小学数学概念教学的一点体会

时间:2019-05-13 18:14:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《小学数学概念教学的一点体会》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《小学数学概念教学的一点体会》。

第一篇:小学数学概念教学的一点体会

小学数学概念教学的一点体会

小学数学教学的主要任务之一是使学生掌握一定的数学基础知识。而概念是数学基础知识中最基础的知识,对它的理解和掌握,关系到学生计算能力和逻辑思维能力的培养,关系到学生解决实际问题的能力和对年学习数学的兴趣。新课标指出,我们要让学生经历观察、实验、猜想、证明等数学活动,发展推理能力和初步的演绎推理能力。学习数学知识的过程就是一个不断地运用已有的数学概念进行比较、分析、综合、概括、判断、推理的思维过程。要掌握正确、清晰、完整的数学概念,既依赖于学生的数学认知状况,又依赖于教师的教学措施。

只有加强概念教学,才能使学生在获取数学知识的同时,进一步培养各种数学能力。在教学实践中,我在吸收同行先进经验的基础上,采用下列教学方法,取得了较好的教学效果。

一、以“问题”的形式引出新概念。

以“问题”的形式引入新概念,这也是概念教学中常用的方法。一般来说,用“问题”引入概念的途径有两条:①从现实生活中的问题引入数学概念;②从数学问题或理论本身的发展需要引入概念。

二、概念的理解要注重新旧概念的辨析,突出概念的本质属性。

对比概念,可以找出概念间的差异,类比概念,可以发现概念间的相同或相似之处。在“认识百分数”教学中,为了更好地让学生了解百分数和分数在意义上的联系与区别。

三、概念的巩固与深化。

从认识的过程来说,形成概念是从感性认识上升到理性认识的过程。即从个别的事例中总结出一般性的规律,巩固概念则是识记概念和保持概念的过程,是加深理解和灵活运用概念的过程,即从一般到个别的过程。小学生数学概念的掌握不是一蹴而就的,必须通过及时的巩固来加深对概念的理解。

巩固概念一般采用熟记、应用并建立概念系统等方法来进行。熟记,就是要求学生对概念定义在理解的基础上通过反复感知、反复回忆等手段达到熟练记忆。应用,则是指学生在应用概念中,达到巩固概念的作用,其主要形式是练习。

第二篇:小学数学概念教学之点滴体会

小学数学概念教学之点滴体会

宁远县双井圩完全小学

黄华军

联系电话:***

内容提要:数学概念也是同其它概念一样,是人们在反复的认识和实践过程中将事物共同的本质特点抽象出来,加以概括,从感性认识飞跃到理性认识的东西。在数学教学中,弄清概念、掌握概念是搞好小学基础教学的必经之路,是提高教学质量的关键。因此在教学中,必须把每一课对每一章节的概念弄清楚,只有这样才能使教育者有条不紊地把握教学的主动权,受教育者得心应手地掌握和运用所学知识。笔者分别从

一、指导学生在理解的基础上熟读和背记教材中的重要概念;

二、充分利用直观教具和多媒体教学资源,帮助学生理解数学概念。

三、通过作图辅助学生理解和掌握概念。

四、要讲清概念与概念之间的区别以及联系。

五、要注意概念的连贯性等方面谈了自己的点滴体会。

关键词:数学概念

熟读背记

直观教具

作图辅助

区别联系

连贯性

数学概念也是同其它概念一样,是人们在反复的认识和实践过程中将事物共同的本质特点抽象出来,加以概括,从感性认识飞跃到理性认识的东西。数学概念成千上万,仅四年级数学就编入新概念70个左右。在数学教学中,弄清概念、掌握概念是搞好小学基础教学的必经之路,是提高教学质量的关键。因此在教学中,必须把每一课对每一章节的概念弄清楚,只有这样才能使教育者有条不紊地把握教学的主动权,受教育者得心应手地掌握和运用所学知识。否则就会出现台上“昏昏然”,台下“然昏昏”,甚至是笑话丑态一并托出,令人啼笑皆非。

例如有人这样对话――“你几小时上班?”“8小时上班。”;“你到柏家坪要几点钟?”“要2点钟。”这样对话,听起来好像顺耳,但内行一听,就知道是滥用了词语。又有人说“0.333是循环小数。”、‘分数是繁分数。’这些说法都是错误的,都是由于概念不清造成的,这与“程咬金怒打猪八戒”的笑话没有两样。

