数据挖掘与电子商务

时间:2019-05-13 09:13:57下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数据挖掘与电子商务》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数据挖掘与电子商务》。

第一篇:数据挖掘与电子商务

数据挖掘与电子商务

姓名:龚洪虎

学号:X2009230111

[摘 要] 企业的竞争优势并不取决于信息的拥有量,而是取决于信息的处理利用能力。如何化信息优势为竞争优势,是企业制胜于市场的一个法宝。本文论述了一种信息处理利用的有效工具——数据挖掘方法及其在电子商务中的应用。

[关键词] 数据挖掘 方法 电子商务 应用

随着网络技术和数据库技术的成熟,传统商务正经历一次重大变革,向电子商务全速挺进。这种商业电子化的趋势不仅为客户提供了便利的交易方式和广泛的选择,同时也为商家提供了更加深入了解客户需求信息和购物行为特征的可能性。数据挖掘技术作为电子商务的重要应用技术之一,将为正确的商业决策提供强有力的支持和可靠的保证,是电子商务不可缺少的重要工具。

一、电子商务和数据挖掘简介。

电子商务是指个人或企业通过Internet网络,采用数字化电子方式进行商务数据交换和开展商务业务活动。目前国内已有网上商情广告、电子票据交换、网上订购,网上银行、网上支付结算等多种类型的电子商务形式。电子商务正以其成本低廉、方便、快捷、安全、可靠、不受时间和空间的限制等突出优点而逐步在全球流行。

数据挖掘(DataMining)是伴随着数据仓库技术的发展而逐步完善起来的。数据挖掘主要是为了帮助商业用户处理大量存在的数据,发现其后隐含的规律性,同时将其模型化,来完成辅助决策的作用。它要求从大量的、不完全的、有噪声的、模糊的和随机的数据中,提取人们事先不知道的但又是潜在有用的信息和知识。数据挖掘的过程有时也叫知识发现的过程。

而电子商务中的数据挖掘即Web挖掘,是利用数据挖掘技术从www的资源(即Web文档)和行为(即We服务)中自动发现并提取感兴趣的、有用的模式和隐含的信息,它是一项综合技术涉及到Internet技术学、人工智能、计算机语言、信息学、统计学等多个领域。

二、何谓数据挖掘及方法

确切地说,数据挖掘(Data Mining),又称数据库中的知识发现(Knowledge Discovery in Database,KDD),是指从大型数据库或数据仓库中提取隐含的、未知的、非平凡的及有潜在应用价值的信息或模式。它融合了数据库、人工智能、机器学习、统计学等多个领域的理论和技术。比较典型的数据挖掘方法有关联分析、序列模式分析、分类分析、聚类分析等。它们可以应用到以客户为中心的企业决策分析和管理的各个不同领域和阶段。

1.关联分析。关联分析,即利用关联规则进行数据挖掘。关联分析的目的是挖掘隐藏在数据间的相互关系,它能发现数据库中形如”90%的顾客在一次购买活动中购买商品A的同时购买商品B”之类的知识。

2.序列模式分析。序列模式分析和关联分析相似,但侧重点在于分析数据间的前后序列关系。它能发现数据库中形如”在某一段时间内,顾客购买商品A,接着购买商品B,而后购买商品C,即序列A→B→C出现的频度较高”之类的知识,序列模式分析描述的问题是:在给定交易序列数据库中,每个序列是按照交易时间排列的一组交易集,挖掘序列函数作用在这个交易序列数据库上,返回该数据库中出现的高频序列。在进行序列模式分析时,同样也需要由用户输入最小置信度C和最小支持度S。

3.分类分析。设有一个数据库和一组具有不同特征的类别(标记),该数据库中的每一个②

记录都赋予一个类别的标记,这样的数据库称为示例数据库或训练集。分类分析就是通过分析示例数据库中的数据,为每个类别做出准确的描述或建立分析模型或挖掘出分类规则,然后用这个分类规则对其他数据库中的记录进行分类。

4.聚类分析。聚类分析输入的是一组未分类记录,并且这些记录应分成几类事先也不知道,通过分析数据库中的记录数据,根据一定的分类规则,合理地划分记录集合,确定每个记录所在类别。它所采用的分类规则是由聚类分析工具决定的。采用不同的聚类方法,对于相同的记录集合可能有不同的划分结果。

