践能力,在情感态度和一般能力 方面都能得到充分发展。
具体阐述如下:
知识与技能
● 经历将一些实际问题抽象为数与代数问题的过程,掌 握数与代数的基础知识和基本技能,并能解决简单的问题。
● 经历探究物体与图形的形状、大小、位置关系和变换的过程,掌 握空间与图形的基础知识和基本技能,并能解决简单的问题。
● 经历提出问题、收集和处理数据、作出决策和预测的过程,掌握 统计与概率的基础知识和基本技能,并能解决简单的问题。
数学思考
● 经历运用数学符号和图形描述现实世界的过程,建立 初步的数感和符号感,发展抽象思维。
● 丰富对现实空间及图形的认识,建立初步的空间观念,发展形象 思维。● 经历运用数据描述信息、作出推断的过程,发展统计观念。
● 经历观察、实验、猜想、证明等数学活动过程,发展合情推理能 力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。
解决问题
● 初步学会从数学的角度提出问题、理解问题,并能综合 运用所学的知识和技能解决问题,发展应用意识。
● 形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。● 学会与人合作,并能与他人交流思维的过程和结果。● 初步形成评价与反思的意识。情感与态度
● 能积极参与数学学习活动,对数学有好奇心与求知欲。
● 在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
● 初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
● 形成实事求是的态度以及进行质疑和独立思考的习惯。以上四个方面的目标是一个密切联系的有机整体,对人的发展具有十分重要的作用,它 们是在丰富多彩的数学活动中实现的。其中,数学思考、解决问题、情感与态度的发展离不开知识与技能的学习,同时,知识与技能的学习必须以有利于其他目标的实现为前提。
二、学段目标
第一学段(1~3年级)第二学段(4~6年级)第三学段(7~9年级)知识与技能
● 经历从日常生活中抽象出数的过程,认识万以 内的数、小数、简单的 分数和常见的量;了解四则运算的意义,掌握必要的运算(包括估算)技能。
● 经历直观认识简单几何体和平面图形的过程,了解简单几何体和平面图形,感受平移、旋转、对 称现象,能初步描述物体的相对位置,获得初步的测量(包括估测)、识图、作图等技能。
● 对数据的收集、整理、描述和分析过程有所体验,掌握一些简单 的数据处理技能;初步感受不确定现象
● 经历从现实生活中抽象出数及简单数量关系的过程,认识亿以内的数,了解分数、百分 数、负数的意义,掌握必要的运算(包括估算)技能;探索给定事物中隐含的规律,会用方程表示简单的数量关系,会解简单的方程。
● 经历探索物体与图形的形状、大小、运动和位置关系的过程,了 解简单几何体和平面图形的 基本特征,能对简单图形进行变换,能初步确定物体的位置,发展测量(包括估测)、识图、作图等技能。
● 经历收集、整理、描述和分析数据的过程,掌握一些数据处理技 能;体验事件发生的等可能性、游戏规则的公平性,能计算一些简单事件发生的可能性。
● 经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函 数;掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、方程、不等式、函数等进行描述。
● 经历探索物体与图形的基本性质、变换、位置关系的过程,掌握 三角形、四边形、圆的 基本性质以及平移、旋转、轴对称、相似等的基本性质,初步认识投影与视图,掌握基本的识图、作图等技能;体会证明的必要性,能证明三角形和四边形的基本性质,掌握基本的推 理技能。● 从事收集、描述、分析数据,作出判断并进行交流的活动,感受 抽样的必要性,体会用 样本估计总体的思想,掌握必要的数据处理技能;进一步丰富对概率的认识,知道频率与概率的关系,会计算一些事件发生的概率
数学思考
● 能运用生活经验,对有关的数字信息作出解释,并初步学会用具体的数描述现实世界中的 简单现象。
●在对简单物体和图形的形状、大小、位置关系、运动的探索过程中,发展空间观念。●在教师的帮助下,初步学会选择有用信息进行简单的归纳与类比。●在解决问题过程中,能进行简单的、有条理的思考。
● 能对现实生活中有关的数字信息作出合理的解释,会用数、字母和图表描 述并解决现实世界中的简单问题.●在探索物体的位置关系、图形的特征、图形的变换以及设计图案的过程中,进一步发展空间观念。
●能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力。
●在解决问题过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明。
● 能对具体情境中较大的数字信息作出合理的解释和推断,能用代数式、方程、不等式、函数 刻画事物间的相互关系。
●在探索图形的性质、图形的变换以及平面图形与空间几何体的相互转换等活动过程中,初步建立空间观念,发展几何直觉。
●能收集、选择、处理数学信息,并作出合理的推断或大胆的猜测。
●能用实例对一些数学猜想作出检验,从而增加猜想的可信程度或推翻猜想。
●体会证明的必要性,发展初步的演绎推理能力。解决问题
