第一篇:生物医学参观实习报告
参观实习报告范文,生物医学参观实习报告范文。《参观实习报告范文》
中山医院的放疗中心由以下几部分构成:TpS计划站、后装机室、加速器控制室、治疗室。病人首先要进行放疗定位,即确定放疗的针对范围,然后通过TpS计划站进行计划,该过程是利用计算机进行治疗方案的优化组合,得到最适合的治疗方案。根据肿瘤部位的不同,相应采取内放或外放,内放即照射源发出射线,照射腔内管内肿瘤;外放是利用直线加速器产生X射线,进行治疗。
放疗中心拥有的主要放疗设备如下:
1)山东新华医疗器械厂SL—1型放射治疗模拟定位机
通过X射线透视观察,定位肿瘤的大小和位置,是肿瘤患者在放疗前检查、制定、确认治疗计划的必备设备。
特点:
1、图像清晰:不论在低亮度,还是在高亮度条件下都能获得高质量图像,实习报告《生物医学参观实习报告范文》。
2、各种模拟参数,显示精度高,重复性好。
3、可自动设置机架角度,源皮距SAD。
4、影像增强器的扫描范围大,并可与光阑同步移动。
5、具有末帧图像锁存功能。
操作方式:
全部模拟检查均可通过电视监测隔室操作,控制台具有控制、显示数据等功能。必要时可用手控器近台操作。
2)山东新华医疗器械厂XHDRl8高剂量率遥控后装治疗机
后装技术最初只是应用于妇科肿瘤的治疗,后来发展到广泛应用于治疗鼻咽癌、食道癌等等腔内肿瘤,即作为内照式与外照式之间的填充。目前后装技术使放疗对于腔内肿瘤的治疗效果可达到手术水平,甚至优于手术治疗,因此成为治疗腔内肿瘤的首选方法。
3)德国SIEMENS公司primus6/15MV双光子医用直线加速器和多叶光栅(3—D)
pRIMUS是西门子公司专为调强治疗而研制的最新型全数字化直线加速器。该机为全数字化处理,自动化程度高,精确可靠,可进行高质量放疗。pRIMUS意指productivity(高效),Reliability(稳定可靠),IntensityModulation(调强)和UnifiedStructure(结构统一)。新的固态化技术使pRIMUS的体积较之早期的MEVATRONK减少了76%。这意味着客户可以大大的节省机房面积,因而也就节省了机房造价。
“参观实习报告范文”
第二篇:医学实践报告,参观医院总结,生物医学基础
医学实践报告
一:综述
生物医学工程(BiomedicalEngineering,简称BME)是一门由理、工、医相结合的边缘学科,是多种工程学科向生物医学渗透的产物。自20世纪60年代,电子技术、计算机技术、材料科学、激光超声、核物理、微电子及控制理论等渗透到生物医学领域,使生物医学工程这门学科更具有技术性,工程性和多学科交叉性。
生物医学工程是运用自然科学和工程技术的原理和方法,研究人的生理,病理过程,揭示人体的生命迹象,并从工程技角度解决治病防病问题的一门综合性高技术学科。所以自然科学作为理论知识是基础和前提,而通过理论知识和实践的结合形成技术和工程是结果和目的。
医学实践作为课堂理论知识的延伸和扩展,在对原理知识的理解和应用方能起到重要作用。通过医学实践不仅直观、近距离、感性地接触到了医学仪器,也对理论知识的物质成果和从工程技术的角度认识生物医学工程有了更深度理解和认识。
医学实践包括校内老师理论授课、校内医学仪器操作实践和校外医院参观学习三个部分。在老师理论授课授课阶段更直接、具体、有针对性的学习了常见医疗器械的基本工作原理。对理论知识在工程技术方面的直接有效的应用有了更加清晰,深刻的理解。在校内医学仪器操作实践时,不仅直观,近距离的接触到常见的医疗器械,而且还对一般医疗仪器进行了简单的操作。校外医院参观学习时,更加直观的接触到较为先进,功能较为完善的现代医疗电子仪器。对仪器的内部构造、基本工作原理、简单的操作和重要的应用方面有了更加深刻的理解和认识。
总之,理论是实践的概括与抽象,实践是理论的体现与具体。二:常用医学电子仪器的工作原理
常用的医学电子仪器有心电图机、B超、彩超、CT、核磁共振等。由于人体是由细胞构成,细胞是人类进行生命活动的基本机构。细胞在进行生命活动时会相应的产生一定的电信号和磁信号,这些信号包含了人体生命活动的重要信息,因此,对这些信号的采集、分析、处理变得尤为重要。所以,大部分医疗器械主要是对人体(细胞)产生的电信号和磁信号进行采集、分析、处理,从而比较出人体正常态和病态下信号的相同点和不同点,为医生提供准确,必要的诊断依据。同时它们还可以利用电场和磁场对细胞的不同作用,通过一定的,适当的电刺激或者磁刺激,治疗相关疾病。医学电子仪器在疾病的发生、预防、诊断和治理方面起到巨大的作用。
1).心电图机的原理
按照心脏激动的时间顺序,将此体表的点位记录下来,形成一条连续的曲线,即为心电图。人体的生理活动都是以细胞为基础的,在每一个心动周期内细胞的点位变化可以反映体表点位的变化情况,即体表点位的变化时由很多细胞点位变化产生的,因此在讨论和研究电位的变化时以单个细胞电位变化为例。
细胞膜的生物电现象主要有两种表现形式,即安静时的静息电位和受刺激时产生的膜电位的改变(包括局部电位和动作电位)。生物电现象是以细胞为单位产生的,以细胞膜两侧带电离子的不均衡分布和离子的选择性跨膜转运为基础。
(一)静息电位及其形成原理
1.静息电位(resting potential,RP):指细胞未受刺激时存在于细胞膜内外两侧的电位差。细胞的静息电位表现为膜内电位值较膜外为负,如规定膜外电位为0,膜内电位可以负值表示,即大多数细胞的静息电位在-10~-100mV之间。神经细胞的静息电位约为-90mV。2静息电位的产生机理
(1)心肌细胞膜内外离子的分布情况
外:钠离子、钙离子、氯离子
内:钾离子 有机酸根离子和带负电的蛋白质
内钾离子是外部的约30倍,外钠离子是内浓度的约15倍,钠离子钾离子在内外的不平衡分布保证了心肌细胞的兴奋性。(2)静息电位产生的基本条件