应用数据挖掘技术,较为理想的起点就是从一个数据仓库开始,数据挖掘可以直接跟踪数据并辅助用户快速做出商业决策,用户还可以在更新数据的时候不断发现更好的行为模式,并将其运用于未来的决策当中。

三、选择数据挖掘技术的两个重要依据。

数据挖掘使用的技术很多,其中主要包括统计方法、机器学习方法、和神经网络方法和数据库方法。统计方法可细分为回归分析、判别分析、聚类分析、探索性分析等。机器学习方法可细分为归纳学习方法(决策树、规则归纳)、基于范例学习、遗传算法等。神经网络方法可细分为钱箱神经网络(BP算法)、自组织神经网络等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法。由于每一种数据挖掘技术都有其自身的特点和实现的步骤,对数据的形式有具体的要求,并且与具体的应用问题密切相关,因此成功的应用数据挖掘技术以达到目标过程本身就是一件很复杂的事情,本文主要从挖掘任务和可获得的数据两个角度来讨论对数据挖掘技术的选择。

三、数据挖掘在电子商务中的应用

数据挖掘能发现电子商务客户的的共性和个性的知识、必然和偶然的知识、独立和关联的知识、现实和预测的知识等,所有这些知识经过分析,能对客户的消费行为如心理、能力、动机、需求、潜能等做出统计和正确地分析,为管理者提供决策依据。具体应用如下:

1.分类与预测方法在电子商务中的应用。在电子商务活动中,分类是一项非常重要的任务,也是应用最多的技术。分类的目的是构造一个分类函数或分类模型,通常称作分类器。分类器的构造方法通常由统计方法、机器学习方法、神经网络方法等。这些方法能把数据库中的数据映射到给定类别中某一个,以便用于预测,也就是利用历史数据记录,自动推导出给定数据的推广描述,从而对未来数据进行预测。

2.聚类方法在电子商务中的应用。聚类是把一组个体按照相似性原则归成若干类别。对电子商务来说,客户聚类可以对市场细分理论提供有力的支持。市场细分的目的是使得属于同一类别的个体之间的距离尽可能小,而不同类别的个体之间的距离尽可能大,通过对聚类的客户特征的提取,电子商务网站可以为客户提供个性化的服务。

3.数据抽取方法在电子商务中的应用。数据抽取的目的是对数据进行浓缩,给出它的紧凑描述,如求和值、平均值、方差值、等统计值、或者用直方图、饼状图等图形方式表示,更主要的是他从数据泛化的角度来讨论数据总结。数据泛化是一种把最原始、最基本的信息数据从低层次抽象到高层次上的过程。可采用多维数据分析方法和面向属性的归纳方法。在电子商务活动中,采用维数据分析方法进行数据抽取,他针对的是电子商务活动中的客户数据仓库。在数据分析中经常要用到诸如求和、总计、平均、最大、最小等汇集操作,这类操作的计算量特别大,可把汇集操作结果预先计算并存储起来,以便用于决策支持系统使用。

4.关联规则在电子商务中的应用。管理部门可以收集存储大量的售货数据和客户资料,对这些历史数据进行分析并发现关联规则。如分析网上顾客的购买行为,帮助管理者规划市场,确定商品的种类、价格、质量等。通常关联规则有两种:有意义的关联规则和泛化关联规则,有意义的关联规则,即满足最小支持度和最小可信度的规则。最小支持度,它表示一组对象在统计意义上的需满足的最低程度,如电子商务活动中的客户数量、客户消费能力、消费方式等。后者即用户规定的关联规则的最低可靠度。第二是泛化规则,这种规则更实用,因为研究对象存在一种层次关系,如面包、蛋糕属西点类,而西点又属于食品类,有了层次关系后,可以帮助发现更多的有意义的规则。

5、优化企业资源

节约成本是企业盈利的关键。基于数据挖掘技术,实时、全面、准确地掌握企业资源信息,通过分析历史的财务数据、库存数据和交易数据, 可以发现企业资源消耗的关键点和主要活动的投入产出比例, 从而为企业资源优化配置提供决策依据, 例如降低库存、提高库存周转率、提高资金使用率等。通过对Web数据挖掘,快速提取商业信息,使企业准确地把握市场动态,极大地提高企业对市场变化的响应能力和创新能力,使企业最大限度地利用人力资源、物质资源和信息资源,合理协调企业内外部资源的关系,产生最佳的经济效益。促进企业发展的科学化、信息化和智能化。