●能在教师指导下,从日常生活中发现并提出简单的数学问题。●了解同一问题可以有不同的解决办法。●有与同伴合作解决问题的体验。
●初步学会表达解决问题的大致过程和结果。
●能从现实生活中发现并提出简单的数学问题。
●能探索出解决问题的有效方法,并试图寻找其他方法。●能借助计算器解决问题。
●在解决问题的活动中,初步学会与他人合作。
●能表达解决问题的过程,并尝试解释所得的结果。
●具有回顾与分析解决问题过程的意识。
●能结合具体情境发现并提出数学问题。●尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异。
●体会在解决问题的过程中与他人合作的重要性。
●能用文字、字母或图表等清楚地表达解决问题的过程,并解释结果的合理性。
●通过对解决问题过程的反思,获得解决问题的经验。
情感与态度
●在他人的鼓励与帮助下,对身边与数学有关的某些事物有好奇心,能够积极参与生动、直观的数学活动。
●在他人的鼓励与帮助下,能克服在数学活动中遇到的某些困难,获得成功的体验,有学好数学的信心。
●了解可以用数和形来描述某些现象,感受数学与日常生活的密切联系。●经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性。● 在他人的指导下,能够发现数学活动中的错误并及时改正。
●对周围环境中与数学有关的某些事物具有好奇心,能够主动参与教师组织的数学活动。●在他人的鼓励与引导下,能积极地克服数学活动中遇到的困难,有克服困难和运用知识解 决问题的成功体验,对自己得到的结果正确与否有一定的把握,相信自己在学习中可以取得 不断的进步。
●体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。
●通过观察、操作、归纳、类比、推断等数学活动,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性。
●对不懂的地方或不同的观点有提出疑问的意识,并愿意对数学问题进行讨论,发现错误能及时改正。
●乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用。●敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心。
●体验数、符号和图形是有效地描述现实世界的重要手段,认识到数学是解决 实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。
●认识通过观察、实验、归纳、类比、推断可以获得数学猜想,体验数学 活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性。
●在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解;能从交流中获益。第三部分 内容标准
本部分分别阐述各个学段中“数与代数” “空间与图形” “统计与概率” “实践与综合应用”四个领域的内容标准。
“数与代数”的内容主要包括数与式、方程与不等式、函数,它们都是研究数量关系和变化规律的数学模型,可以帮助人们从数量关系的角度更准确、清晰地认识、描述和把握现实世界。
“空间与图形”的内容主要涉及现实世界中的物体、几何体和平面图形的形状、大小、位置关系及其变换,它是人们更好地认识和描述生活空间并进行交流的重要工具。
“统计与概率”主要研究现实生活中的数据和客观世界中的随机现象,它通过对数据收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们作出合理的推断和预测。
“实践与综合应用”将帮助学生综合运用已有的知识和经验,经过自主探索和合作交流,解决与生活经验密切联系的、具有一定挑战性和综合性的问题,以发展他们解决问题的能力,加深对“数与代数” “空间与图形” “统计与概率”内容的理解,体会各部分内容之间的联系。
内容结构表
学段 第一学段(1~3年级)第二学段(4~6年级)第三学段(7~9年级)
数与代数
●数的认识●数的运算●常见的量 ●探索规律●数的认识 ●数的运算
●式与方程●探索规律●数与式 ●方程与不等式●函数●空间与图形 ●图形的认识 ●测量●图形与变换●图形与位置●图形的认识●测量●图形与变换●图形与位置●图形的认识●图形与变换●图形与坐标●图形与证明 ●统计与概率 ●数据统计活动初步 ●不确定现象●简单数据统计过程 ●可能性●统计 ●概率●实践与综合应用 ●实践活动 ●综合应用 ●课题学习
第三学段(7~9年级)
一、数与代数
在本学段中,学生将学习实数、整式和分式、方程和方程组、不等式和不等式组、函数 等知识,探索数、形及实际问题中蕴涵的关系和规律,初步掌握一些有效地表示、处理和交流数量关系以及变化规律的工具,发展符号感,体会数学与现实生活的紧密联系,增强应用 意识,提高运用代数知识与方法解决问题的能力。
在教学中,应注重让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从 实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程,应加强方程、不等式、函数等内容的联系,介绍有关代数内容的几何背景;应避免繁琐的运算。(一)具体目标
