排列组合专项练习

时间:2019-05-13 09:03:00下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《排列组合专项练习》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《排列组合专项练习》。

第一篇:排列组合专项练习

排列组合专项练习

1.在一次运动会上有四项比赛的冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有()种.3343(A)A4(B)4(C)3(D)C4

2.5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为()

(A)480(B)240种(C)120种(D)

3.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)

4.某交通岗共有3人,从周一到周日的七天中,每天安排一人值班,每人至少值2天,其不同的排法共有()种.(A)5040(B)1260(C)210(D)630

5.用数字0,1,2,3,4组成没有重复数字的比1000大的奇数共有()

(A)36个(B)48个(C)66个(D)72

6.用0,1,9十个数字,可以组成有重复数字的三位数的个数为()

A.243 B.252 C.261 D.279

7.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有()

A.6个B.9个C.18个D.36个

8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是()

A.72B.96C.108D.144

9.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有()A.10种B.20种C.36种D.52种

10.高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有().(A)16种(B)18种(C)37种(D)48种

11.从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是

___________(用数字作答)

12.在送医下乡活动中,某医院安排3名男医生和2名女医生到3所医院工作,每所医院至少安排1名医生,且女医生不安排在同一所医院工作,则不同的分配方法总数为_______________

13.6个人排成一行,其中甲、乙两人不相邻的不同排法共有____________种.(用

数字作答).14.满足a,b1,0,1,2,且关于x的方程ax22xb0有实数解的有序数对

(a,b)的个数为()

A.14 B.13 C.12 D.10

15.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a,b,共可得到lgalgb的不同值的个数是()

A.9 B.10 C.18 D.20

16.将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共

有________种(用数字作答)

17.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分

给同一人的2张参观券连号,那么不同的分法种数是_________.18.有8人排成一排照相,要求A、B两人不相邻,C、D、E三人互不相邻,共有

___________种不同的排法。

19.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取

3张,要求3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为______________

20.若从1,2,3,······,9这9个整数中同时取4个不同的数,其和为偶数,则

不同的取法共有______________.

第二篇:简单的排列组合练习课

简单的排列组合练习课

教学内容: 简单的排列组合 教学目标:

1.使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。

2.培养学生有序地、全面地思考问题的意识和习惯。教学过程:

1.借助操作活动或学生易于理解的事例来帮助学生找出组合数。师生共同分析练习二十五第1题。让学生小组讨论,充分发表自己的意见。

2.利用直观图示帮助学生有序地、不重不漏地找出早餐搭配的组合数。

3、出示练习二十五第3题。

学生看题后,四人小组讨论出有多少种求组合数的方法。

4、学生汇报。

(1)图示表示法(两种)。引导学生用画简图的方式来表示抽象的数学知识。

(2)其他的方法,例如聪聪或明明分别可以和每一个小朋友合影(分步时,可以把确定聪聪作为第一步,也可以把确定明明作为第一步),教学时充分发挥学生的创造性。至于学生用哪种方法求出来,都没关系。但要引导学生思考如何才能不重不漏,发展学生有序地思考问题的意识和能力。

(3)学生自己用图示表示时,可以很开放,比如,可以用正方形表示聪聪,圆形表示明明,并分别在正方形和圆形里标上序号。实际这是发展学生用数学化的符号表示具体事件的能力的一个体现。

(4)如果学生用简图的方式来表示有困难,也可以让学生回忆一下二年级上册的例子或借助学具卡片摆一摆。

5.“做一做”

(1)练习二十五第7题。

通过活动的方式让学生不重不漏地把所有取钱的情况写出来。

(2)练习二十五第9题。

用两种图示法表示两两组合的方式(比较简单的两种方式)。在教学中也要允许有的学生把所有的情况逐一罗列出来,只要他通过自己的方法探索出所有的组合数,都是应该鼓励的。课后反思:

第三篇:排列组合教案

课题:数学广角—搭配

(二)第一课时 简单的排列问题 授课教师:魏亚楠

教学内容:教材101页例1及做一做第1题、第2题、104页练习二十二第1题 教学目标:

1、通过观察、猜测、实验等活动,使学生找出简单事物的排列和组合方式。

2、经历探索简单事物排列组合的过程,培养初步的观察,分析和推理的能力以及有顺序地全面思考问题的意识。

3、在解决实际问题的过程中,体验成功的乐趣,激发学生学习数学的乐趣。教学重点:经历探索简单事物排列组合的过程,学会有序思考的方法。

教学难点:让学生初步感悟简单的排列组合的数学思想方法,用有序思考的方法解决实际问题。

教学过程:

一、探究新知

(一)创设问题情境

师:今天我们要学习的内容是数学广角中的简单排列组合问题。

(二)提出研讨问题

1、回忆下二年级的时候有没有学过两位数的排列组合呢?