例如:美国运通公司(American Express)有一个用于记录信用卡业务的数据库,数据量达到54亿字符,并仍在随着业务进展不断更新。运通公司通过对这些数据进行挖掘,制定了“关联结算(Relation ship Billing)优惠”的促销策略,即如果一个顾客在一个商店用运通卡购买一套时装,那么在同一个商店再买一双鞋,就可以得到比较大的折扣,这样既可以增加商店的销售量,也可以增加运通卡在该商店的使用率。

6、管理客户数据

随着“以客户为中心”的经营理念的不断深入人心, 分析客户、了解客户并引导客户的需求已成为企业经营的重要课题。基于数据挖掘技术,企业将最大限度地利用客户资源,开展客户行为的分析与预测,对客户进行分类。有助于客户盈利能力分析,寻找潜在的有价值的客户,开展个性化服务,提高客户的满意度和忠诚度。通过Web资源的挖掘,了解客户的购买习惯和兴趣,从而改善网站结构设计,推出满足不同客户的个性化网页。利用数据挖掘可以有效地获得客户。比如通过数据挖掘可以发现购买某种商品的消费者是男性还是女性,学历、收入如何, 有什么爱好,是什么职业等等。甚至可以发现不同的人在购买该种商品的相关商品后多长时间有可能购买该种商品, 以及什么样的人会购买什么型号的该种商品等等。在采用了数据挖掘后, 针对目标客户发送的广告的有效性和回应率将得到大幅度的提高, 推销的成本将大大降低。同时,在客户数据挖掘的基础上,企业可以发现重点客户和评价市场性能,制定个性化营销策略,拓宽销售渠道和范围,为企业制定生产策略和发展规划提供科学的依据。通过呼叫中心优化与客户沟通的渠道,提高对客户的响应效率和服务质量,促

①进客户关系管理的自动化和智能化。

三、结束语

电子商务是现代信息技术发展的必然结果,也是未来商业运作模式的必然选择。利用数据挖掘技术,充分发挥企业的独特优势,促进管理创新和技术创新,使企业在在电子商务的潮流中立于不败之地。随着数据挖掘算法的不断发展和成熟,数据挖掘一定会有更加广阔的应用前景。

参考文献:

(1)《浅谈数据挖掘在电子商务中的运用》 钟连福;

(2)《电子商务中商业数据的挖掘方法》 中国电子商务研究中心;

(3)《在电子商务中如何正确有使用数据挖掘技术》 侠名;

(4)《曾贞:数据挖掘在电子商务中的应用》 甘肃农业,2004(7);

(5)《冯艳王坚强:数据挖掘在电子商务上的应用》 2002(3);

(6)《吕延杰徐华飞:中国电子商务发展研究报告》北京邮电大学出版社 ;

(7)《数据挖掘与电子商务》 邓鲲鹏,周延杰,严瑜筱。①

第二篇:电子商务数据挖掘方法论文

摘要: 电子商务是现代商业的主流趋势,如何充分利用网络技术和数据库技术发挥企业优势,成为企业制胜的法宝。本文介绍了常用的数据挖掘方法,以及在电子商务领域的应用,分析了利用数据挖掘技术建设动态、高效电子商务的可行性。

关键词:数据挖掘 电子商务 数据库

一、引言

电子商务是指以Internet网络为载体、利用数字化电子方式开展的商务活动。随着网络技术和数据库技术的飞速发展,电子商务正显示越来越强大的生命力。电子商务的发展促使公司内部收集了大量的数据,并且迫切需要将这些数据转换成有用的信息和知识,为公司创造更多潜在的利润。利用数据挖掘技术可以有效地帮助企业分析从网上获取的大量数据,发现隐藏在其后的规律性,提取出有效信息,进而指导企业调整营销策略,给客户提供动态的个性化的高效率服务。

二、数据挖掘技术

1.数据挖掘

数据挖掘(Data Mining),又称数据库中的知识发现(Knowledge Discovery in Database, KDD),是从大量的、不完全的、有噪声的、模糊的和随机的数据中,提取隐含在其中的、人们事先不知道的,但又是潜在有用的信息和知识的过程。数据挖掘是一门广义的交叉学科,它汇聚了不同领域尤其是数据库、人工智能、数理统计、可视化、并行计算等方面的知识。数据挖掘技术从一开始就是面向应用领域,它不仅是面向特定数据库的简单检索查询调用,而且,要对数据进行微观、中观乃至宏观的统计、分析、综合和推理,以指定实际问题的求解,企图发现事件间的相互关联,甚至利用已有的数据对未来的活动进行预测。数据挖掘技术在金融、保险、电信、大型超市等积累有大量数据的电子商务行业有着广泛的应用,如信用分析、风险分析、欺诈检验、用户聚类分析、消费者习惯分析等。