1.数与式(1)有理数
①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。
②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不 含字母)。
③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)。④理解有理数的运算律,并能运用运算律简化运算。⑤能运用有理数的运算解决简单的问题。
⑥能对含有较大数字的信息作出合理的解释和推断。[参见例1](2)实数
①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。
②了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某 些数的立方根,会用计算器求平方根和立方根。
③了解无理数和实数的概念,知道实数与数轴上的点一一对应。④能用有理数估计一个无理数的大致范围。[参见例2]
⑤了解近似数与有效数字的概念;在解决实际问题中,能用计算器进行近似计算,并按问 题的要求对结果取近似值。
⑥了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则 运算(不要求分母有理化)。(3)代数式
①在现实情境中进一步理解用字母表示数的意义。
②能分析简单问题的数量关系,并用代数式表示。[参见例3与例4] ③能解释一些简单代数式的实际背景或几何意义。[参见例5]
④会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值 进行计算。
(4)整式与分式
①了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示)。②了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)。
③会推导乘法公式:(a+b)(a-b)= a2-b2;(a+b)2 = a2+2ab+ b2,了解公式的几何背景,并能进行简单计算。
④会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)。
⑤了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算。[参见例6]
2.方程与不等式(1)方程与方程组 ①能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数 学模型。
②经历用观察、画图或计算器等手段估计方程解的过程。[参见例7]
③会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中 的分式不超过两个)。
④理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的 一元二次方程。⑤能根据具体问题的实际意义,检验结果是否合理。(2)不等式与不等式组
①能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。
②会解简单的一元一次不等式,并能在数轴上表示出解集。会解由两个一元一次不等式组 成的不等式组,并会用数轴确定解集。
③能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单 的问题。3.函数
(1)探索具体问题中的数量关系和变化规律[参见例8](2)函数
①通过简单实例,了解常量、变量的意义。
②能结合实例,了解函数的概念和三种表示方法,能举出函数的实例。③能结合图像对简单实际问题中的函数关系进行分析。[参见例9]
④能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值。⑤能用适当的函数表示法刻画某些实际问题中变量之间的关系。[参见例10] ⑥结合对函数关系的分析,尝试对变量的变化规律进行初步预测。[参见例11](3)一次函数
①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。②会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解 其性质(k>0或k<0时,图象的变化情况 =。③理解正比例函数。
④能根据一次函数的图象求二元一次方程组的近似解。⑤能用一次函数解决实际问题。(4)反比例函数
①结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。②能画出反比例函数的图象,根据图象和解析表达式y=kx(k≠0)探索并理解其性质(k>0或k<0时,图象的变化)。
③能用反比例函数解决某些实际问题。(5)二次函数
①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。
③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决 简单的实际问题。
④会利用二次函数的图象求一元二次方程的近似解。
第四篇:新课程标准学习体会
新课程标准学习体会