数学概念如此重要,数学教师必须高度重视。怎样进行数学概念教学呢?下面仅谈谈本人在多年的教学中对数学概念教学的粗浅体会。

一、指导学生在理解的基础上熟读和背记教材中的重要概念。

我们的学生现在有这样的习惯:一读书就是读语文课文,没有几个学生去读数学概念,老师也没有很好地去指导学生读数学概念,好像数学总是做做作业,没有什么可读的。其实不然,数学中很多重要概念是人类实践的总结,这些就是我们要理解和掌握的概念,在教学中要像背语文中的课文一样,每一个字、每一个词、每一句话地去理解和熟读背记。

前面提到的滥用“小时”、“点钟”的对话,就是没有记住这两个词的定义,混淆了“小时”与“点钟”的概念。“小时”和“点钟”的概念在四年级数学上册中是这样定的:“小时指经过的时间”、“点钟是指某一时刻”,根据这个定义我们就知道上面的对话恰恰是用反了,应改为“你几点上班?”“8点上班。”“你到柏家坪要几小时?”“要2小时。”如果在理解的基础上熟读和背记了“小时”和“点钟”的概念,也就不会滥用这两个词语了。

还有前面提到的“0.333是循环小数”的说法,也是由于概念不清造成的。表面看0.333的3是出现了3次,很像是循环小数,但它却不是循环小数。在小学五年级数学下册的教材中对循环小数的概念是这样说的:“一个数的小数部分,从某一位起一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。”如果要求学生理解这个概念,特别是理解“不断重复出现”就会发现0.333中的3虽然重复了出现了3次,但它毕竟是有限小数,而“不断重复出现”的含义是无限的出现,这就无可异议地否定了0.333是循环小数的说法。“重复出现”和“不断的重复出现”仅一词之差,但它们所表示的意义是截然不同的。由此可见,逐字逐句地理解教材中的重要词语,并在理解的基础上熟读牢记这些词语,这对于掌握数学概念是很有必要的。

二、充分利用直观教具和多媒体教学资源,帮助学生理解数学概念。在教学中充分利用多媒体教学资源,帮助学生理解数学概念是一种有效的方法。如在教学乘法交换律时,为了使学生理解“两个数相乘,交换两个因数的位置积不变。”这一概念,我要求学生用硬纸各剪15个大小的相等的正方形,先要求学生数5个放在桌上,重复地数3次,看结果是多少?再要求学生根据演示结果写出简便算式和得数,即5×3=15。重新将15个正方形纸板收齐要求学生3个3个地数,数5次后得到15个纸板,再要学生根据演示实验,写出算式和得数,即3×5=15。通过演示和观察,学生探究得知:两个因数交换位置,积一样。这就使学生很明确地理解到了乘法交换律的概念。

又如:在教加法结合律时,要求学生每人带13个小玻璃球(3个红色的、5个黄色的、5个白色的),先让学生拿3个红色的和5个黄色的合起来放在桌子上,再把5个白色的合拢,然后根据实践操作写出算式(3+5)+5=13。重新让学生先把5个黄色的和5个白色的玻璃球合起来放在一起,再把3个红色的玻璃球放在一堆,最后根据这次的实践操作写出算式(5+5)+3=13。通过让学生实践操作、探索研究,学生真正理解和掌握了加法结合律的概念,即“先把前两个数相加,或者先把后两个数相加,结果不变。”这一概念。

通过利用直观教具和多媒体教学资源,使学生认识到,概念是在实践中产生的,这样教学使难以理解的抽象概念具体化,体现出实质内容,变为学生易于理解且能应用的内容。

三、通过作图辅助学生理解和掌握概念。

作图辅助学生理解和掌握概念也是一种很好的教学方法。例如:有不少学生由于对三角形的高的概念没有理解好,在作图时总是很困难,容易画错。三角形的高教材上是这样定义的:“从三角形的一个顶点到它的对边作一条垂线,顶点到垂足之间的线段叫做三角形的高。”要想使学生理解这一概念,正确地画出指定底边上的高,单凭讲解是不行的,学生不易理解,难于掌握,必须要边讲解边演示,老师在黑板上作出三角形各边上的高,重点强调顶点、垂足、线段这些关键词语的意义。同时指出锐角三角形的三条高在三角形内;直角三角形一条高在三角形内,另外两条高线就是直角三角形的两条直角边;钝角三角形有两条高在三角形外,一条高线在三角形内(钝角顶点上的高)。并且对以上说明分别作图展示给学生看,通过作图演示,学生就会理解抽象概念的实质,掌握画各种三角形的指定底边上的高的方法,这也为学生今后学习习近平面几何打下了基础。