2.数据挖掘过程

挖掘数据过程可以分为3个步骤:数据预处理、模式发现、模式分析。

(1)数据预处理。实际系统中的数据一般都具有不完全性、冗余性和模糊性。因此,数据挖掘一般不对原始数据进行挖掘,要通过预处理提供准确、简洁的数据。预处理主要完成以下工作:包括合并数据,将多个文件或多个数据库中的数据进行合并处理;选择数据,提取出适合分析的数据集合;数据清洗、过滤,剔除一些无关记录,将文件、图形、图像及多媒体等文件转换成可便于数据挖掘的格式等。

(2)模式发现。模式发现阶段就是利用挖掘算法挖掘出有效的、新颖的、潜在的、有用的以及最终可以理解的信息和知识。可用于Web的挖掘技术有路径选择、关联分析、分类规则、聚类分析、序列分析、依赖性建模等等。

(3)模式分析。模式分析是从模式发现阶段获得的模式、规则中过滤掉不感兴趣的规则和模式。通过技术手段,对得到的模式进行数据分析,得出有意义的结论。常用的技术手段有:关联规则、分类、聚类、序列模式等。

三、电子商务中几种常用的数据挖掘方法

1.关联规则

关联规则是数据挖掘研究的主要模式之一,侧重于确定数据中不同领域之间的关系,找出满足给定条件下的多个域间的依赖关系。关联规则挖掘对象一般是大型数据库,该规则一般表示式为:A1∧A2∧…Am=>B1∧B2∧…Bm,其中,Ak(k=1,2,…, m),Bj(j=1,2,…,n)是数据库中的数据项。有Support(A=>B)=p(A∪B),Confidence(A=>B)=p(A|B)。数据项之间的关联,即根据一个事务中某些数据项的出现可以导出另一些数据项在同一事务中的出现。关联分析的目的是挖掘出隐藏在数据间的相互关系。关联规则用于寻找在同一个事件中出现的不同项的相关性,比如在一次购买活动中所买不同商品的相关性。关联分析的典型例子是购物篮分析,描述顾客的购买行为,可以帮助零售商决定商品的摆放和捆绑销售策略。如著名的(面包+黄油→牛奶)例子就属于关联分析:在超市中,90%的顾客在购买面包和黄油的同时,也会购买牛奶。直观的意义是:顾客在购买某种商品时有多大的倾向会购买另外一些商品。找出所有类似的关联规则,对于企业确定生产销售、产品分类设计、市场分析等多方面是有价值的。

2.聚类分析方法

类聚分析就是直接比较样本中各事物之间的性质,将性质相近的归为一类,而将性质差别较大的分在不同的类。对变量聚类计算变量之间的距离,对样本聚类则计算样本之间的距离。它的目的是使得属于同一类别的个体之间的距离尽可能小,而不同类别上的个体间的距离尽可能大。

聚类分析用于把有相似特性的客户、数据项集合到一起。在电子商务中, 聚类分析常用于市场细分。根据已有客户的数据,利用聚类技术将市场按客户消费模式的相似性分为若干细分市场,以进行有针对性的市场营销,提供更适合、更满意的服务。如自动给一个特定的客户聚类发送销售邮件,为一个客户聚类动态地改变一个特殊的站点等。通过对聚类的客户特征的提取,电子商务网站还可以为客户提供个性化的服务。

3.分类分析

分类系统是基于遗传算法的机器学习中的一类,它包括一个简单的基于串规则的并行生成子系统、规则评价子系统和遗传算法子系统。分类系统正在被人们越来越多地应用于科学、工程和经济领域中,是目前遗传算法研究领域中一个非常活跃的领域。

分类分析是数据挖掘中应用最多的方法。分类要解决的问题是为一个事件或对象归类,既可以用于分析已有的数据,也可以用来预测未来的数据。分类通过分析已知分类信息的历史数据,总结出一个预测模型,预测哪些人可能会对邮寄广告、产品目录等有反应,可以针对这一类客户的特点展开商务活动,提供个性化的信息服务。