要求:无重复、无遗漏

2、现在老师手里有三张卡片1、3、5 请同学们想想怎么将这三个数排列为没有重复的两位数呢?

3、现在老师手里又多了一张卡片“0”请结合刚学过的表示方法,看一看能排列出多少个无重复的两位数呢?

(三)提出研讨要求

师:请大家拿出笔和纸和老师一起验证一下。

(四)暴露学生资源

预设①:01、03、05、10、13、15、30、31、35、50、51、53 共12种 预设②:10、30、50、13、31、15、51、35、53 共9种

预设③:十 个(固定十位法)预设④:十 个(固定个位法)1 0 1 3 1 5 3 0 3 1 3 5 5 0 5 1 5 3 共9种

(五)组织互动研讨 3 5 3 5 1

0 0 0 1 1 3

3 1 5 共9种

同学们我们在上二年级的时候有没有学过两位数的排列组合呢,不记得也没关系,今天老师就带领大家,在回忆一下~

看老师手里有两张卡片,3、5 同学们如果我将这两个数字用“个十”的表示方法进行排列的话,会有几种排列结果呢,在这里老师有一个要求:就是要做到无重复,无遗漏!首先我们可将3放在十位上,那么5就在各位上,这样的组合结果为35。接下来我们将5放在十位上,3放在个位上,那么这样的组合结果为53。通过交换两个数字的位置就可以得到不同的排列结果,这样的方法我们可以将它定义为:交换法。

同学们刚才老师是针对两个数字进行的排列,那同学们想一想如果是三位数字,怎么将他们进行排列,才能做到无重复,无遗漏呢?

现在老师手里有三张卡片 1、3、5,接下来请同学们想想怎么将这三个数排列为没有重复的两位数呢?

我们可以先把其中一个数固定不变,剩下的两个数拿来分别组合。同样我们用“个十”的表示方法进行排列,首先我们可以先将1固定不变,放到十位上,那么就可以将剩下的3、5分别和1进行组合,这样我们就找到了两个十位数13和15。接下来我们再将3固定不变放到十位上,就可以得到31和35两个十位数。最后我们将5固定不变放到十位上也可以得到两个十位数,51和53,这样我们就得到了6个无重复且无遗漏的两位数。分别是13、15、31、35、51、53有没有细心的同学观察到,老师总是将固定不变的数放到十位上呀,那么放到个位上,是不是同样能够得到上面的数字,并且得到的结果是不是一样呢,下面我们就一起来验证一下。综合两种组合结果,我们又可以得到两种排列方法:固定十位法、固定个位。

接下来老师要考考你们了,现在老师手里又多出了一张卡片0 1 3 5 请结合咱们以上学过的三种方法将这四张卡片用“个十”的表示方法,看一看能排列出多少个无重复的两位数呢。

四、课堂小结

同学们,这节课大家一起发现排列组合问题的一些规律。我们在解决此类问题的时候一定要做到有序、全面思考,做到不重复不遗漏。排列的问题在生活中有着广泛的应用,还有更多的规律我们没有发现,老师相信你们,一定会动脑筋找到和解决这些数学问题的规律。

板书设计:

简单的排列问题

0不能作最高位

有序、全面

第四篇:《排列组合》教案

《排列组合》教学设计

上泉小学赵泽旻

一、教学目标

知识目标:通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。

能力目标:经历探索简单事物排列与组合规律的过程,培养学生有顺序地、全面思考问题的意识。

情感价值观目标:让学生感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学解决问题的意识。

二、教学重难点

教学重点:经历探索简单事物排列与组合规律的过程。突破方法:通过创设情境,自主探究突破重点。教学难点:初步理解简单事物排列与组合的不同。突破方法:通过合作交流、探讨突破难点。

