第一篇:单片机实验一
实验一 Keil的使用及基本指令练习
一、实验目的和要求:
熟悉KEIL单片机编程软件使用环境,掌握利用KEIL调试指令的方法。
二、实验设备:
安装了KEIL的计算机。
二、实验内容和步骤:
1、双击KEIL图标,运行KEIL软件。
2、在Project下选择New Project新建一个项目,输入一个项目名,点击保存,进入选择单片机的对话框,选择:Atmel公司下的AT89C51,点确定;出现生成起始代码的选择,点否。
3、点File菜单下的New,新建一个文件,接着选File下的Save,给文件起个后缀名为ASM的文件。
4、在左边项目工作空间(Project Workspace)里,右键点击Sorce Group1 选择 Add File to……..在出现的对话框里,选择文件类型为Asm Source file,将刚生成的文件添加到项目中。
5、左边项目工作空间的树状结构里,将出现新建的文件,双击它,进入右边编辑空间,开始进行汇编程序的编写。输入以下程序段:(不用输入;之后的内容)ORG0000HLJMPSTAORG0040H
STA:MOVSP,#6FH;SP=
MOV17H,#34H;(17H)= MOVA,#83H;A= MOVR0,#17H;R0= ANLA,#17H;ORL17H,A;(17H)XRLA,@R0;CPLA;A= SJMP$ END6、保存文件,点击Projiect菜单下Rebuild all target files编译文件,若没有错误,编译成功。
7、点击Debug下Start/Stop Debug….进入调试状态。
8、点击View 菜单下的Memmery Window在编辑窗口的右下出现存储器窗口。
9、在存储器窗口输入:D:00回车,改变为观察内部数据存储区。
10、按F10,单步执行程序,每执行一步,观察左边的Register(寄存器)或存储器窗口,看各指令执行前后相关单元的内容变化,并记录下来。
三、实验报告要求:
1、认真按要求的步骤进行实验,掌握使用KEIL的基本方法。
2、按实验要求进行相关数据的记录,并解释每一个数据变化的原因!(执行了什么指令,该指令怎么让数据产生了怎么样的变化!)
3、自己尝试改变程序(比如自己写两条运算指令等),按实验的调试方法,观察运行过程数据单元的变化情况。
第二篇:单片机实验
实验
一、MCS51单片机基本开发环境
1. 实验目的:
1)熟悉软件的集成开发环境 2)掌握单片机软件设计流程
3)掌握单片机存贮器结构及各窗口之间的联系 2. 实验内容:
1)用三种方法实现将累加器A内容改为20H
方法1--MOV A,#20H 方法2—MOV R0,#20H MOV A,R0 方法3—MOV R0,#20H XCH A,R0 心得:越往下做实验时就越感觉这题根本不能说是题目,但不得不说在没接触过编程软件,刚开始学的汇编,第一次做的实验就光这道题都觉得不知道做什么.所以凡是总有开始,不了解情况的多简单的都会觉得难.2)将58H位单元置为1,观察内部RAM中2BH内容的变化 代码:
SETB 2BH.0 JMP $ END 心得:这是关于内部存储中对单元和字节了解,不理解很容易做错.比如开始写的指令为
MOV R0,#58H;MOV @R0,#1
这是错误的指令。这就需要认真去了解单片机中的字节地址与位地址的关系。80C51中有位寻址区和字节寻址区。题目中58H为位地址,2BH为字节地址,且58H为2B字节的最低位。由于58H属于位寻址区,可用位操作指令 SETB 进行置位,SETB 2BH.0 执行后,2BH中内容变为01
3)如果当前状态为有进位、工作寄存器使用区2,请用3种方法设置这种状态
代码:
ANL PSW,#01H MOV A,PSW
CJNE A,#01,LAB2 LAB1:JMP LAB1
LAB2: SETB PSW.4 MOV P0,#01H MOV R0,#18H CLR PSW.3 MOV C,P0.0 MOV PSW,R0 MOV PSW.4,C CPL C MOV PSW.3,C END
心得:以上LAB2写了三段代码,可分别完成题目要求。不过实验时只是对代码进行了错误调试,没有对结果进行检验。其中值得注意的是对于布尔(位)操作指令的用法,比如传送指令必须经累加器C,如第二段中MOV P0,#01H;MOV C,P0.0,以及对于位寻址的方式(如需用到“.”隔开)的应用。4)编一个小程序将内部RAM中的20H单元的内容送到21H单元并调试
代码:
MOV R0,#20H MOV @R0,#10H MOV R1,#21H MOV @R1,20H JMP $ END
5)用程序将堆栈指针指向60H,然后在堆栈中依次压入01,02,03,04,05五个数,观察哪些单元内容发生了变化,各变为多少?从哪些窗口可以发现这些变化?顺序将堆栈中的五个数放入30H~34H五个单元中,编程实现之。
代码:
MOV R1,#60H MOV SP,R1 MOV DPL,#1H LAB1:PUSH DPL INC DPL MOV A,DPL CJNE A,#6,LAB1 POP 34H POP 33H POP 32H POP 31H POP 30H JMP $ END
6)将外部数据存贮器1000H~100FH 16个单元中存放00H~0FH 代码:
MOV DPTR,#1000H MOV R1,#10H LOOP:MOVX @DPTR,#1234H MOVX A,@DPTR MOV @R1,A INC DPTR INC R1 CJNE R1,#40H,LOOP JMP $ END
心得:此处需要访问片外存储空间,需要借助寄存器DPTR,需注意其为16位的寄存器,在使用时若与八位寄存器进行数据交换时需分为高八位DPH与低八位DPL来用。7)若要求程序从0010H单元开始运行,可用两种方法实现?