a:很大浓度梯度b:钾离子流动的细胞膜通透性比钠离子好(3)静息电位产生
a:钾离子外扩 结果:使内电位越来越负外电位越来越正 b:内外电位差形成钾离子从内向外扩散的反力 静息电位也称为钾离子的扩散电位。
(二)动作电位及其形成原理 1.动作电位(action potential, AP):指膜受刺激后在原有的静息电位基础上发生的一次膜两侧电位的快速而可逆的倒转和复原。当心肌细胞膜某点受刺激时,受刺激处的细胞膜对Na+ 的通透性突然升高,而对K+的通透性却显著降低,因此细胞外液中的大量Na+渗入到细胞内,使细胞内Na+大量增加,细胞内电位由-90毫伏突然升高到+20~+30毫伏(跨膜电位逆转)。由激动所产生的跨膜电位,称为跨膜动作电位,简称动作电位。2.心肌细胞的除极化过程与动作电位 i.除极条件:a 电刺激。b 电足够强,使膜的静息电位小到阈电位(70mv)。
c 内外钠离子存在很大浓度梯度。
ii.除极过程:a 细胞受电,到阈细胞膜对钠离子通透性大大提高,钠离子通道大开。
b钠离子从外→内扩散。
c 由于钠离子内流,内电位从-90mv上升到30mv,此过程为除极化。
iii.动作电位
心肌细胞的兴奋性
a未兴奋细胞:处于极化。
b已兴奋细胞:除极化(外负内正)
3.复极化过程,恢复静息电位。3个阶段:
a 快速复极早期:钠离子通道关氯离子从外到内细胞内电位从30mv降到0mv。b 缓慢复极期:氯离子通道关;钙离子通道缓慢开,钙离子从外到内(慢);钾离子部分开,从内到外(慢)平台区。
c 快速复极末期:钙离子渐关,钾离子大量开放→钾离子从内快速到外→外流钾离子电量使细胞内电位迅速从0mv降到-90mv。
(5)钠钾泵:由于钾离子大量外流与钠离子大量内流,钠钾内外不平衡打破,使下次细胞丧失在兴奋能力。人体ATP总消耗20%用在钠钾泵上。
(三)、动作电位的引起和传导
1、去极化与Na+内流的正反馈
当细胞膜受到刺激去极化时,膜上电压门控Na+ 通道开放,其开放的数量可随膜去极化幅度的增加而增加。Na+通道开放使Na+内流增加,又导致膜的进一步去极化,从而使更多的Na+ 通道开放。如此循环往复,互相加强,最终使膜上Na+通道全部开放,Na+迅速大量内流,而触发动作电位。
2、阈电位与动作电位的引起
当膜电位值达到阈电位(Threshold potential)水平时,动作电位才能被触发。所谓阈电位,即指恰好能使膜的去极化与Na+内流之间形成正反馈的临界膜电位值。
3、局部电位与膜的兴奋性
阈下刺激引起的膜局部去极化电位(未达到阈电位的膜电位)称为局部电位(Local potential)。阈下刺激引起膜的去极化,膜上少量Na+通道开放,Na+内流形成局部电位。
4、动作电位的传导及其原理
只要细胞膜上的某一位点受到刺激产生AP,这个AP就会沿着细胞膜向周围传播,使整个细胞的膜都经历一次类似于受刺激部位的离子电导的改变,表现为AP沿整个细胞膜的传导。且在此传导过程中,AP的幅度随传导距离的增加而发生任何改变,即不衰减地传导。总结为:
心肌细胞激动后,膜表面变为负电位,膜内变为正电位,这种极化状态的消除称为除极。
复极时,细胞膜对Na+的通透性迅速降低,细胞膜对K+和Cl-的通透性增大,引起K+的外流和Cl-的内流,其中K+外流是主要的,因而细胞内正电位迅速下降,接近零电位水平
缓慢复极化阶段。表现为膜内电位下降速度大减,停滞于接近零电位的等电位状态,形成平台。此期持续时间较长,约占100~150ms,在膜电位低于-55~-40mV时,膜上的钙通道激活,使细胞外Ca++缓慢内流,同时又有少量K+外流,致使膜内电位保持在零电位附近不变。
复极过程加速,膜内电位较快下降至原来的膜电位水平,主要由于膜对K+的通透性大大增高,细胞外K+浓度较低促使K+快速外流。
通过细胞膜上的钠-钾泵活动加强,使细胞内外的离子浓度差得到恢复至静息状态水平。电位的变化过程入图2-1所示
01 2 3 4
图2-1电位变化曲线示意图
(四)心电图导联体系 在人体不同部位放置电极,并通过导联线与心电图机电流计的正负极相连,这种记录心电图的电路连接方法称为心电图导联。电极位置和连接方法不同,可组成不同的导联。
1、肢体导联
包括标准导联:Ⅰ、Ⅱ、Ⅲ及加压单极肢体导联aVR、aVL、aVF。标准导联为双极肢体导联,反映其中两个肢体之间电位差变化。加压单极肢体导联属单极导联,基本上代表检测部位电位变化。肢体导联主要放置于右臂(R)、左臂(L)、左腿(F)如图2-3所示。
2、胸导联
属单极导联包括V1~V6导联。检测之正电极应安放于胸壁固定的部位,另将肢体导联3个电极各串一5千欧电阻,然后将三者连接起来,构成“无干电极”或称中心电端。如此连接可使该处电位接近零电位且较稳定,故设为导联的负极。胸导联检测电极具体安放的位置为:V1位于胸骨右缘第4肋间;V2位于胸骨左缘第4肋间;V3位于V2与V4两点连线的中点;V4位于左锁骨中线与第五肋间相交处;V5位于左腋前线V4水平处;V6位于左腋中线V4水平处。所图2-4所示。
图2-3肢体导联的连接示意图
图2-4胸导联的连接示意图
2).B超
每秒振动2万-10亿次,人耳听不到的声波称为超声波。利用超声波的物理特性进行诊断和治疗的一门影像学科,称为超声医学。
(一)工作原理
20000赫兹以上的声音称为超声。超声能向一定方向传播,而且可以穿透物体,如果碰到障碍,就会产生回声,不相同的障碍物就会产生不相同的回声,人们通过仪器将这种回声收集并显示在屏幕上,可以用来了解物体的内部结构。利用这种原理,将超声波用于诊断和治疗人体疾病。在医学临床上应用的超声诊断仪的许多类型,如A型、B型、M型、扇形和多普勒超声型等。B型是其中一种,而且是临床上应用最广泛和简便的一种。
“B超”就是向人体发射超声波,同时接受体内脏器的反射波,将所携信息反映在屏幕上。