4.序列模式

序列模式挖掘就是要挖掘出交易集之间有时间序列关系的模式。它挖掘的侧重点在于分析数据间的前后或因果关系,找到那些“一些项跟随另一些项”,以预测未来的访问模式。序列模式分析和关联分析类似,其目的也是为了挖掘数据之间的联系,但序列模式分析的侧重点在于分析数据间的前后序列关系。它能发现数据库中形如“在某一段时间内,顾客购买商品A,接着购买商品B,而后购买商品C,即序列A-B-C出现的频率较高”之类的知识。序列模式分析描述的问题是:在给定交易序列数据库中,每个序列是按照交易时间排列的一组交易集,挖掘序列函数作用在这个交易序列数据库上,返回该数据库中出现的高频序列。在进行序列模式分析时,同样也需要有用户输入最小置信度C和最小支持度S。

序列模式便于进行电子商务的组织,预测客户的访问模式,对客户开展有针对性的广告服务或者主动推荐客户感兴趣的页面,以满足访问者的特定要求。

四、结束语

电子商务是现代信息技术发展的必然结果,也是未来商业运作模式的必然选择。利用数据挖掘技术来分析大量的数据,可以挖掘出商品的消费规律与客户的访问模式,帮助企业制定有效的营销策略,充分发挥企业的独特优势,促进管理创新和技术创新,提高企业竞争力。

随着电子商务发展的势头越来越强劲, 面向电子商务的数据挖掘将是一个非常有前景的领域。它能自动预测客户的消费趋势、市场走向,指导企业建设个性化智能网站,带来巨大的商业利润,可以为企业创建新的商业增长点。但是在面向电子商务的数据挖掘中也存在很多问题急需解决,比如怎样将服务器的日志数据转化成适合某种数据挖掘技术的数据格式,怎样解决分布性、异构性数据源的挖掘,如何控制整个Web上知识发现过程等。随着硬件环境、挖掘算法的深入研究及应用经验的积累,数据挖掘技术及在电子商务中的应用必将取得长足的进展。

第三篇:数据挖掘电子商务应用中调研报告

调研题目: :关于数据挖掘在电子商务中

应用得调研报告

指导老师: :

学生姓名:

号:

西安交通大学软件学院2016 年 年 3 3 月 月 2 2 1日

关于数据挖掘在电子商务中应用得

调研报告

摘要

电子商务正处在蓬勃发展得大好时期,它所产生得丰富得信息资源,为数据挖掘得应用开辟了广阔得应用舞台。本文通过优化企业资源、管理客户数据、评估商业信用、确定异常事件四个方面来阐述数据挖掘在电子商务中得应用,揭示了数据挖掘在电子商务中得广阔得应用前景.关键词:电子商务;数据挖掘;调查报告 目 录 一、概述

随着网络技术与数据库技术得成熟,全球传统商务正经历一次重大变革,向电子商务全速挺进。电子商务就是商业领域得一种新兴商务模式,它就是以网络为平台,以现代信息技术为手段,以经济效益为中心得现代化商业运转模式,其最终目标就是实现商务活动得网络化、自动化与智能化。电子商务得产生改变了企业得经营理念、管

理方式与支付手段,给社会得各个领域带来了巨大得变革。随着网络技术得迅猛发展与社会信息化水平得提高,电子商务显示出巨大得市场价值与发展潜力。

当电子商务在企业中得到应用时,企业信息系统将产生大量数据,并且迫切需要将这些数据转换成有用得信息与知识,为企业创造更多潜在得利润,数据挖掘概念就就是从这样得商业角度开发出来得。数据挖掘就是一种新得商业信息处理技术,其主要特点就是对商业数据库中得大量业务数据进行抽取、转换、分析与其她模型化处理,从中提取辅助商业决策得关键性数据。利用功能强大得数据挖掘技术,可以使企业把数据转化为有用得信息帮助决策,从而在市场竞争中获得优势地位。

二、数据挖掘在电子商务中得应用

1、优化企业资源

节约成本就是企业盈利得关键。基于数据挖掘技术,实时、全面、准确地掌握企业资源信息,通过分析历史得财务数据、库存数据与交易数据,可以发现企业资源消耗得关键点与主要活动得投入产出比例,从而为企业资源优化配置提供决策依据,例如降低库存、提高库存周转率、提高资金使用率等。通过对 Web 数据挖掘,快速提取商业信息,使企业准确地把握市场动态,极大地提高企业对市场变化得响应能力与创新能力,使企业最大限度地利用人力资源、物质资源与信息资源,合理协调企业内外部资源得关系,产生最佳得经济效益。促进企业发展得科学化、信息化与智能化。