方法一 ORG 0010H 方法二 AJMP 0010H
3. 选做实验内容:数据传送 目的:
1)掌握8051单片机内部数据存贮器、外部数据存贮器的数据传送特点和应用 2)掌握MOV,MOVX和MOVC类指令的用法及区别 内容:
1)将片内RAM数据区20H为首地址的十六个字节传送到30H为首地址的数据区,即:20H~2FH送30H~3FH
代码: ORG 0000H JMP MAIN ORG 0030H MAIN:MOV R0,#20H MOV R1,#30H LOOP:MOV @R0,#1234H MOVA,@R0 MOV @R1,A INC R0 INC R1 CJNE R1,#30H,LOOP JMP $ END
2)将外部数据存储器2000H~200FH单元的十六个数传送至内部数据存储器的30H~3FH 代码: ORG 0000H JMP MAIN ORG 0030H MAIN: MOV DPTR,#2000H MOV R1,#30H LOOP:MOVX @DPTR,#12H MOVX A,@DPTR MOV @R1,A INC DPTR INC R1 CJNE R1,#40H,LOOP JMP $ END
总体心得体会:
第一次做实验主要是熟悉了解了下单片机编程软件的使用,开始接触时在对其软件不是太了解的情况下实验编程做的确实很乱,不清楚该怎样进行,比如不知如何进行对指令的调试,也不清楚该如何观察结果,没有一个整体的概念,所以在了解其开发环境上花了不少时间。经过一段时间的摸索后也终于了解了其具体的使用,也能够顺利的对指令的编程运用。运行指令时遇到的一些问题需要注意的也在上面各题中做了说明。还有需要注意的是:进入软件仿真时需要对存储空间进行查看的方法是在Address窗口中输入:d:00h 显示内部数据存储器从00h开始的单元; x:1000h 显示外部数据存储器从1000h开始的单元; c:0000H 显示程序存储器内容。还有由于伪指令 END 定义的原因,在程序末需加一条死循环调转指令(如 JMP $)使程序不会进入其他未知空间执行其他指令。实验
二、加、减法实验
1. 实验目的
1)正确使用单片机的加减运算指令
2)掌握不同指令对于程序状态字的影响及程序状态字的意义、用处 3)掌握ADD,ADDC,SUBB和DA A等指令的用法 4)学习模块化程序设计方法 2. 实验内容
1)编写3字节二进制加法子程序,并用主程序调用不同的加数和被加数来检测该子程序的正确性。需考虑有进位和无进位情况。程序入口为: 加数:22H,21H,20H三字节,22H为最高位
被加数:32H,31H,30H三字节,32H为最高位
程序出口为: 23H,22H,21H,20H四字节,23H为最高位 例如:地址:23 22 21 20 32 31 30 执行前数据: 01 23 45 FF 01 01 执行后数据:01 00 24 46
代码:
ORG 0000H AJMP MAIN ORG 30H MAIN: MOV 22H,#01H MOV 21H,#23H MOV 20H,#45H MOV 32H,#0FFH MOV 1H,#01H MOV 30H,#01H ACALL ADDI HERE:JMP HERE ORG 100H ADDI: PUSH PSW MOV R0, #20H;加数1地址、和的地址 MOV R1, #30H;加数2地址 CLR C MOV R2, #3;循环3次 LOOP: MOV A, @R0;取 ADDC A, @R1;加 MOV @R0, A;存 INC R0 INC R1 DJNZ R2, LOOP CLR A ADDC A, #0;得到进位 MOV 23H, A;保存 POP PSW RET END
2)编写三字节二进制减法子程序 入口:被减数: 52H,51H,50H, 50H为最低位
减数: 42H,41H,40H, 40H为最低位
出口:差:外部数据存贮器2003H~2000H(2000H为最低位)用主程序调用多组数据来调试,需考虑无借位和有借位两种情况。例如:
执行前:地址: 52 51 50 42 41 40
数据: 90 80 70 10 10 10
执行后:地址: 2003 2002 2001 2000
数据: 00 80 70 60 代码:
ORG 0000H AJMP MAIN ORG 30H MAIN: MOV 52H,#90H MOV 51H,#80H MOV 50H,#70H MOV 42H,#10H MOV 41H,#10H MOV 40H,#10H ACALL SUB1 HERE:JMP HERE SUB1: PUSH PSW MOV R0, #50H;被减数地址 MOV R1, #40H;减数地址 MOV DPTR, #2000H;差的地址 CLR C MOV R2, #3;循环3次 LOOP: MOV A, @R0;取 SUBB A, @R1;减 MOVX @DPTR, A;存 INC R0 INC R1 INC DPTR DJNZ R2, LOOP CLR A SUBB A, #0;得到借位 MOVX @DPTR, A;存 POP PSW RET END
3)编写10位十进制加法子程序(十进制数采用压缩BCD码存放)入口: 加数:24H—20H,低地址放低字节
被加数:29H—25H,低地址放低字节
出口 和:4005H—4000H,低地址放低字节
要求调用多组数据调试,注意观察PSW的变化,理解DA A指令的含义。例如:
执行前地址:24 23 22 21 20 29 28 27 26 25
数据:12 34 56 78 90 88 99 33 12 74
执行后地址:4005 4004 4003 4002 4001 4000
数据: 01 01 33 89 91 64
代码:
ORG 0000H AJMP MAIN ORG 30H MAIN: MOV 24H,#12H MOV 23H,#34H MOV 22H,#56H MOV 21H,#78H MOV 20H,#90H MOV 29H,#88H MOV 28H,#99H MOV 27H,#33H MOV 26H,#12H MOV 5H,#74H ACALL ADD2 HERE:JMP HERE ADD2: PUSH PSW MOV R0, #20H;加数1地址 MOV R1, #25H;加数2地址 MOV DPTR,#4000H CLR C MOV R2, #5;循环5次 LOOP: MOV A, @R0;取 ADDC A, @R1;加
DA A;调整为BCD码 MOVX @DPTR, A;存 INC R0 INC R1 INC DPTR DJNZ R2, LOOP POP PSW RET END
第三篇:单片机实验
实验一清0、移数
将片内20H~2FH及片外0010H~001FH单元清0;
然后将片内30H~3FH的数据移到片外0000H~000FH中;判断:
若(30H)≤10,则求其平方存到31H中,并将位00H置1(其它位清0)若(30H)=10,则将AA存到31H中,并位01H置1(其它位清0)若(30H)≥10,则减10存到31H中,并位02H置1(其它位清0)
实验二加法、排序
有两个长度为10的无符号数分别放在片内20H和30H为首的存储单元中(低位),求其对应项之和(带进位位),结果放在40H为首的单元中(若最高位有进位则存在后续单元中),然后按升序排列放在50H为首的单元中
实验三查表、散转
设有一表格,表中数为:00H、11H、22H、33H、44H、55H、66H、77H、88H、99H、AAH、BBH、CCH、DDH、EEH、FFH。根据片外0001H单元的低4位的数,取出表中相应的值存到片内30H中;根据片外0001H单元的高4位的数,将片内RAM区中可位寻址的相应的位置1(从位00H~位0FH,只可有一个位地址为1)
实验四外中断
P1.0~P1.7接8个发光二极管,管脚INT0、INT1接两个按键,分别定义为“L”和“R”。
要求:上电全灭,按 “L”(或R)键,最右(左)侧灯亮,每按一次“L” ”(或R)键,则亮的灯向左(右)移一位,当移到最左(右)端时,灯全灭
实验五定时器
P1.0、P1.1分别接两个发光二极管,INT0脚接
一按键做开关,按一次开关,则启动,两个发
光管一亮一灭,亮灭时间均为1秒;再按一次
开关,则关闭,即两个发光管都灭。
实验六定时器、计数器
P3.2口输出周期为2S的方波,T1口为脉冲输入端,记录输入的脉冲个数,脉冲个数由P1口所接的8个数码管显示(二进制),设一按键作为开关控制系统运行,关闭时数码管全灭,P3.2无输出。
第四篇:51单片机实验一实验报告
实验报告