超声在人体内传播,由于人体各种组织有声学的特性差异,超声波在两种不同组织界面处产生反射、折射、散射、绕射、衰减以及声源与接收器相对运动产生多普勒频移等物理特性。应用不同类型的超声诊断仪,采用各种扫查方法,接收这些反射、散射信号,显示各种组织及其病变的形态,结合病理学、临床医学,观察、分析、总结不同的反射规律,而对病变部用于诊断时,超声波只作为信息的载体。把超声波射入人体通过它与人体组织之间的相互作用获取有关生理与病理的信息。
(二)基本构造
基本构件包括发射、扫查、接收、信号处理和显示等五个组成部分,分为两大部件,即主机(如图2-5)和探头(如图2-6)。一个主机可以有一个、两个或更多的探头,而一个探头内可以安装1个压电晶片,或数十个以至千个以上晶片,如实时超声诊断探头,由1至数个晶片组成一个阵元,依次轮流工作、发射和接收声能。晶片由电致伸缩材料构成,担任电、声或声、电的能量转换,故也称为换能器。按频率有单频、多频和宽频探头。
图2-5 B超探头示意图
图2-6 B超主机示意图 3)多功能生理监护仪
监护仪与监护诊断仪器不同,它必须24小时连续监护病人的生理参数,检出变化趋势,指出临危情况,供医生应急处理和进行治疗的依据,使并发症减到最少,达到缓解并消除病情的目的。
监护仪的用途除测量和监护生理参数外,还包括监视和处理用药及手术前后的状况。监护仪的标准6参数为心电、呼吸、无创血压、血氧饱和度、脉搏、体温。此外可选的参数包含:有创血压、呼吸末二氧化碳、呼吸力学、麻醉气体、心输出量(有创和无创)、脑电双频指数等等。
监护仪临床应用范围:手术中、手术后、外伤护理、冠心病、危重病人、新生儿、早产儿、高压氧舱、分娩室等。
4)X光平片 X射线(英语:X-ray),又被称为艾克斯射线、伦琴射线或X光,是一种波长范围在0.01纳米到10纳米之间(对应频率范围30 PHz到30EHz)的电磁辐射形式。
X射线管是具有阴极和阳极的真空管,阴极用钨丝制成,通电后可发射热电子,阳极(就称靶极)用高熔点金属制成(一般用钨,用于晶体结构分析的X射线管还可用铁、铜、镍等材料)。用几万伏至几十万伏的高压加速电子,电子束轰击靶极,X射线从靶极发出。电子轰击靶极时会产生高温,故靶极必须用水冷却,有时还将靶极设计成转动式的。
在X光机中(如图2-10),当接通电源,按下启动按钮时,整机便开始工作。由主控器发出的脉冲信号,经功率放大,倍压产生高压给X射线管阳极,同样主控Ⅱ发出的脉冲信号经放大给X射线管灯丝,使X射线管产生X射线,并通过数显面板显示出相应的值KV/μA。此时被测物体放在X射线源与像增强器之间,像增强器的显示屏就显示出被透视物的清晰图像。为使仪器稳定可靠地工作,系统采用脉冲宽调技术,使管电流、管电压保持恒定,X射线管以最佳状态工作。并有高压慢启动功能,使X射线管阳极无高压过冲现象。主控制器采用微型贴片器件,并以20KHz频率工作,使整个系统效率大为提高,消除了噪声,为操作人员提供了安静的使用环境,同时也缩小了体积。透视仪电源采用高频高效率开关电源,并具有全面的保护措施。为确保透视仪的安全,整机加有多种保护装置,使其安全可靠。
图2-10X光机工作装置
5)计算机断层扫描(Computed Tomography)
CT是用X线束对人体某部一定厚度的层面进行扫描,由探测器接收透过该层面的X线,转变为可见光后,由光电转换变为电信号,再经模拟/数字转换器(analog/digital converter)转为数字,输入计算机处理。图像形成的处理有如对选定层面分成若干个体积相同的长方体,称之为体素(voxel)。扫描所得信息经计算而获得每个体素的X线衰减系数或吸收系数,再排列成矩阵,即数字矩阵(digital matrix),数字矩阵可存贮于磁盘或光盘中。经数字/模拟转换器(digital/analog converter)把数字矩阵中的每个数字转为由黑到白不等灰度的小方块,即像素(pixel),并按矩阵排列,即构成CT图像。所以,CT图像是重建图像。每个体素的X线吸收系数可以通过不同的数学方法算出。
CT设备主要有以下三部分:(如图2-9)
1.扫描部分由X线管、探测器和扫描架组成;
2.计算机系统,将扫描收集到的信息数据进行贮存运算; 3.图像显示和存储系统,将经计算机处理、重建的图像显示在电视屏上或用多幅照相机或激光照相机将图像摄下。
图2-9 CT机
6)核磁共振
核磁共振成像(Nuclear Magnetic Resonance Imaging,简称NMRI)是利用核磁共振(nuclear magnetic resonnance,简称NMR)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。MRI系统的组成
现代临床高场(3.0T)MRI扫描器 磁铁系统
静磁场:又称主磁场。当前临床所用超导磁铁,磁场强度有0.5到4.0T(特斯拉),常见的为1.5T和3.0T;动物实验用的小型MRI则有4.7T、7.0T与9.4T等多种主磁场强度。另有匀磁线圈(shim coil)协助达到磁场的高均匀度。
梯度场:用来产生并控制磁场中的梯度,以实现NMR信号的空间编码。这个系统有三组线圈,产生x、y、z三个方向的梯度场,线圈组的磁场叠加起来,可得到任意方向的梯度场。
射频系统
射频(RF)发生器:产生短而强的射频场,以脉冲方式加到样品上,使样品中的氢核产生NMR现象。
射频(RF)接收器:接收NMR信号,放大后进入图像处理系统。计算机图像重建系统
由射频接收器送来的信号经A/D转换器,把模拟信号转换成数学信号,根据与观察层面各体素的对应关系,经计算机处理,得出层面图像数据,再经D/A转换器,加到图像显示器上,按NMR的大小,用不同的灰度等级显示出欲观察层面的图像。