三、教学准备

课件、数字卡片、数位表格

四、教学方法与手段

1.从生活情景出发,结合学生感兴趣的动画故事为学生创设探究学习的情境。

2.采用观察法、操作法、探究法、讲授法、演示法等教学方法,通过让学生动手操作、独立思考和开展小组合作交流活动,完善自己的想法,努力构建学生独特的学习方式。

3.通过灵活、有趣的练习,如:握手、拍照等游戏,提高学生解决问题的能力,同时寻求解决问题的多种办法。

五、教学过程

(一)创设情境,激发兴趣

1.故事导入:灰太狼抓走了美羊羊,为了阻止喜洋洋来救,设置了门锁密码,要想闯关成功,要了解一个知识—搭配,揭示课题。2.猜一猜 第一关的密码是由1、2两个数字组成的两位数,个位上的数字比十位上的数字大,这个密码可能是多少?

(二)动手操作,探索新知 1.过渡谈话,引出例 1 灰太狼增加了难度,在第二关设置了超级密码锁,密码是 1、2 和 3 组成的两位数,每个两位数的十位数和个位数不能一样,能组成几个两位数?”(课件出示例 1)2.尝试学习,自主探究

(1)引导理清题意:你都知道了什么

(2)指导学法:你有什么办法解决这个问题?

(3)动手操作:分发3张数字卡片,任意选取其中两张摆一摆,组成不同的两位数。鼓励学生动脑,找规律去摆,比一比谁摆的数多而不重复。

3.小组交流,展示成果

(1)小组交流:学生自主摆完后,小组交流讨论,探讨排列的方法。

(2)展示成果:指名上黑板展示。4.交流摆法,总结规律

① 交换位置:有顺序的从这 3 个数字中选择 2 个数字,组成两位数,再把位置交换,又组成另外一个两位数

② 固定十位:先确定十位,再将个位变动。③ 固定个位:先确定个位,再将十位变动。小结:以上这些办法很有规律,他们的好处:不重复,不遗漏,有顺序。

5.区分排列和组合

握手游戏:每两个人握一次手,3个人握几次手?

这些与顺序有关的问题,我们叫排列。与顺序无关的问题,我们叫组合。

(三)应用拓展,深化方法 1.任务一:比一比谁最快。

2.任务二:购物小超市,买一个拼音本,可以怎样付钱? 3.任务三:涂颜色(教材 97页“ 做一做”)

学生独立思考,动手完成涂色。4.任务四:搭配衣服。

5.组词:“读、好、书”一共有几种读法?

(四)总结延伸,畅谈感受

今天这节课有趣吗?同学们在数学广角里学到了什么?你有什么收获?以后在解决这类问题时应注意什么?

(五)课后作业

拍照游戏,3个人站一起拍照有几种站法?4个人呢?

六、板书设计

排列与组合 1、2 —— 12 21 1、2、3 ——12 21 23 32 13 31 12 13 21 23 31 32 21 31 12 32 13 23

第五篇:排列组合教案

排列组合

教学内容: 教学目标:

1、结合日常生活中熟悉的事例,能列举3个事物所有的排列组合结果。

2、通过独立思考,合作交流,逐步感悟数学思想,积累数学经验,了解简单的排列组合思想。

3、初步培养学生有顺序地、比较全面地思考问题的意识。教学重点:在学生已有生活经验下,有条理的列举出所有结果。教学难点:由列举具体结果抽象为数学模式。教学过程:

一、谈话导入

你们能猜到老师的年龄吗? 指名猜一猜

提示:老师的年龄是由9和2两个数字组成的。引导学生说出一定是29岁。

目的:两个数排列,可能有两种结果,根据生活经验老师的年龄一定是29岁。培养学生要根据生活经验作出选择,同时为下面的的三个事物的排列组合做铺垫。

二、探究3个事物的排列组合结果

1、这节课我们要玩一个小游戏,不过在玩游戏之前要先把密码输入进去才能知道游戏的名字和规则。

2、出示课件。

密码是由1、2、3这三个数中的两个组成的,你们能猜到吗?

3、猜密码

(1)你认为密码一定是12吗?

多找几名同学猜密码,得到答案只猜到一个或一部分的密码是不一定正确的。

(2)怎么样才能保证密码一定正确呢?