班级:
姓名:
学号:
组别:
课程名称:单片机原理及应用
实验室:
实验时间:
实验项目名称:
实验一
MCS-51单片机及其开发系统(仿真器)的认识 一、实验目的:
学习并掌握单片机仿真系统的操作方法,熟悉系统功能及用法。
(1)了解MCS-51单片机开发常用工具。
(2)了解仿真器构成、功能及连接。
(3)掌握MCS-51开发软件(汇编器)安装、功能及基本操作。
(4)掌握源程序的编辑、汇编、运行(包括连续执行、单步执行和跟踪执行)。
(5)掌握汇编语言指令与机器语言指令之间的对应关系。
(6)掌握ORG、DATA、BIT等伪指令的作用。
(7)掌握在仿真开发系统下浏览、修改特殊功能寄存器、内部RAM、外部RAM单元的方法。
(8)理解MCS-51单片机在复位期间及复位后有关引脚的状态、特殊功能寄存器的初值。
二、实验内容及原理:
MdeWin单片机仿真系统的安装、设置、主要功能操作练习。
三、实验器材:
MdeWin单片机仿真系统一套、PC机一台。
四、实验步骤及实验结果分析:
一、程序输入练习:
首先在Medwin下新建一项目,并新建一后缀名为asm的文件(汇编源文件),并添加入项目中。
按规定的格式输入以上程序(只输源程序部分)。
二、程序运行和控制:
1.程序的编译、产生代码并装入: 输入源程序完毕后,可在“项目管理”窗口中点击“编译/汇编”选项,如程序无输入错误、语法错误等,编译完成。在消息窗口中,产生编译成功信息。如有错误,则消息窗口中指出错误所在行及错误类型,请重新修改源程序。
编译成功后,在“项目管理”窗口中点击“产生代码并装入”选项,对编译无误后产生的OBJ文件进行连接,并把代码装入仿真器。代码装入仿真器后,即可实行仿真。
可在反汇编窗口中查看编译产生的机器码,并与上述程序中对照。
记录你认为能说明问题的检查结果。
2.程序的全速、断点、单步等执行方式: 为提高调试程序的运行速度,程序采用全速断点运行方式。
练习设置及取消设置程序断点。
比较单步及跟踪两种程序运行方式的不同。
3.查看单片机各种资源状态及内容:
在“察看”窗口中可以查看单片机内部及程序变量等各种资源,在单步或程序断点运行中可以实时观察单片机SFR、内外RAM、程序变量等内容,可以很方便的观测程序的运行状况。
将观测的结果记录下来以便和程序分析结果相比较。
三.程序输入补充练习1.汇编语言源程序编辑、运行及调试,输入、编辑、汇编、运行(连续、单步执行)如下程序段:
;变量定义区
XVAR DATA
30H
;定义变量 X,Y地址
YVAR DATA
38H
P10 BIT
P1.0
;位定义P1.0定义为P10
ORG
0000H
;伪指令 定义PC开始位置
LJMP
MAIN
;长跳转到主程序位置
ORG
0100H
;伪指令 主程序开始位置 MAIN: MOV SP, #9FH
;设置堆栈地址
MOV A, #55H
;A=55H
MOV XVAR, A
;XVAR(30H)=55H
MOV R0, #XVAR
;R0=30H
MOV @R0, #01H
;(30H)=01H
INC R0
;R0=31H
MOV @R0, #02H
;(31H)=02H
MOV R1, #YVAR
;R1=38H
MOV A, @R0
;A=02H
MOV @R1, A
;(38H)=02H
PUSH Acc
;压栈操作A0,A1存储acc和psw
PUSH PSW
;
MOV A, #0AAH
;A=AAH
SETB RS0
;01 选用第一区寄存器
CLR RS1
MOV R0, #5AH
;R0=5AH
MOV R1, #0A5H
;R1=A5H
POP PSW
;出栈操作释放acc和psw
POP ACC
INC R1
;R1=39H
DEC R0
;R0=30H
MOV A, @R0
;A=01H
MOV @R1, A
;(39H)=01H
CLR P1.0
SETB P1.0
;置位P1.0
MOV 90H, #00H
;(90H)=00H
MOV 90H, #55H
;(90H)=55H
MOV 90H, #0FFH
;(90H)=FFH
MOV P1, #00H
;P1=00H
MOV P1, #55H
;P1=55H
MOV P1, #0FFH
;P1=FFH
SJMP $
END(1)找出每条指令的机器码,并与第3章指令码表对照,指出每一指令的功能、寻址方式、操作数书写形式。