我们在教学行程问题时,要学生理解“同向”、“相向”、“相对”、“背向”、“反向”等概念时,结合用箭头线表示各种方向的图形辅助学生进行理解,会达到事半功倍的教学效果。

以上概念如果不结合作图辅助学生去理解,只是讲解分析,就算是老师讲得天花乱坠,学生背得口若悬河,但在实际应用中也将是事倍功半,收效甚微。

四、要讲清概念与概念之间的区别以及联系。

在教学中要注意概念与概念进行比较,加以区别,才不至于张冠李戴,祸害无穷。

在一次考试中有这样一个题:“3,3.0,3.00哪一个数更精确?”结果有几个学生都是写成一样精确,很显然这是错误的,是对“精确”两字的不理解造成的。“精确”是对近似数而言的,3是保留到整数,3.0是保留到十分位,3.00是是保留到百分位,从这个角度去理解容易找出3.00更精确。部分学生回答3、3.0、3.00一样精确,是把“小数末尾去掉0或添上0,小数的大小不变”这一概念用到该题上去理解了,认为3、3.0、3.00大小相等就是一样精确。殊不知“大小相等”和“一样精确”是不相同的两个概念,一个是指数的大小比较,另一个则是指求近似值,它们是风马牛不相及的,因此讲概念时一定要区别概念与概念不相同的地方。

当然有很多的数学概念,它们之间既有区别又有联系,这也是值得注意的。“正方形是特殊的平行四边形”这一概念,这就是说正方形可以看作是平行四边形。它们之间相同之处就是都有四个角、四条边、四个顶点,对边相等,对角相等。这就是可以说正方形与平行四边形是有联系的,但还要讲清楚它们之间的区别。正方形的四条边相等,四个角都是直角,而平等四边形不具备这两个特点,也就是说正方形可以看作是平行四边形,但平行四边形就不一定是正方形,正方形只是平行四边形中的一员,它们之间是有区别的。如果我们讲清楚了概念与概论之间的区别与联系,就会使学生更好地掌握概念,运用概念解决实际问题。

五、要注意概念的连贯性

数学这门学科,它的知识连贯性很强。有一个概念弄不清楚,不仅是影响那一个方面的知识,而且还要影响后面多方面知识的学习。

就拿四则混合运算来说吧。我在教学三年级时遇到有两个学生分别是张文和眭海军,这两个学生的学习基础很差。当时我明知这两个学生四则混合运算的方法还没有掌握,也知道他们存在的问题主要是四则混合运算的顺序问题,但由于当时的特定条件,我没有和这两个学生补课,就这样拖过来了。至五年级学习小数四则混合运算时这两个学生更是相形见绌,每天的作业都是错的多,这无疑是由于三年级整数四则混合运算的顺序概念不清楚所造成的。如果再不采取措施就会影响六年级的分数四则混合运算,还会影响到中学的正负数四则混合运算。因此我只好利用课余时间重新为这两个学生补上了这方面的知识。

又拿年、月、日这个概念来说,这也是三年级所要掌握的概念,有的人可能认为这个概念不重要,没有着重要求学生掌握、熟记。掌握年、月、日这些概念不仅是会数月份,分清大月小月,平年闰年的问题,更重要的是在以后的应用中会显示出这一概念的重要性,因为在小学和中学很多的应用题都要用这方面的知识才能解决。例如有这样一道题:1988年红光煤矿厂上半年生产煤18万吨,平均每天生产煤多少吨?这个问题看起来很简单,但如果没有掌握“年、月、日”概念的话是会算错的,因为解决这个问题一定要知道1988是否是闰年,几个大月几个小月,否则是无法解决的。再如有这样一个题,是五年级上册里面的,“清风小区去年年底全部改用了节水龙头。王奶奶家上半年节约了水费34.5元,李奶奶家第二季度节约了水费21元。谁家平均每个月节约的水费多?”解决这一道题的关键是要知道上半年是几个月,第二个季度是几个月。但是在作业批改中发现还有一些同学不清楚这一关键的知识,导致解题出错,有把第二季度用6个月来算的,也有把第二季度用4个月来算的等等。