例如:美国运通公司(American Express)有一个用于记录信用卡业务得数据库,数据量达到54 亿字符,并仍在随着业务进展不断更新。运通公司通过对这些数据进行挖掘,制定了“关联结算(Relation ship Billing)优惠”得促销策略,即如果一个顾客在一个商店用运通卡购买一套时装,那么在同一个商店再买一双鞋,就可以得到比较大得折扣,这样既可以增加商店得销售量,也可以增加运通卡在该商店得使用率。

2、管理客户数据

随着“以客户为中心”得经营理念得不断深入人心,分析客户、了解客户并引导客户得需求已成为企业经营得重要课题。基于数据挖掘技术,企业将最大限度地利用客户资源,开展客户行为得分析与预测,对客户进行分类。有助于客户盈利能力分析,寻找潜在得有价值得客户,开展个性化服务,提高客户得满意度与忠诚度.通过 Web 资源得挖掘,了解客户得购买习惯与兴趣,从而改善网站结构设计,推出满足不同客户得个性化网页。

利用数据挖掘可以有效地获得客户.比如通过数据挖掘可以发现购买某种商品得消费者就是男性还就是女性,学历、收入如何,有什么爱好,就是什么职业等等。甚至可以发现不同得人在购买该种商品得相关商品后多长时间有可能购买该种商品,以及什么样得人会购买什么型号得该种商品等等。在采用了数据挖掘后,针对目标客户发送得广告得有效性与回应率将得到大幅度得提高,推销得成本将大大降低.同时,在客户数据挖掘得基础上,企业可以发现重点客户与评价市

场性能,制定个性化营销策略,拓宽销售渠道与范围,为企业制定生产策略与发展规划提供科学得依据。通过呼叫中心优化与客户沟通得渠道,提高对客户得响应效率与服务质量,促进客户关系管理得自动化与智能化。

成功案例:美国得读者文摘(Reader‘s Digest)出版公司运行着一个积累了 40 年得业务数据库,其中容纳有遍布全球得一亿多个订户得资料,数据库每天 24 小时连续运行,保证数据不断得到实时得更新,正就是基于对客户资料数据库进行数据挖掘得优势,使读者文摘出版公司能够从通俗杂志扩展到专业杂志、书刊与声像制品得出版与发行业务,极大地扩展了自己得业务。

3、评估商业信用

低劣得信用状况就是影响商业秩序得突出问题,已经引起世人得广泛关注。由于网上诈骗现象层出不穷,企业财务“造假“现象日益严重,信用危机成为制约电子商务发展得重要因素.利用数据挖掘技术对企业经营进行跟踪,开展企业得资产评估、利润收益分析与发展潜力预测,构建完善得安全保障体系,实施网上全程监控,强化网上交易与在线支付得安全管理。基于数据挖掘得信用评估模型,对交易历史数据进行挖掘,发现客户得交易数据特征,建立客户信誉度级别,有效地防范与化解信用风险,提高企业信用甄别与风险管理得水平与能力.4、确定异常事件

在许多商业领域中,异常事件具有显著得商业价值,如客户流失、银行得信用卡欺诈、电信中移动话费拖欠等.通过数据挖掘中得奇异点分析可以迅速准确地甄别这些异常事件,为企业采取决策提供依据,减少企业不必要得损失。

三、总结

电子商务就是现代信息技术发展得必然结果,也就是未来商业运作模式得必然选择。电子商务领域具有丰富得信息资源,为数据挖掘得应用开辟了广阔得应用舞台.数据挖掘将为电子商务提供有力得技术支持,极大地促进电子商务得发展与普及,推动电子商务得应用进程.数据挖掘技术作为电子商务得重要应用技术之一,将为正确得商业决策提供强有力得支持与可靠得保证,就是电子商务不可缺少得重要工具,有着广阔得发展前景.

第四篇:数据仓库与数据挖掘学习心得.