三:校内实践与校外医院参观学习在校内实践阶段我们主要对B超、心电图和多功能生理监护仪进行了简单的了解和操作。在老师对仪器原理的初步简单讲解以后,我们以本班同学为实验对象,对常见的几种医疗电子仪器进行了操作。
(一).B超
B超是一种利用超声成像技术诊断疾病的成像仪器。主要发射人耳听不见的超声,利超声在人体内传播,由于人体各种组织有声学的特性差异,超声波在两种不同组织界面处产生反射、折射、散射、绕射、衰减以及声源与接收器相对运动产生多普勒频移等物理特性。利用这种特性进行成像。
简单操作: i.根据需要检查的部位选择合适的探头。ii.将磨合液涂于探头或者需要检查的身体部位。iii.将探头放在需要检查的部位,轻轻移动,摩擦,同时观察屏幕得到清晰明确的图像。iv.根据需要可以通过不同的按键测量,观察需要的生理指标。
(二)心电图机
I.接通电源,安放导联,如图2-7 1.请待检查者平躺,保持放松状态 2.在导联接触处涂抹水 3.根据正确顺序连接导联 肢导联—右上肢(RA/R):红;左上肢(LA/L):黄
右下肢(RL/RF):黑;左下肢(LL/F):绿
胸导联—(红)C1/V1:胸骨右缘第4肋间
(黄)C2/V2:胸骨左缘第4肋间(绿)C3/V3:V2、V4连线中点。
(棕)C4/V4:左锁骨中线与第5肋间交点。(黑)C5/V5:左腋前线同V4水平处。(紫)C6/V6:左腋中线同V4水平处。
V7:左腋后线与V4 同一水平V8:左肩胛下角与 V4 同一水平V9:左脊椎旁线与V4同一水平V3R ~V5R :V3~V5的右侧对应部位 VE:相当于剑突下 II.读图(如图2-8)i.开机。ii.按定标,走纸速度、滤波等键。iii.检查描笔的位置,调针至心电图纸正中。iv.按开始键开始描记心电图。v.按Ⅰ、Ⅱ、Ⅲ、aVR、aVL、aVF、V1、V2、V3、V4、V5、V6、V3R、V4R、V5R、V7、V8导联的顺序描记心电图。
vi.完成录图。
图2-7心电图机导联的连接位置示意图
图2-8心电图检查报告
(三).多功能生理监护仪 一.监护仪意义和作用 i.监护仪是一种以测量和控制病人生理参数,并可与已知设定值进行比较,如果出现超标可发出警报的装置或系统。
ii.监护仪与监护诊断仪器不同,它必须24小时连续监护病人的生理参数,检出变化趋势,指出临危情况,供医生应急处理和进行治疗的依据,使并发症减到最少达到缓解并消除病情的目的。监护仪的用途除测量和监护生理参数外,还包括监视和处理用药及手术前后的状况。
iii.监护仪可选的参数:心电、呼吸、血压(有无创和有创两种)、血氧饱和度、脉率、体温、呼吸末二氧化碳、呼吸力学、麻醉气体、心输出量(有创和无创)、脑电双频指数等
二.心电监护操作程序。I.有五个电极安放位置如下。(如图2-9)右上(RA):胸骨右缘锁骨中线第一肋间。右下(RL):右锁骨中线剑突水平处。中间(C):胸骨左缘第四肋间。
在上(LA):胸骨左缘锁骨中线第一肋间,左下(LL):左锁骨中线剑突水平处。II.直接把血压测试装置套在胳膊上 III.将血样测试装置套与手指上
(四)X光机
X光机使用时要注意的事项及使用条件 X光机的投照条件:KV---管电压 MA---管电流 S----时间
KV就是X线的质,也就是穿透力,根据患者的被检部位的厚薄而增减 MA,S的积就是毫安秒,也就是X线的量,MA是几档固定的。机器不同条件也不同,看照出的效果来增减,就胸片正位来说一般KV:50-70,MA:200,S:0.05-0.1。四肢关节用50或100MA40-60KV,0.08-0.2S。
X光机使用时除了必要的检测方法和检查方式需要注意意外,操作人员,经常靠近设备人员的防辐射也一样重要。一般在检测设备和工作人员之间采用重金属铅进行隔离,减少肤辐射的影响。四:感想与感受
生物医学工程(BiomedicalEngineering,简称BME)是一门由理、工、医相结合的边缘学科,是多种工程学科向生物医学渗透的产物。我们在学习这门课时不仅是精通理论知识,更重要的是把理论知识应用到实践中去,从工程技术的手段解决医学中所遇到的技术性问题,为疾病的诊断和治疗尽自己的一份力。
在这次的是实践中,我不仅是对学到知识在实践中的应用有了较深的理解,而且对我医疗器械生产技术水平与国外的差距又了很深的理解。中国是一个人口大国,而且逐渐步入老龄化阶段,所以医疗卫生行业的需求会逐渐增加,特别是医疗仪器方面,在以后需求会逐步快速的上升。但是,我国各大医院的医疗器械大多是来自国外的进口,基本没有国产的,所以生物医学工程的发展是不要和必须的。
目前,中国在进行医疗卫改革,逐渐降低人民看病贵的问题,在看病费用中,检查费用占了很大一部分。所以,努力加速我国医学器械行业的发展,实现医疗器械的国产化是必要,必须的。
作为一名在校的生物医学工程专业的本科生,有义务,有信心为我国医疗器械行业的快速发展做出自己的贡献,为我国医疗卫生行业和人民的健康尽一份力。
第三篇:常用生物医学材料
常用生物医学材料
南华大学
电气学院
20104320135
李闯
摘要: 医用硅橡胶(silicone rubber)是美容外科中应用较广的生物材料(组织代用品).它是高分子有机化合物聚硅酮的一种橡胶样固体形态,又称二甲基硅氧烷。随着生物医学和材料的发展,各种人工制备的生物材料植入骨内替代骨移植,临床应用效果好.这些人工合成或提取的植入材料生物相容性好,对骨形成具有明显的诱导作用,被泛称为人工骨(artificial bone)。人工骨与医用硅橡胶同为如今最常用的两类生物医学材料。
关键字:人工骨,植入,移植,相容性,人工制备,医用硅橡胶,美容,整容
一:医用硅橡胶
1·生物相容性:由于其结构对称性,分子主链呈螺旋状,使硅氧单键的极性相互抵消,且侧链的R一般都是低极性或非极性基团,所以整个大分子极性很低,使硅橡胶表现出疏水性、耐氧化以及抗老化性。