再如乘法算式这一概念,8×4是表示4个8是多少,或表示8的4倍是多少,这个概念在小学二年级就应该弄清楚的,但如果不掌握、熟记这一概念,对以后的学习是有影响的。我在教学四、五年级学生的时候就经常发现有多数学生掌握不了乘法算式的含义,不知从何下笔。如五年级中出现的题目:“28×0.5表示什么含义?7.4×3=()+()+()”很多学生由于没有牢记乘法算式这一概念,对这样比较简单的数学题目都做不好。

概念像一级一级的楼梯,如果一个概念不弄清楚就会出现恶性的链锁反映。

第三篇:浅谈小学数学概念教学

浅谈小学数学概念教学

在数学教学中,概念是学好数学法则、定律、性质、公式等数学知识的基础和关键,是培养学生数学能力的前提,是解答数学实际问题的重要条件.因此,把握数学概念的教学十分重要.一、依据掌握概念的心理过程进行教学

数学概念教学必须适合学生掌握概念的心理过程,这个过程一般有两种形式,即概念的形成和概念的同化.因此,我们在概念教学过程的设计和实施时,应以它为依据.1.概念的形成

概念的形成是指从大量的同类事物的不同例证中发现该类事物的本质属性,这种获得概念的形式叫做概念的形成.概念形成的过程,简单地概括为“具体―抽象”的过程.概念的形成主要依赖于辨别和概括这两种心理活动,而辨别与概括又贯穿于“感知―表象―概括―概念系统”这一发展过程中.所以,我们要按学生的认知规律组织教学,增强辨别不同正、反例证的能力.例如,一位教师为了丰富学生对三角形的感性认识,准备了3厘米长的小棒3根,及4厘米、2厘米、8厘米长的小棒各一根.教师请学生先用8厘米长的小棒去围三角形,学生发现随便配上哪两根小棒都不能围成三角形.“为什么呢?”“这根小棒太长了,另外两根小棒太短了”.“如果把它们换掉,你们能将它们围成三角形吗?”学生互相讨论,结果围成了各种三角形.在实践活动中,学生初步感知三角形的特征后,师生共同抽象出三条线段围成封闭的图形是三角形的两个本质属性,然后概括出三角形的概念:由三条线段围成的图形叫做三角形.再通过变式练习,深化了学生对三角形的认识.2.概念的同化

概念的同化是利用学习者认知结构中原有的有关概念,以定义的方式直接向学习者揭示概念的本质属性,这种使学习者掌握概念的方式叫概念的同化.采用概念同化的方式学习概念,前提是学生已积累了许多初级概念,它不同于概念形成过程中的辨别、抽象、分析和概括,一般适用于高年级教学.利用概念同化的方式掌握概念,它是由概念到概念,比较抽象.所以,我们要采取“加强与表象联系”、“强化新概念的本质属性”等方法,教会学生辨析新旧概念的异同.例如,建立比较小数大小的概念时,可以联系整数大小的比较及学生所熟悉的元、角、分等知识进行教学.教师可先出示654与543.8321与8436,让学生回忆比较整数大小的方法,再出示例题,比较2.35元和2.41元的大小.引导学生思考:2.35元和2.41元的整数部分完全相同,2.35元的十分位是3,表示3角;2.41元的十分位是4,表示4角,所以2.35元0.059米.这两道例题都是借助学生已有的知识,帮助学生建立起比较小数大小的概念.二、使用知识迁移的理论方法进行教学

知识迁移是指先前学习的知识对以后学习的知识所产生的影响和作用.知识迁移的理论有:形式训练理论、共同因素理论和概括化理论.为了加强新旧知识之间的联系,教师要注意知识间异同点的揭示,提高学生对知识的概括水平,实现正迁移,防止负迁移,发挥迁移规律在数学概念教学中的作用.例如,教学“平行四边形的面积公式”时,第一步,复习长方形的面积公式:长 × 宽;第二步,将平行四边形沿一条对角线或沿一顶点作对边的高,将它分成两部分,然后拼成等积的长方形;第三步,根据等积概括出平行四边形面积公式:底 × 高.这条思路和经验,为学习三角形面积公式的迁移作了铺垫.那么,在“三角形面积公式”教学时,教师只要适当提示,学生就会根据已有的知识和经验,将平行四边形转化为两个等面积的三角形,通过与平行四边形面积公式建立联系,自然地推导出三角形面积公式,实现知识、经验的迁移.三、抓住概念的内涵和外延进行教学