作为一名初中数学教师,认真学习了《标准》的基本理念。通过学习与教学实践,体会颇深。
(一)建立和谐的、民主的、平等的师生关系
新课标要求"教师是数学学习的组织者、引导者与合作者"。即组织学生发现、寻找、搜集和利用学习资源,组织学生营造和保持教室中和学习过程中积极的心理氛围。引导学生激活进一步探究所需的先前经验,引导学生实现课程资源价值的超水平发挥。建立人道的、和谐的、民主的、平等的师生合作关系,让学生在尊重、信任、理解和宽容的氛围中受到激励和鼓舞,得到指导和建议。
(二)让学生经历数学知识的形成与应用过程
课堂教学方法的改革是实施素质教育的着力点之一。因此,教师在课堂教学中,应真正把学生当作数学学习的主人,发挥学生的主体作用,让学生积极参与学习的全过程,使他们的知识与能力在参与学习的过程中得到全面发展。对此,在教学中,教师要根据学科特点与学生的心理规律,创设情境,注重诱发学生的求知欲,激发参与动机,强化参与意识,提高参与兴趣,从而使学生自始至终主动参与学习的全过程。在参与学习的全过程中,教师要及时收集、反馈信息并作出评价调控。使学生在精神上得到满足,享受到成功的喜悦。对于有畏难情绪、不积极参加学习的学生,教师应给予真诚的鼓励、热情的帮助、细心的辅导,促其从“要我参与”转变为“我要参与”,增强学生参与的主动性,积极性投入到学习的全过程中。为了让学生在有限的时间里参与活动的时间尽量多些,参与活动的效率尽量高些,教师应多考虑使用现代化教学手段,把抽象的数学知识由“静态”变为“动态”的画面,有利于反映事物变化的过程,易于学生理解掌握知识。在课堂教学中,教师要尽量多地为学生提供参与说、议、做、练等多种活动的机会,让学生动口、动手、动脑,努力营造学生全面参与学习的浓厚气氛。与此同时,教师还要教给学生参与的方法,提高参与的质效。达到培养学生的主体意识、合作意识、创新意识和应用意识,使学生在独立探索、解决问题过程中,学会数学。
第五篇:《小学数学新课程标准》学习体会
《小学数学新课程标准》学习体会
开学后,我重新学习了《小学数学新课程标准》,《小学数学新课程标准》将学生的全面发展放在第一位,着眼于学生知识与技能、过程与方法,情感态度价值观三位一体的发展,活跃学生的思维,激发学生的创造力,注重培养和发展学生的综合能力。对此我有着以下几点看法:
一、充分理解新课程标准的基本理念,改变教学方法适应新时代教育的需求。
义务教育阶段的数学课程,基本特点是促进学生全面、持续、和谐的发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,让学生亲身经历,将实际问题抽象成数学模型,并进行理解与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观得到进步和发展。因此教师要深入、全面地学习学科新课程标准,理解新课程标准的精神实质,掌握新课程标准的思想内涵,明确教学目标,透彻地去分析和挖掘教材中蕴含的深层次的教学思想,具体、准确地把握教材的重点、难点,创设有效的教学过程和教学策略,突破重点、破解难点,通过高效合理地利用教材来丰富课堂,让学生学有所得,增进学习积极性。
二、教学中教师要正确把握自己的角色定位。
从新的课程标准来看:数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。数学教学应从学生的实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流,获得知识,形成技能,发展思维,学会学习,促使学生在教师指导下的生动活泼地、主动地、富有个性地学习。要善于激发学生的学习潜能,鼓励学生大胆创新与实践。它实际上是一种探究性的学习,教师是探究性学习的组织者,在学习中对学生提供经验和帮助,做好组织协调工作。教师要想方设法开阔学生的视野,启发学生的思维,要善于发现学生思维的闪光点,适当地给予一些建议,老师要向学生提供经验,帮助他们进行判断、检查自己想法的正确性,提醒他们注意探究中可能出现的问题和困难,要深思熟虑地、周全地统筹学生活动。教学中可让学生充分讨论,在这个过程中,学生思维会变得开阔,富有独特性和创造性,同时也提高了他们的认识水平和口头表达能力,逐步由过去的“学会”向“会学”转变。
三、健全新的评价机制。
评价不但有终结性的评价,还要有发展性评价,发展性评价应该侧重的是一个阶段后,对学生学习过程中的进步发展,在知识、技能、情感、价值观等多元领域的综合评价,其目的在于帮助学生制订改进计划,促进更好的发展,这样,评价的激励功能、诊断功能才会有始有终科学的。
四、应解放思想,勇于创新,推进课程改革。
儿童是最好的教师,尤其当我们这些中青年教师面对这么一群可爱的学生时,自己同时也是一个受教育者的角色,教师帮助学生制订改进计划,促进更好的发展,激励学生,引导学生正确客观地评价自己,对待他人,培养学生的责任心,学生的发展进入良性循环,更好地更健康地成长。而完成这一切的先决条件是一个合格教师应当具备良好的职业道德素质,深厚的学科专业知识,健康积极的人格素养,积极进取的创新意识,只有具备了这些基本条件,才能很好地创设一个有利于学生创新学习,持续发展的环境,帮助学生们获取各个学科的基本知识和基本技能的同时,培养他们正确的人生观、价值观和世界观,成为对国家、社会的有用之才。
在今后的教学中,我会践行理论,并在实践中检验理论,不断提高自己的教学水平和学生的学习水平。