此外,主链中Si2O键和侧链中的C2Si键的极性都近似于离子键,在正常使用温度(250°C以下)不发生裂解、氧化等反应,故又具有优异的耐热性,可用作医疗器械、人造脏器和药物缓释体系,对人体有良好的生物相容性。2·生物功能性:是指生物材料具有在其植入位置上行使功能所要求的物理和化学性质:(1)可检查、诊断疾病;(2)可辅助治疗疾病;(3)可满足脏器对维持或延长生命功能的性能要求;(4)可改变药物吸收途径,控制药物释放速度,满足疾病治疗要求。
3、无毒性
4、耐生物老化
5、物理和力学稳定性
6、易加工成型,材料易得,价格适当,便于消毒灭菌
7、在生产、加工过程中防止引入对人体有害的物质
应用
1·作为人造器官
硅橡胶模拟制品可长期埋置于人体内,作为人体内某个部分不可缺少的元件。包括脑人工肺、视网膜植入物、人工脑膜、人工手指、手掌关节、人造鼓膜、人工心脏瓣膜附件、人工肌腱以及用于消化系统和腹外科制品的各种导管等。
2·在整容和修复方面的应用(1)人工颅骨的修复:(2)尼龙、聚酯纤维等增强后作人造皮肤;(3)提高视力的隐性眼镜;(4))修补前额、鼻、勃颈等;(5)治疗外耳的缺损;
(6)现在争议一直很大的人工乳房
3·在医疗器械上的应用
硅橡胶可作为导管短期置入人体的某个部位,作为抢救和治疗的重要辅助材料和手段,如为肝功能不全、烧伤等病人进行补液用的静插管, 还可用于胎儿吸引器的吸头,医用电极板基质,生物传感器的包装材料等 4·在药物缓释体系的应用
硅橡胶可作为药物缓释体系的载体,如包封药物胶囊,包封的药物包括抗生素,镇静剂,安眠药,抗癌药,麻醉剂等.硅橡胶还可作为消泡剂治疗某些疾病,如用于抢救急性肺水肿,可迅速疏通呼吸道,改善缺氧状况,减少或避免因泡沫阻塞气流通过而窒息的死亡。
医用硅橡胶的副作用:
(1)由于其分子结构的低极性造成的疏水性,使其仍对人体有一定的异物反应,今后的发展要求是对其表面进行改性,提高其亲水性。
(2)抗张力强度不够,易破裂和撕裂,要解决其机械强度低的性质,就要对其采用物理和化学方法改性。
(3)对皮下避孕埋植系统而言,以硅橡胶为载体的长效皮下埋植剂在放置有效期满后必须取出,增加了使用者的痛苦和花费,这样就引发了可生物降解埋植剂的研究。
二:人工骨
人工骨是指用人工材料制造的人骨替代品或者骨折固定材料。人工骨材料主要有高分子合成材料如聚甲基丙烯酸甲酯、高密度聚乙烯等、无机材料如磷酸三钙、羟基磷灰石、氧化铝生物陶瓷等。
1·由于人骨的各种生物学特性,故对人工骨的要求也很苛刻,具体对人工骨的性能要求如下:
由于对活骨化学、生物特性的不断了解, 人们更有能力设计和开发出模仿这些特性的材料, 理想的骨移植替代材料应当具有成骨性、生物相容性、可吸收降解、可提供结构支撑、临床使用方便、价格低廉。根据其具体用途, 一些特性要比其它的特点更重要。骨移植物和其替代物可依据其骨传导、骨诱导和成骨特性分类(见表1)。同种异体骨移植物与自体骨移植物的特性比较(见表2)。复合材料移植物是具有骨传导性的基质与骨诱导和成骨活性物质的组合, 有可能替代自体骨。
人工骨容易商品化获得, 使用方便, 但目前单一的人工骨多为骨传导材料或复合骨诱导因子材料, 其机械性能较差, 难以起到机械支撑作用, 尚不能用于修复重建大段骨缺损和关节缺损, 仅用于填充植骨或脊柱融合。一些人工骨制备成注射剂型, 能够采用非手术或微创的方法提高骨修复效果, 方法操作简单、创伤轻微, 对血运和关节肌肉功能干扰小。避免了局部血供的进一步破坏, 大大减少了感染和手术并发症的发生可能, 而且恢复快, 符合现今微创外科的趋势。在此仅介绍两种最常用人工骨临床应用及相关问题。
1·医用硫酸钙
Osteoset是一种医用硫酸钙骨移植替代物,(于1996年6月通过美国食品与药品委员会论证, 并在同年获得欧洲CE商标, 此后已在成千例病人中使用, 并且证明是安全有效的。Osteoset颗粒有两种型号, 小颗粒在小的骨缺损中使用较为理想, 直径分别为4.8mm和3.0mm, 颗粒分别重100mg和30mg。为了方便使用, 各种尺寸颗粒均用小瓶包装, ˜射线灭菌。Osteoset2T内含4 %的妥布霉素, 妥布霉素亦称妥布拉霉素(To2bramycin), 为氨基糖甙类抗生素, 抗菌谱与庆大霉素相似。主要用于各种革兰氏阴性杆菌感染(绿脓杆菌、变形杆菌、克雷氏菌、沙门氏菌、葡萄球菌包括金黄色葡萄球菌), 对绿脓杆菌较庆大霉素约强2~3倍, 比多粘菌素B也较强, 对庆大霉素耐药的绿脓杆菌也常敏感, 对其它革兰氏阴性菌的作用则低于庆大霉素, 对金葡菌的作用约与庆大霉素相等。适用于感染性骨缺损, 引起肾毒反应者较庆大霉素为低。
2· 自固化磷酸钙水泥
自固化磷酸钙水泥(Calcium Phosphate Cement , CPC)是Brown和Chow于20世纪80年代早期研制出来的快速凝固型、非陶瓷型羟基磷灰石(HAP)类人工骨材料, 由数种磷酸钙粉末和固化液两部分在使用时按比例调和而成。调和物呈膏体状, 能根据填充部位的要求随意塑形, 在体内条件下发生固化反应, 约4h后自然转变成含微孔的HA晶体。在固化过程中基本不放热, 不会造成组织灼伤。一般ACPC固化的抗压强度为30~50MPa , 它与反应物中的添加成分或制备方法等因素无关。上世纪90年代中期国内研制成功了自固化磷酸钙水泥(CPC)人工骨材料, 并进行了商品化开发, 商品名瑞邦骨泰。其剂型分为普通型骨泰、载药型骨泰和注射型骨泰。
参考文献 1· 中国矫形外科杂志
2004年12月第12卷第23、24期
2·史文红、赵成如.医用硅橡胶及其制品[J ].中国医疗器械信息,2009,15(11)3·温变英.生物医用高分子材料及其应用[J ].化工新型材料,2001 ,29(9):41 4·医用高分子材料—硅橡胶
5·贡长生、张克立.新型功能材料[M].北京:化学工业出版社,2001.