学生掌握数学概念大致有三种水平:第一种是形式主义地掌握概念,第二种是概括地掌握概念,第三种是创造性地掌握概念.因此,我们在概念教学中必须抓好概念的内涵和外延这一关键,实现概括地或创造性地掌握概念.1.概念的内涵

概念的内涵是指概念所反映的对象的本质属性.本质属性是指对这一类事物有决定意义的属性.它必须具备两个条件:第一,这类事物本身必须具备这种属性,否则就不是这类事物;第二,能把这类事物与其他事物区别开来.譬如,长方体有许多属性,但它的本质属性只有两点:第一,它是个六面体;第二,它六个面都是长方形(有时有两个相对面是正方形).也就是说,长方体必须具备这两个属性,否则它就不是长方体.显然,这两个属性能把长方体与正方体等其他多边形体区分开来.2.概念的外延

概念的外延是指这一概念所反映的对象的总和.譬如,分数这个概念的外延是真分数、假分数(带分数);平行四边形这个概念的外延是一般平行四边形、长方形、菱形、正方形等对象的总和.概念的内涵和外延,两者之间的关系是相互制约、相互依存的,但它们又是统一的、不可分割的两个方面.因此,我们必须明确掌握概念的内涵和外延这两个方面.例如,角、直角、锐角、钝角、平角、周角等概念教学.角:其内涵是从一点引出两条射线所组成的图形,它的外延有直角、锐角、钝角、平角、周角.直角:内涵指角的两条边成90°的角,它的外延就是90°的角.锐角:内涵指角的两条边所成的角小于90°,它的外延是指适合0°

第四篇:浅谈小学数学概念教学

小学数学中概念教学

蹇家坡学校

杨胜

毕业两年,每学期都带两个班的数学课,一直以来,我就觉得数学有几大难题,其中就有对于概念的教学,像老师所提到了现象,在教学时,学生对于概念好像识记了,掌握了,甚至会背了,可是到需要运用这些概念时,学生往往不知所措,完全不会运用。

而数学概念是数学思维的细胞,是形成数学知识体系的基本要素,是数学基础知识的核心,是孩子们学习数学的坚固基石。对于小学的孩子来说,正确地理解、掌握数学概念更是孩子学好数学的前提和保障,有利于学生在后来的学习中形成完整的、清晰的、系统的数学知识体系。

下面我就以我所了解的我们班的情况浅谈几点:

第一、存在问题

1、学生方面:对于小学的孩子来说,其抽象思维能力较弱,对于数学语言的理解和表达有一定的难度,从而使学生出现死记硬背牢记了数学概念,确完全不知该如何应用。

2、教师方面:由于我刚刚毕业,本身对于小学数学概念就没有一个系统的、清晰的认识,只是跟着教材、教参走,结果在某些问题上自己也拿捏不准,自然会使得孩子们数学概念越来越不确定,越来越糊涂。

3、教学设备方面:由于学校处于偏远地区,教学资源特别薄弱,并缺少教学最需要的多媒体,也没有什么教具给我们老师提供,同时由于课堂教学在空间、时间上的限制,使得概念教学显得枯燥、乏味,教学也往往只浮于表面。

4、来自概念本身的:数学概念是客观现实中的数量关系和空间形式的本质属性在人脑中的反映,具有抽象概括性;数学概念又是以语言和符号为中介的,这和我们对生活的理解是不同的,造成了生活概念和数学概念的混淆。比如大部分孩子对于“角”就仅停留在角的顶点上,并需要依托具体的实物才能进行描述,而数学中的“角”则是“角是有公共端点的两条射线所组成的几何图形”,这对于孩子们来说是费劲的。

第二、解决方法

怎样让这些枯燥、抽象的概念变得生动有趣,使课堂教学更有效,减轻孩子们的学习负担,让概念在孩子们心中得到完美内化呢?或许我们可以从以下几方面入手。

1、概念的引入讲述宜直观形象

针对小学孩子的抽象思维能力较弱,对数学语言描述的概念理解较为困难,我们在教学中应该多用形象的描述,创设有趣的问题情境,打些合理的比方等,努力让孩子们理解所学概念,可以采用以下一些方式来进行教学。夸张的手势,丰富的肢体语言,理解运算所蕴含的意义,区分概念的差别。