地址
机器码
指令
目的操作数/ / 源操作数
MOV SP, #9FH
目的操作数:直接寻址;源操作数:立即寻址 MOV A, #55H
目的操作数:寄存器寻址;源操作数:立即寻址; MOV XVAR, A
目的操作数:直接寻址;源操作数:寄存器寻址; MOV R0, #XVAR
目的操作数:寄存器寻址;源操作数:立即寻址;
MOV @R0, #01H
目的操作数:寄存器间接寻址;源操作数:立即寻址; INC R0
寄存器寻址 MOV @R0, #02H
目的操作数:寄存器间接寻址;源操作数:立即寻址; MOV R1, #YVAR
目的操作数:寄存器寻址;源操作数:立即寻址; MOV A, @R0
目的操作数:寄存器寻址;源操作数:寄存器间接寻址; MOV @R1, A
目的操作数:寄存器间接寻址;源操作数:寄存器寻址; PUSH Acc;
将Acc中的内容压入堆栈;直接寻址 PUSH PSW
将PSW压入堆栈;直接寻址 MOV A, #0AAH
目的操作数:寄存器寻址;源操作数:立即寻址; SETB RS0
位寻址 CLR RS1
位寻址 MOV R0, #5AH
目的操作数:寄存器寻址;源操作数:立即寻址; MOV R1, #0A5H
目的操作数:寄存器寻址;源操作数:立即寻址; POP PSW
按压栈顺序放入PSW; 直接寻址 POP ACC
按压栈顺序放入Acc;直接寻址 INC R1
寄存器寻址 DEC R0
寄存器寻址
MOV A, @R0
目的操作数:寄存器寻址;源操作数:寄存器间接寻址; MOV @R1, A
机器码:F7;R1=A;
目的操作数:寄存器间接寻址;源操作数:立即寻址; CLR P1.0
将p10口清零 SETB P1.0
将P10口置一; 位寻址 MOV 90H, #00H
机器码:759000;(90H)=00H;目的操作数:直接寻址;源操作数:立即寻址; MOV 90H, #55H
目的操作数:直接寻址;源操作数:立即寻址; MOV 90H, #0FFH
目的操作数:直接寻址;源操作数:立即寻址; MOV P1, #00H
目的操作数:直接寻址;源操作数:立即寻址;
MOV P1, #55H
目的操作数:直接寻址;源操作数:立即寻址; MOV 90H, #0FFH
目的操作数:直接寻址;源操作数:立即寻址; SJMP $
(2)在单步执行过程中,每执行一条命令后,观察并记录有关寄存器、内存单元的变化情况。设置断点后,再连续执行,记录30H、31H、38H单元内容,与复位后的内容进行比较,由此得出什么结论?
全速执行
全速执行后复位
执行至断点处
全速执行到结束 由上图可见,全速执行后并不会输出结果,只有当程序复位之后才会将结果显示出来,但是设置断点后,运行至断点就会显示已运行的结果,由此我得出结论:当全速运行到最后时,系统处于原地跳转状态,只要系统不停下就不显示结果,而设置断点后,到达断点就会停止运行,从而显示运算结果。而单步执行在每一步执行之后,对应地址的数值就会立刻改改变。
(3)修改ORG 100H指令后的地址,重新汇编,观察程序代码在程序存储器中存放位置的变化情况。记录你认为能说明问题的检查结果。
ORG 300H
ORG 1000H 五、在实验过程中遇到的问题及解决方法(1)
软件安装出错
解决:删除注册表,在注册表的删除过程中,必须要删干净,然后换安装包重装。
(2)
出栈时,寄存器的数值改编 解决:psw 出栈时,改变了 rs0,rs1 的值,也就是换回了 0 区寄存器。因此个寄存器的数值均为压栈前的数值。
六、实验结论
本次实验,较为简单,基本上是验证性实验,在学习了理论知识后,通过实践,简单明了的看到了各个地址的数值,并了解到程序的运行过程,单步运行更容易让我们了解到每一步指令的操作效果。另外,在实验过程中,调用各个查看窗口进行实验过程跟踪,能更加直观的认识到指令的作用
第五篇:单片机实验一:电风扇设计
单片机实验一:电风扇设计
1、基础部分:风扇要求有三个档位可选:低档位、中档位、高档位,当前档位能够直观显
示(液晶屏或者LED),风扇有独立的电源开关和档位选择按钮;
2、提升部分:①风扇具有定时功能,例如,定时30分钟,则风扇可以工作30分钟自动停
止。
3、选作部分:显示部分可显示当前时间
用51和430均可以。