第四篇:生物医学材料
钛及钛合金在生物医学上的应用及研究进展
摘 要:简单介绍了钛及钛合金和其作为生物医学材料的优点,简述了钛及钛合金的物理性能、化学性能,同时阐明了其生物相容性原理。综述了国内外生物医学钛合金材料的应用和研究进展。
关键词: 医用钛合金;生物医学材料;生物相容性;应用和发展 引言
金属材料是最早用于临床的生物医学材料,可用于传统的人体硬组织缺损、创伤、骨科、牙科疾病等的各种修复,矫形及内、外固定治疗等。从20世纪中叶以来,以钛合金为主的生物医学金属材料开始在人体硬组织植入,特别是在人体软组织的介入治疗方面显示出独特而神奇的疗效。极大地促进医用了钛合金材料在外科植入物和矫形器械产品中的应用和推广。近年来钛及其合金以其与骨相近似的弹性模量、良好的生物相容性及在生物环境下优良的抗腐蚀性在临床上得到了越来越广泛的应用。而具有典型代表性的医疗器械产品的问世,无疑是医学领域的一个里程碑,具有划时代的意义
[2,3]
[1]。
2钛及钛合金作为生物材料的优点
2.1钛及其合金的物理性能
纯钛有4个牌号,还有20余种合金,为临床选择使用提供了余地,钛熔点1668士4℃,沸点3553℃,具有α、β俩种同素异形体,882℃转变时伴随5 %的相变体膨胀。导热系数0.036cal/cm.s.k,接近牙釉质导热系数0.002cal/cm.s.k,作为口腔修复体时可保护牙髓。钛的强度比不锈钢高,且有较高韧性和抗疲劳能力,即使在有裂纹和缺陷时也需要用极高的载荷才能使其断裂。合金化虽然可以提高其强度,但降低其断裂韧度(Klc)2.2钛及其合金的化学性能
钛在空气中或氧化条件下其表面生成一层钝化膜(主要由TiO2、Ti3O2=TiO组 成),温度升高,时间延长使钝化速度增大,膜厚度增加,而且该钝化膜有自修复功能。通过生化试验,动物实验和临床观察均证明钛对于血液、体液等有极好 的耐腐蚀性能[4,8]
[4-7]
[4]。
。2.3生物相容性
普通金属材料力学性能优良、易加工,但组成与人体组织成分相距甚远,因而很难与生物组织亲合,一般不具有生物活性。作为生物医学材料的钛及钛合金满足了2个基本条件:①无毒性;②耐生理体液腐蚀。
钛及钛合金的缺点是硬度较低,耐磨性差。如果将钛制品表面进行高温离子氮化处理,纯钛及钛合金硬度分别提高 7倍和 2倍,氮化后钛材的年腐蚀率仅 为非氮化的三分之一。动物实验结果表明,生物组织对表面渗氮处理钛材反应轻微且无毒性。[9]3钛及其合金在生物医学领域的应用
近年来,钛及其合金以整形外科、牙科及各种医疗器械为中心,在医学领域得到空前的快速发展。3.1人体矫形
钛合金弹性模量比不锈钢更接近于人体骨骼,因此钛合金肘关节、踩关节等被广泛用于人体矫形手术中。每年世界上大约有1亿病人由于臂关节和膝关节 炎症而进行替换治疗。钛制膝盖板比用不锈钢膝盖板轻许多且腐蚀问题得到了 改善。德国在20世纪80年代开发了钛合金精铸假肢,推动了钛功能假肢的发展,从此,钛合金精铸假肢在各国很快得到了推广应用。目前,钛制假肢正在逐渐取代钢制假肢[10]。
3.2介入性治疗
介入性治疗是近几年来得到快速发展的一种先进的非手术临床诊疗技术。该技术通常是在X射线图像监视下,几利用穿刺插管技术将特制导管、支架等沿血管或体内其它管腔输送到体内病变处,就地治疗
[11]
。过去支架通常以316L不锈钢制成,但这种支架的纵向柔韧性不太令人满意,而钛镍形状记忆合金支架具有偏置式力学效应和形状记忆效应,目前正被广泛研究并投人临床湘瓜合金制成的血管支架,不仅与316L不锈钢有相当的强度,而且具有良好的冷加土成形性、更适合人体要求的纵向柔顺性3.3牙科
从钛合金植入人体那一刻起 ,牙齿种植用金属材料就发生了一系列的改变。
[12]
。钛与人体骨骼上皮组织、结缔组织都具有良好的亲和性,力学性能也可与其它各种类型牙科用合金相媲美,且密度小,制成的义齿体感舒适义齿通过表面处理,还可满足人们对义齿美观的要求。3.4循环系统医疗器械
钛通常被用在制作心率调节器和除颤器,它可以作为载体工具替代心脏本身某些功能,如心脏瓣膜。美国活性金属公司提供了一种钛材,用以制造主动脉瓣膜,外科医生把这种心脏瓣膜放在适当位置而不必进行缝合。在心脏起搏器中,密封的钛盒能有效防止潮气渗入密封的电子元器件
[14]
[13]
。不仅如此,钛
。人工肺关键部位使用的微孔钛片作为气体扩散元件将氧气扩散到体外循环的病人血液中,将静脉血变成动脉血。3.5 面部治疗
当人体面部组织遭到严重破坏时,局部组织修复需要用外科植入件进行。钛合金具有良好生物相容性和所需强度,因此,是人体面部组织修复的理想材料。纯钛网作为骨头托架已用于颗骨再造手术3.6手术器械
钛医疗器械具有良好的抗腐蚀能力,反复的清洗、消毒表面质量不受影响;无磁性,能够排除对微小、敏感植入电子器械的破坏威胁;质轻、用来替代不锈钢重量大为减轻,使医生操作过程中更加灵活,降低医生的疲劳程度。因此,目前已用来制作手术刀片、止血钳、剪刀、电动骨钻、镊子等。
[9]
[15]。
参考文献:
[1],张玉梅,郭天文,李佐臣.钛及钛合金在口腔科应用的研究方向[J],生物医学工程学杂志,2000,17(2):206-208 [2] 汶建宏,杨冠军,葛鹏,毛小南,赵映辉.钛合金的研究进展[J].钛工业进展,2008,25(1):33-40 [3] 徐雄.生物医用钛合金应用及发展
[4] Eylon.D著.张祖光,李湘杰.译.钛在能源与工业中的应用.机械工业出版社,1989:9.[5] 郭天文.口腔科铸钦理论与技术.世界图书出版西安公司,1997.[6](英)邓肯著,周光爵,译.钛的应用与选择.冶金工业出版社,1988.[7] 钛科学与工程.第七届学术会议(上、下册),1991:1.[8] 范德辉,莫宣学,翁润生,秦飞.钛及钛合金在医学上的应用研究[J],口腔材料器械杂志,1998,8(1):46-48 [9] 黄甫强.牛金龙.钛合金在医学领域的应用[J],稀有金属快报,2005,24(1):33-34 [10] 李世普.生物医用材料导论[M].湖北:武汉工业大学出版社,2000 程奎;翁文剑;葛曼珍;生物陶瓷涂层[J].材料科学与工程,1998.16(3):8-12 [11] 顾汉卿,许国风.生物医学材料学[M].天津:天津科技翻译出版公司,1993 [12] 高敬,姚丽.国内外钛合金研究发展动态[J].世界有色金属,2001,(2):4-7 [13] 杨遇春译.世界铁的应用趋势[J],现代材料动态,2002,(2):1-2 [14] 宁兴龙.钛工业进展[J],1996,(3):1-3
[15] 张新平,等.钛及钛合金在牙科领域中研究现状[J],稀有金属材料与工程,2002,31(4):246-251
第五篇:生物医学材料
如何发展广东省的生物医学材料
[摘要]广东省发展生物医学材料从“确立重点开发产品;构建生物医学材料产业的新技术体系;加强对外合作与交流;充分利用资本市场解决资金不足的问题”4方面进行培育。同时开展相关研究使我省生物材料的研究水平有较大提高。
[关键词]广东省;生物医学材料 ;发展;纳米生物材料领域;组织工程和再生医学材料领域;材料的制备方法学和质量控制体系研究