2、概念的练习宜生动有趣

小学孩子从心理状态上来说较难适应学校的教学生活,在学习中总是会感到疲劳乏味,碰到相对枯燥的概念教学时这种疲惫更是由内而外。德国教育家福禄培尔在其代表作《幼儿园》中认为,游戏活动是儿童活动的特点,游戏和语言是儿童生活的组成因素,通过各种游戏,组织各种有效的活动,儿童的内心活动和内心生活将会变为独立的、自主的外部自我表现,从而获得愉快、自由和满足。将游戏用于教学,将能使儿童由被动变为主动,积极地汲取知识。

游戏、活动是孩子们的最爱,让他们在游戏活动中获取知识,这样的知识必定是美好而快乐的。有了这样的感觉,孩子们学习数学的兴趣一定是浓厚的,我们再让数学的魅力适度展示,让他们感觉到学习数学不但是一件轻松、快乐的事更是一件有意义的事。我想他们继续进行探索、学习新知的动力就来自于此了。

四、概念的拓展宜实在有效

美国实用主义哲学家、教育家杜威从他的“活动”理论出发,强调儿童“从做中学”“从经验中学”,让孩子们在主动作业中运用思想、产生问题、促进思维和取得经验。确实,在一些亲力亲为的数学小实验中,孩子们表现出了一种自然的主动的学习情绪。他们以充沛的精力在这些小实验、小研究中主动地讨论所发生的事,想出种种方案去解决问题,使智力获得了充分的应用和发展。在数学概念的教学中,设计一些孩子能力所能致的小研究活动,可以让孩子对这些抽象的数学概念得到进一步体验、内化,得到课堂教学所不能抵达的效果。

孩子对于较大的单位比如说“千米”“吨”等,由于其经验的限制往往没有什么概念。只是,教师这样说了,他也便这样记了,对他而言也仅仅只是一个简单的字符而已。仅仅通过课堂教学,那么“千米”在孩子们的印象中便是“1千米=1000米”是一个不能用手丈量的长度;“吨”在孩子们的印象中便是“1吨=1000千克”是一个拿不动的质量。至于“1千米”到底有多长,“1吨”到底有多重?孩子们心中并无底,才使得经常会出现:一幢居民楼高约20(千米);一节火车车厢载重量为60(千克)这样的笑话。如果我们能让孩子们来进行切身的体验再附以一些小实验,这些问题便能迎刃而解了。

概念是枯燥的、乏味的,但却是重要的。对于第一学段的孩子们我们不能假定他们都非常清楚学习数学概念的重要性,指望他们能投入足够的时间和精力去学习数学概念,也不能单纯地依赖教师或家长的“权威”去迫使孩子们这样做。那么就需要我们积极地引领他们,使之学得轻松,学得扎实,让他们体会到数学所散发出的无穷魅力,让概念深入心中,为数学学习服务。

我也只是一个刚刚踏上教师岗位的教师,对于班级管理存在的问题,对于教学当中存在的问题,太多太多了,希望各位老师能多多指教,在下一定虚心请教。

2014年10月14日

第五篇:如何进行小学数学概念教学

如何进行小学数学概念教学

王新梅

【内容提要】数学概念不仅是数学基础知识的重要组成部分,而且是学习其他数学知识的基础。学生掌握基础知识的过程,实际上就是掌握概念并运用概念进行判断、推理的过程。数学中的法则都是建立在一系列概念的基础上的。

【关键词】恰当 准确

运用

数学概念是客观现实中的数量关系和空间形式的本质属性在人脑中的反映。小学数学中有很多概念,包括:数的概念、运算的概念、量与计量的概念、几何形体的概念、比和比例的概念、方程的概念,以及统计初步知识的有关概念等。数学概念不仅是数学基础知识的重要组成部分,而且是学习其他数学知识的基础。学生掌握基础知识的过程,实际上就是掌握概念并运用概念进行判断、推理的过程。数学中的法则都是建立在一系列概念的基础上的。事实证明,如果学生有了正确、清晰、完整的数学概念,就有助于掌握基础知识,提高运算和解题技能。相反,如果一个学生概念不清,就无法掌握定律、法则和公式。那么,如何进行小学数学概念教学,下面就谈谈自己初浅的几点看法:

一、概念的引入要恰当。

概念引入得当,就可以紧紧地围绕课题,充分地激发起学生的兴趣和学习动机,为学生顺利地掌握概念起到奠基作用。因此,教学中 1

必须根据各种概念的产生背景,结合学生的具体情况,适当地选取不同的方式去引入概念。例如在学习圆的面积后,我就设计了这样的问题:“我们已经学习了圆面积公式,谁能想办法算一算,学校操场上白杨树树干的横截面面积?”同学们就讨论开了,有的说,算圆面积一定要先知道半径,只有把树砍下来才能量出半径;有的不赞成这样做,认为树一砍下来就会死掉。这时教师进一步引导说:“那么能不能想出不砍树就能算出横截面面积的办法来呢?大家再讨论一下。”学生们渴望得到正确的答案,通过积极思考和争论,终于找到了好办法,即先量出树干的周长,再算出半径,然后应用面积公式算出大树横截面面积。课后许多学生还到操场上实际测量了树干的周长,算出了横截面面积。再如,在教学比例的意义与性质。我们可以这样引入:“同学们,我们已经学习了比,在我们人体上有许多有趣的比。例如:拳头滚动一周的长度与脚的长度的比是1:1,身高和胸围长度比大约是2:1。这些有趣的比作用非常大,比如你到商店去买袜子,只要将袜底在你的拳头上绕一周,就会知道这双袜子是否适合你穿。而这些奥秘是用比例知识来计算的,今天我们就来研究比例的意义和性质。”老师选取一些生动形象的实际例子来引入数学概念,既可以激发学生的学习兴趣和学习动机,又符合学生由感性到理性的认识规律。因此教学中应选择那些能充分显示被引入概念的特征性质的事例,正确引导学生去进行观察和分析,这样才能使学生从事例中归纳和概括出共同的本质属性,形成概念。

二、让学生能够准确理解概念。

正确理解数学概念是学好数学的前提,如果这些概念不清,就会思绪混乱,计算、推理发生错误,就会影响今后整个数学的学习。经过这些年的教学,我认为现在很多小学生对学习数学的积极性不高,缺乏学习兴趣,很多是对数学概念的不理解。数学概念是数学研究对象的高度抽象和概括,反映了数学对象的本质属性,是最重要的数学知识之一。概念教学是数学教学的重要组成部分,正确理解概念是学好数学的基础,概念教学的基本要求是对概念阐述的科学性和学生对概念的可接受性。如讲述加法进位时,先让学生通过摆实物、图形,理解进位加法的算理,用“凑十法”的思考方法,让学生摆一摆、算一算,这样通过实物将抽象的概念具体化。

用直观教具,进行模拟形象的感知,如演示图片、模型等,同时配以动作表情,通过物象直观来直接获得感性知识,把抽象的概念具体、形象地重现出来。学生头脑中的印象形象鲜明、完整深刻,在此基础上,教师引导学生从感性认识逐步抽象出概念。

在教学中有很多数量关系都是从具体生活中表现出来的,因此,在教学中要充分利用学生的生活实际,运用恰当的方式进行具体与抽象的连贯。把抽象的内容转变成具体的生活知识,在学生思维过程中强化抽象概念。如:在学习“体积”概念时,教师可以通过将两个不同大小的石头扔到同样的圆柱水杯中,然后观察两个水杯水的高度来展现石头体积的大小。这样将抽象的体积概念就转变为了水具体的高度,对于尚未形成抽象思维方式的小学生来说就更容易掌握。

三、使学生牢固掌握、正确运用概念

掌握概念是指要在理解概念的基础上记住概念,正确区分概念的肯定例证和否定例证。能对概念进行分类,形成一定的概念系统。概念的运用主要表现在学生能在不同的具体情况下,辨认出概念的本质属性,运用概念的有关属性进行判断推理。学生是否牢固地掌握了某个概念,不仅在于能否说出这个概念的名称和背诵概念的定义,而且还在于能否正确灵活地应用,通过应用可以加深理解,增强记忆,提高数学的应用意识。

1、学过的概念要归纳整理才能系统巩固

学习一个阶段以后,引导学生把学过的概念进行归类整理,明确概念间的联系与区别,从而使学生掌握完整的概念体系。如学生学了“比”的全部知识后,我帮助他们归纳整理了什么叫比;比和除法、分数的关系;比的基本性质,利用比的基本性质,可以化简比;这一系列知识复习清楚之后,才能很好地解决求比例尺三种类型题和比例分配的实际问题。只有把比的意义理解得一清二楚,才能继续学习比例。表示两个比相等的式子叫做比例。这样做,就构成了一个概念体系,既便于理解,又便于记忆。概念学得扎扎实实,应用概念才会顺利解决实际问题。