数据仓库与数据挖掘学习心得

通过数据仓库与数据挖掘的这门课的学习,掌握了数据仓库与数据挖掘的一些基础知识和基本概念,了解了数据仓库与数据库的区别。下面谈谈我对数据仓库与数据挖掘学习心得以及阅读相关方面的论文的学习体会。

《浅谈数据仓库与数据挖掘》这篇论文主要是介绍数据仓库与数据挖掘的的一些基本概念。数据仓库是支持管理决策过程的、面向主题的、集成的、稳定的、不同时间的数据集合。主题是数据数据归类的标准,每个主题对应一个客观分析的领域,他可为辅助决策集成多个部门不同系统的大量数据。数据仓库包含了大量的历史数据,经集成后进入数据仓库的数据极少更新的。数据仓库内的数据时间一般为5年至10年,主要用于进行时间趋势分析。数据仓库的数据量很大。

数据仓库的特点如下:

1、数据仓库是面向主题的;

2、数据仓库是集成的,数据仓库的数据有来自于分散的操作型数据,将所需数据从原来的数据中抽取出来,进行加工与集成,统一与综合之后才能进入数据仓库;

3、数据仓库是不可更新的,数据仓库主要是为决策分析提供数据,所涉及的操作主要是数据的查询;

4、数据仓库是随时间而变化的,传统的关系数据库系统比较适合处理格式化的数据,能够较好的满足商业商务处理的需求,它在商业领域取得了巨大的成功。

作为一个系统,数据仓库至少包括3个基本的功能部分:数据获取:数据存储和管理;信息访问。

数据挖掘的定义:数据挖掘从技术上来说是从大量的、不完全的、有噪音的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在的有用的信息和知识的过程。

数据开采技术的目标是从大量数据中,发现隐藏于其后的规律或数据间的的关系,从而服务于决策。数据挖掘的主要任务有广义知识;分类和预测;关联分析;聚类。

《数据仓库与数据挖掘技术在金融信息化中的应用》论文主要通过介绍数据额仓库与数据挖掘的起源、定义以及特征的等方面的介绍引出其在金融信息化中的应用。在金融信息化的应用方面,金融机构利用信息技术从过去积累的、海量的、以不同形式存储的数据资料里提取隐藏着的许多

重要信息,并对它们进行高层次的分析,发现和挖掘出这些数据间的整体特征描述及发展趋势预测,找出对决策有价值的信息,以防范银行的经营风险、实现银行科技管理及银行科学决策。

现在银行信息化正在以业务为中心向客户为中心转变6银行信息化不仅是数据的集中整合,而且要在数据集中和整合的基础上向以客为中心的方向转变。银行信息化要适应竞争环境客户需求的变化,创造性地用信息技术对传统过程进行集成和优化,实现信息共享、资源整合综合利用,把银行的各项作用统一起来,优势互补统一调配各种资源,为银行的客户开发、服务、综理财、管理、风险防范创立坚实的基础,从而适应日益发展的数据技术需要,全面提高银行竞争力,为金融创新和提高市场反映能力服务。沃尔玛利用信息技术建设的数据仓库,在1997年圣诞节进行市场技术建立的数据仓库,即分析顾客最可能一起购买那些商品,结果产生了经典的“啤酒与尿布”的故事,这便是借助于数据仓库系统

第五篇:数据挖掘与分析心得体会

正如柏拉图所说:需要是发明之母。随着信息时代的步伐不断迈进,大量数据日积月累。我们迫切需要一种工具来满足从数据中发现知识的需求!而数据挖掘便应运而生了。正如书中所说:数据挖掘已经并且将继续在我们从数据时代大步跨入信息时代的历程中做出贡献。

1、数据挖掘

数据挖掘应当更正确的命名为:“从数据中挖掘知识”,不过后者显得过长了些。而“挖掘”一词确是生动形象的!人们把数据挖掘视为“数据中的知识发现(KDD)”的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤!

由此而产生数据挖掘的定义:从大量数据中挖掘有趣模式和知识的过程!数据源包括数据库、数据仓库、Web、其他信息存储库或动态地流入系统的数据。作为知识发现过程,它通常包括数据清理、数据集成、数据变换、模式发现、模式评估和知识表示六个步骤。

数据挖掘处理数据之多,挖掘模式之有趣,使用技术之大量,应用范围之广泛都将会是前所未有的;而数据挖掘任务之重也一直并存。这些问题将继续激励数据挖掘的进一步研究与改进!

2、数据分析

数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。

数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步:

1、探索性数据分析:当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。

2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。

3、推断分析:通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。

数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。

由上可见,数据挖掘和数据分析虽然概念上层次清晰,作用上分工明确(数据分析主要以上数理统计为主,数据挖掘主要是挖掘算法为主)。但很明显的是,数据挖掘必须借助数据分析的有关方法来挖掘出有效的,对目标应用有意义的模式和知识。或者可以说:数据挖掘也可以是数据分析的一种!