(department of chemistry , foshanuniversity , student ID :2009234110)Abstract: Guangdong Province the development of biomedical materials from the established focus on developing products;build a new technical system of biomedical materials industry;strengthen international cooperation and exchanges;take full advantage of the capital market to solve the problem of insufficient funds “four aspects of nurturing.Related studies of biological materials in the province level has improved greatly.Key words:guang dong province;Biomedical Materials;developing;The field of nano-bio materials;Tissue engineering and regenerative medicine materials in the field;Preparation of methodological materials and quality control system
生物医学材料是指一类具有特殊性能、特种功能,用于人工器官、外科修复、理疗康复、诊断、治疗疾患,而对人体组织不会产生不良影响的材料。随着我国经济的持续增长,中国生物医学材料领域这片“热土”引起国际上一些主要研究机构和越来越多的世界500强企业的关注,日本和韩国的生物医学材料领域近年来也呈现出强劲增长态势。有人预言,未来10年,生物材料将步入“亚洲世纪”。生物医学材料的发展历程世纪初, 第一次世界大战以前所使用的材料为第一代生物医学材料。代表材料有石膏金 属、橡胶以及棉花等物品。这一代的材料大都已被现代医学所淘汰。第二代生物医学材料的发展是建立在医学、材料科学(尤其是高分子材料学)、生物化学、物理学以及大型物理测试技术发展的基础上的, 研究人员也多由材料学家和医生来担任。代表材料有经基磷灰石、磷酸三钙、聚经基乙酸、聚甲基丙烯酸轻乙基醋、胶原、多肤、纤维蛋白等。这类材料与第一代生物医学材料一样, 其研究思路仍旧是从改善材料本身的力学性能和生化性能, 使其在生理环境下能够长期地替代生物组织。第三代生物医学材料川是一类具有促进人体自身修复和再生作用的生物医学复合材料。它是在生物体内各种细胞组织、生长因子、生长抑素及生长机制的结构和性能的基础上建立的叫, 由具有生理“ 活性” 的组元及控制载体的“ 非活性” 组元构成, 有较理想的修复再生效果。它通过材料之间的复合、材料与活细胞的融合、活体组织和人工材料的杂交等手段, 赋予材料特异的靶向修复、治疗和促进作用, 从而使病变组织大部分甚至全部由健康的再生组织取代。骨形态发生蛋白材料是第三代生物医学材料中的代表。
我国生物医学材料的发展前景
我国自上个世纪70年代开始进行生物医学材料的研究,国家“九五”、“十五”、“十一五”等各类科技计划和产业发展规划都对生物医学材料研究给予了支持。我国《生物产业发展“十一五”规划》明确提出:加快发展生物医学材料、生物人工器官、临床诊断治疗设备,建设若干国家工程中心和工程实验室,加强自主创新,在一批关键技术或部件上实现重点突破,实现产业化。《促进生物产业加快发展的若干政策》明确提出,加快发展生物医学材料、组织工程和人工器官、临床诊断治疗康复设备。
但是,国内大约70%的生物医学材料市场仍然被国外产品占据,在更高端的生物医学材料产品领域,国外产品甚至占据95%以上的市场份额。如果要要发展广东的生物医学材料,要改变这种状况在很大程度上取决于我省在生物医学材料核心关键技术领域的突破,除产品创新外,应特别关注材料制造技术。
国内生物医学材料与国外同类产品相比, 存在4 个突出的问题:1.仿制品多, 缺乏自主知识产权;2.销售价格低, 但档次和质量也低;3.企业生产规模普遍偏小, 难以形成规模效应;4 研发投入少, 产品技术含量较低。与此同时, 外商的大批涌人, 不仅带来了大量具有竞争力的产品, 同时还展开专利权、商标权等知识产权方面的竞争。
2000 年底国内公司在我国注册生产的生物医学材料及制品只有53 种,而国际医疗器械生产公司在我国注册生产、销售的品种多达30 多种。因此, 建议从以下几个4个方面培育,发展广东省的生物医学材料。
.确立重点开发产品
复合材料作为硬组织修复材料的主体, 有效地解决了材料的强度、韧性及生物相容性的问题, 是生物医学材料新品种开发的重点, 在临床上得到了广泛的应用哪〕。目前研究较多的是合金、碳纤维、无机材料(生物陶瓷、生物活性玻璃)、高分子材料的复合以及血液净化剂的开发。这些生物医学材料应该作为广东省今后重点开发的产品。构建生物医学材料产业的新技术体系
生物医学材料产业的新技术体系必须以生物医学材料企业为技术创新的主体, 充分发挥科研院所、大专院校的带头作用, 实行产、学、研结合, 成立学科齐全、队伍精干、人才结构合理的生物医学材料科研队伍, 开发有自主知识产权的生物医学高新技术产品。加强对外合作与交流
加强对外合作与交流必须积极参加国际间的技术交流与合作, 学习国外先进的技术和管理经验, 及时掌握生物医学材料技术在国际上的发展状况和趋势, 积极引进、消化和吸收国外的先进技术,强化“ 产品国际化” 的意识, 在新产品开发上要紧紧跟随甚至超越国际潮流, 增强我国生物医学材料产品的竞争力, 缩小与发达国家之间的差距。充分利用资本市场解决资金不足的问题与我国大多数高新技术产业类似, 生物医学材
料产业也面临着发展资金不足的问题。通常可采取下列措施解决: 充分利用股票市场帮助我国生物医学材料企业筹集资金;º 鼓励生物医学材料企业发行企业债券;» 创造良好的市场氛围, 吸引国外资本和民间资本进入生物技术领域;通过其他风险资本筹集资金。
期待突破
广东省发展生物医学材料首先应有所突破的是生物医学材料先进制造技术领域。据相关专家表示,生物医学材料制造技术的高低既制约着生物医学材料的产品精度和质量,也控制着产品生产成本,决定了产品的竞争力。其次是生物医学材料表面/界面科学与工程领域。生物医学材料的表面性质直接关系到材料与体内组织的反应及其相互作用,决定着植入或替代产品在体内修复的成败。对于复合生物医学材料而言,界面既是核心问题,又是热点前沿,界面特征决定着材料最终的整体力学性能。令人兴奋的是,经过两代生物材料工作者的努力,我国上海硅酸盐研究所、四川大学、西安交通大学等在医用金属材料表面改性领域,尤其是在发展生物活性涂层技术方面已取得长足进步。其他课题组和团队通过对各类复合生物材料的界面设计和构建,显著提高了生物材料(尤其是无机—有机复合生物材料)的整体力学和生物学性能。此外,一些课题组在构建智能或仿生生物材料表界面方面也形成了自己的特色。