2、通过实际应用,巩固概念

学习的目的是为了解决实际问题。而通过解决实际问题,势必加深对基本概念的理解。如学生学了小数的意义之后,我就让学生利用

课外时间,到商店了解几种商品的价钱,写在作业本上,第二天让他们在课上向大家汇报。通过了解的过程,非常自然地对小数的意义,读、写法得以运用与理解。又如学了各种平面图形后,我让学生回家后,观察家里那些地方有这些平面图形。通过这种形式的作业,学生感到新鲜,有趣。这不仅巩固了所学概念,还提高了学生运用数学概念解决实际问题的能力。

3、综合运用概念,不仅巩固概念,而且检验概念的理解情况。

在学生形成正确的数学概念之后,进一步设计各种不同形式的概念练习题,让学生综合运用、灵活思考、达到巩固概念的目的,这也是培养检查学生判断能力的一种良好的练习形式。这种题目灵活,灵巧,能考察多方面的数学知识,是近些年来巩固数学概念一种很好的练习内容。

练习概念性的习题,目的在于让学生综合运用,区分比较,深化理解概念。所安排的练习题,应有一定梯度和层次,按照概念的序,学生认识的序去考虑习题的序。要根据学生实际和教学的需要,采用多种形式和方法设计,借以激发学生钻研的兴趣,达到巩固概念的目的。尤其应组织好概念性习题的教学,引导学生共同分析判断。

多年来的教学实践,使我深刻地体会到:要想提高教学质量,教师用心讲好概念是非常重要的,既是落实双基的前提,又是使学生发展智力,培养能力的关键。但这也仅仅是学习数学的一个起步,更重要的是在学生形成概念之后,要善于为学生创造条件,使学生经常地

运用概念,才能有更大的飞跃。只有学生会运用所掌握的概念,才能更深刻地理解概念,从而更好地掌握新的数学知识。只有这样,培养能力,发展智力才会有坚实的基础。

2014年1月19日

下载小学数学概念教学的一点体会word格式文档
下载小学数学概念教学的一点体会.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    小学数学概念教学模式

    小学数学概念教学模式 东营市胜利物探小学 李涛 数学概念是人对客观事物中有关数量关系和空间形式方面本质属性的抽象。数学概念具有抽象性和概括性的特点。 数学概念是数学......

    浅谈小学数学概念的教学

    在实施新课改和素质教育的今天,培养具有创新型的人才已成为社会共识。创新的人需要优秀的思维品质。而数学是思维的科学,在数学教学中渗透数学的思想方法对于创新型思维的培养......

    小学数学概念教学总结

    小学数学概念教学总结 数学是由概念与命题等内容组成的知识体系,它是一门以抽象思维为主的学科,而概念又是这种思维的语言。因此概念教学是小学数学中至关重要的一项内容,是......

    浅谈小学数学概念教学[全文5篇]

    浅谈小学数学概念教学 小学低年级的数学概念,大部分是具体的,可以直接感知。从四、五年级起,抽象程度较大的要领逐步增加,要让四、五年级学生掌握这些抽象的概念,有一 定的困难。......

    小学数学概念教学的探讨范文

    小学数学概念教学的探讨 【附小教研片】下宫小学俞裔银 【内容摘要】数学课堂教学无论是形式、还是内容都随着新课程理念推行,过去的教学方式正受强有力的冲击。在新课程理念......

    如何进行小学数学概念教学

    如何进行小学数学概念教学 小学数学教学过程,就是“概念的教学”。一个数学教师,要把概念教学放到突出地位。小学数学中的一些概念,对小学生来说,由于年龄小,知识不多,生活经验不......

    初中数学概念教学设计的体会

    初中数学概念教学设计的体会一、注重联系现实原型,对概念作解释。数学概念都是从现实生活中抽象出来的,都是由于科学与实践的需要而产生的。讲清它们的来源与实物作比较,这样学......

    小学数学教学体会

    小学数学教学体会2012年8月10日,踏着对梦想的追求,我来到临县南临学校应聘,8月20日开始上班,2013年1月28日,抱着满载的成果,结束了我的实习生涯。 在实习期间,我所带的是三年级数学......