把所有由这三个数组成的两位数全部找出来。

小组合作,用准备好的数字卡片摆一摆,并作好记录(结果可能有找到6个、5个7个……)一一进行比较,发现有漏掉的,有重复的。

(3)如何才能把所有的可能全部写出来,既不漏掉也不重复呢?

按照一定的顺序来写

学生自己整理答案,全班展示交流,学生说出自己的方法。可以先确定十位,也可以确定各位,还可以两个一组,调换两个数的位置。

(4)输入密码

在输入密码时保证不重复不漏掉,要按照一定的顺序输入。

三、由列举具体结果抽象为教学模式

1、出示游戏规则

密码找到了,我们来看看要玩什么游戏吧!(课件出示:石头、剪刀、布)每个小组三名同学玩一次石头剪刀布的游戏,分出第一名、第二名、第三名并做好记录。

汇报结果

2、提问:谁获得了第一名?假如第一名不变,比赛结果会不会有变化? 再次游戏,第一名不变,分出第二名和第三名。结果有两种,第一名不变,第二名和第三名,调换位置。

3、小组讨论

其他人有没有可能获得第一名?(肯定有)

当1号2号3号同学分别获得第一名的时候,结果会有几种,并全部列举出来。

4、展示结果,并根据结果提问。

(1)你获得第一名的时候结果有几种?分别是什么?(2)1号同学第一名时结果有几种?2号、3号呢?

5、建构模式

每个人获得第一名结果都可能有两种,三名同学一共可能有几种结果呢? 结果是3个2--------(师板书:3×2=6(种))

小结:三人比赛,可能有六种结果。我们先确定一个名次,然后把另外的两

个名次调换位置,就会产生两种不同的结果,三个人就是六种结果。

6、比赛结束拍照

三个人拍照调换三人的位置可能照出出几种不同的照片?

7、将名次转换成数位,形成三个数的排列可以组成6个不同的三位数。说说方法:先确定百位,把每个数分别放在百位上,再调换另外两个数的位置。

也可以先确定十位,或个位。

四、列举现实生活中三个事物排列组合的例子

1、【读书好】本意是读书是一件很好的事。

【读好书】意为读一些有利于自己身心健康的书或值得自己读的书。【好读书】意指嗜好读书,爱读书。

板书设计:

不漏掉

不重复× 2 = 6(种)

下载排列组合专项练习word格式文档
下载排列组合专项练习.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    排列组合应用

    排列组合应用 郸城县才源高中王玉建一教材分析:关于排列组合题,需要较强的逻辑思维能力,是学生最头痛的问题之一,活用两个计数原理需要很强的技巧性,是锻炼学生思维提高分析问题......

    人物描写专项练习.doc

    人物描写专项练习片段作文训练初探 古人曰:“千里之行始于足下,九层之台始于垒土”要写好作文,首先要指导学生进行片段练习,为写作打下基础。针对初一学生的特点,我们要求学生见......

    一般过去时专项练习

    一般过去时专项练习一、一般过去时表示过去某一时候发生的动作或存在的状态。常与一般过去时连用的时间状语有:yesterday; the day before yesterday; ---ago; last---; in......

    过去分词专项练习

    出卷人 : 张 敏 审核人: 高三年级英语组时间:2017.7 过去分词专项练习I单项选择 1._____ from the top of the TV tower, and we can get a beautiful sight of most of the......

    过去分词专项练习

    1. After a few rounds of talks, both sides regarded the territory dispute __________. A. being settled B. to be settled C. had settled D. as settled 2. ______......

    病句专项练习

    七年级语文病句修改专项练习班级学号姓名得分一、选择题(48分)1.下列句子没有语病的一项是A.通过这次主题班会,使同学们认识到了端正学习态度的重要性。B.最近部分企业安全保卫......

    感叹句专项练习

    邦德教育●感叹句专项练习I.选择题 1 _________clever girl she is! A What a B What C How a D how 2 __________interesting story it is! A What an B What a C H......

    感叹句专项练习[定稿]

    一、选择题(答案在下面)⒈ ____ delicious the dish is!A. What B. How C. What a ⒉ ____ strange clothes he is wearing!A. What a B. What C. How a ⒊ ____ an interes......