第三是纳米生物材料领域。纳米生物材料一直是生物医学材料的前沿和重要领域,作为医用植入和修复材料,其在力学及细胞生物学性能上具有优势。预计在完成安全性评价后,纳米生物材料将首先在硬组织修复材料领域获得应用。这主要是因为人的骨组织本身就是纳米结构的材料(由纳米级羟基磷灰石和有机高分子物质构成)。而作为纳米生物材料的另一个应用途径,诊断检测试剂正显示出重要前景。第四是组织工程和再生医学材料领域。组织工程和再生医学的临床应用离不开生物材料科学和技术的突破。目前组织工程领域面临暂时的困境,这与科学问题有关,如种子细胞、生长因子及体外构建问题等;更与研究发展生物相容性好的细胞特异性材料及支架的先进制造技术密切相关。只有在上述领域取得整体突破,组织工程才有望在未来5~10年内造福大众。
再者是组织诱导材料领域。组织诱导材料是我国科学家首先提出并拥有我国自主知识产权的生物材料,其广泛应用和被国际接受有赖于相关机理的进一步阐明。
最后是医学材料生物相容性评价和产品标准领域。随着基于新原理的产品的不断涌现、大众对产品质量的深度关切,人们对材料生物相容性、安全性、有效性及时效性等的评价方法和产品标准提出了更高要求,并期待突破。
在产业化方面,生物医学材料及其制品占世界市场的份额不足2%,主要依靠进口,产品技术结构和水平基本上处于初级阶段。结合我国国情和学科发展趋势,按照”有所为,有所不为,重点突破"的原则,我们建议,应在五个方面开展重点研究。
一是生物结构和生物功能的设计和构建原理研究。着重研究具有诱导组织再生的骨、软骨及肌腱等基底材料和框架结构的设计及其仿生装配;
二是表面/界面过程-材料与机体之间的相互作用机制研究。从细胞和分子水平深入研究材料与特定细胞、组织之间的表面/界面作用,揭示影响生物相容性的因素及本质。
三是生物导向性及生物活性物质的控释机理研究。研究可自控或靶向释放蛋白、基因等特异性生物活性物质的材料的设计以及生物导向性原理;用于组织细胞和基因治疗的半渗透聚合物膜的设计、自装配及特异性细胞密封技术。
四是生物降解/吸收的调控机制研究。研究生物降解/吸收材料的分子结构和生物环境对其降解的影响、降解/吸收速度的调控、降解/吸收及代谢机制,以及降解产物对机体的影响。其目标是为组织工程化人工器官生物材料及药物控释材料的自成、改性方法提供理论基础,实现材料参与生命过程和构建生命组织的目的。
五是材料的制备方法学和质量控制体系研究。主要研究生物医用材料及修复体的计算机辅助设计;
通过上述研究的开展,将使我省生物材料的研究水平有较大提高,为我国生物医用材料科学及其产业的发展奠定坚实的基础。
[1]武汉生物工程学院学报, Journal of Wuhan Bioengineering Institute, 编辑部邮箱 2007年 03期
[2]应用科技, Applied Science and Technology, 编辑部邮箱 2002年 07期
[3]孙雪, 奚廷斐.第三代生物医学材料与再生医学国内外市场需求的变化与发展[J」.中国临床康复,2005,9(26):105-110
[4]王正平, 叶贤富.生物医学材料的应用及进展[J].应用科技,2002,29(7):69-72
[5]黄传勇, 孙淑珍, 张中太.生物陶瓷复合材料的研究[J].中国生物医学工程学报, 2009,19(3):23-25
[6]师昌绪.跨世纪材料科学技术的若干热点问题[J].自然科学进展,1999,9(1):25-28
[7]贺亚敏, 黄培林, 吕晓迎.新型生物医学材料—类金刚石膜的研究进展仁[J].国外医学生物医学工程分册,2002,25(2):73-77
[8]孙越, 郭贤权, 何炳林.血液灌流级吸附剂[J] 中国修复重建外科杂志,2006,20(2):189一193.[9]孙雪,奚廷斐.生物医用材料和再生医学的进展[J].中国修复重建外科杂志,2006,20
(2):189一193.[10]袭迎详, 王迎军.可降解生物医用材料的降解机理「J].硅酸盐通报,2000,19(3):4一45.[11]顾其胜, 侯春林, 徐政.实用生物医用材料学〔M.上海:上海科学技术出版社,2 005:11一22.[12]郑学斌.人体硬组织替代材料的研究进展[J〕.物理,2003,32(3):159一164.[13]詹亚歌, 蔡海文, 向世清, 等.高分辨率光纤光栅温度传感器的研究[J〕.中国激光,2005,32(1):53一56.[14]李玉宝.生物医学材料学[ M 」.北京:化学工业出版社,2003:80.[15] 李世普.生物医用材料导论[ M 〕.武汉:武汉工业大学出版社
[16]何天白,胡汉杰.功能高分子与新技术.化学工业出版社,2001
[17]奚廷斐.生物材料进展
(一)B.生物医学工程与临床,2004,8(3):184-189.[18] 傅远飞.羟磷灰石类生物材料研究进展[ J].口腔材料器械杂志, 2000, 9(1): 35-37.[19] 陈克正, 刘兴斌.纳米微粒在生物医学领域的应用研究进展[ J].青岛化工学院学报,2000,21(1):39-42.[20] 曾晟宇, 赵乃勤.金属生物材料表面改性研究的进展[ J].材料保护,2000,33(1):5-7.[21] 师昌绪.跨世纪材料科学技术的若干热点问题[J].自然科学进展, 1999, 9(1):25-28.[22] 陈贻瑞, 王建.基础材料与新材料[ M].天津: 天津大学出版社, 1999.[23] 于思荣.生物医学钛合金的研究现状及发展趋势[J].材料科学与工程,2000,18(2):131-134.[24] 于思荣.金属系牙科材料的应用现状及部分元素的毒副作用[J].金属功能材料, 2000,7(1):1-6.[25] M ITSUO N.Mechanical proper ties of biomedical titanium alloys[ J].Materials Sciencend Engineering A, 1998,243:231-236.[26] MATTHEW D.Biomedical alloys [ J ].Advanced Matterials & Processes , 1998, 154(1):63-65.[27]Reis R I , Roman I S.Biodegradable system in tissue engineering and regenerative medicine [M].Florida : CRC PRESS ,2005:509-548
[28]Hang J ,Xu X Y, chenX S, teal.Biodegradable electeospun fibers for drugdelivery [J].Journal of controlled Release,2003,92(3):227-231
[29]Hench LL.J Am ceram soc 1998,81:`705