在这样一个信息迅速膨胀的时代,数据挖掘和分析都与大量数据打交道。两者都离不开一种80年代后期兴起的一种高级数据分析技术:数据仓库和联机分析处理。

3、数据仓库

数据仓库是一个从多个数据源收集的信息存储库,存放在一致的的模式下,并且通常驻留在单个站点上。数据仓库通过数据清理、数据变换、数据集成、数据装入和定期数据刷新来构造。为便于决策,数据仓库中的数据围绕主题组织。数据存储从历史的角度提供信息,并且通常是汇总的。数据仓库提供一些数据分析能力,称作联机分析处理(OLAP)。

数据仓库有以下四种关键特征:

面向主题的:数据仓库围绕一些重要主题,如顾客、供应商、产品、和销售组织。数据仓库关注决策者的数据建模与分析,而不是单位的日常操作和事务处理。因此,数据仓库通常排除对于决策无用的数据,提供特定主题的简明视图。

集成的:通常,构造数据仓库是将多个异构数据源,使用数据清理和数据集成技术,确保命名约定,编码结构,属性度量等的一致性。

时变的:数据存储从历史的角度提供信息。数据仓库中的关键结构都隐式或显式地包含时间元素。

非易失的:数据仓库总是物理地分离存放数据,这些数据源于操作环境下的应用数据。由于这种分离,数据仓库不需要事务处理、恢复和并发控制机制。通常,它只需要两种数据访问操作:数据的初始化装入和数据访问。

4、分类及算法

分类是一种重要的数据分析形式,它提取刻画重要数据类的模型。分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别。它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。

分类算法主要有决策树归纳、贝叶斯分类、使用IF-THEN规则分类、神经网络、支持向量机等。

5、聚类分析

聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。它可以应用到客户群体的分类、客户背景分析、客户购买趋势预测、市场的细分等。

常用的算法有:

划分方法:k-均值算法,k-中心点算法。

层次方法:层次聚类算法、平衡迭代归约和算法、Chameleon(变色龙)、基于密度的方法:DBSCAN算法,OPTICS算法,DENCLUE算法。基于网格的方法:STING(统计信息网格),CLIQUE

6、广泛应用

作为一个应用驱动的领域,数据挖掘融汇来自其他一些领域的技术。这些领域包括统计学、机器学习、数据库和数据仓库系统,以及信息检索。数据挖掘研究与开发的多学科特点大大促进了数据挖掘的成功和广泛应用。

数据挖掘已经有许多成功的应用,如商务智能,Web搜索,生物信息学,卫生保健信息学,金融,数字图书馆和数字政府等。

7、学习总结

数据挖掘技术已经形成很广泛的应用空间,而目前JDMP的版本也在完善当中,大多数数据挖掘开发工具涌现出来。各种相关的框架如Hadoop也如雨后春笋纷纷出现。这些现象的出现,正是因为数据挖掘的发展会有越来越广泛的天空。然而数据挖掘还是有很多需要面临并且急需解决的问题„„而我们也希望其越来越深刻的研究和改进。

对于数据挖掘的学习,还是要注重算法的研究和开发。目前我还很欠缺这一块知识。包括统计学、概率论,机器学习等。数据挖掘是个繁复的过程,需要我们长此以往的研究!

下载数据挖掘与电子商务word格式文档
下载数据挖掘与电子商务.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数据挖掘与数据仓库--教学大纲

    数据挖掘与数据仓库(教学大纲) Data mining and data warehouse 课程编码:05405140 学分: 2.5 课程类别: 专业方向课 计划学时: 48 其中讲课:32 实验或实践: 上机:16 适用专业:信息......

    数据挖掘心得体会

    心得体会这次数据挖掘实验结束了,期间我们小组明确分工并积极去完成,虽然有点辛苦,但我感觉充实而有收获感!根据老师给的一些资料,我们决定采用SQL Server 2000中的Northwind数据......

    数据挖掘论文(合集)

    数据挖掘论文在现实的学习、工作中,许多人都有过写论文的经历,对论文都不陌生吧,论文是一种综合性的文体,通过论文可直接看出一个人的综合能力和专业基础。那么你知道一篇好的论......

    数据挖掘试题

    《数据挖掘》总复习题 1.数据挖掘系统可以根据什么标准进行分类? 答:根据挖掘的数据库类型分类 、根据挖掘的知识类型分类、根据挖掘所用的技术分类、根据应用分类 2.知识发现过......

    数据仓库与数据挖掘第一次作业

    数据仓库与数据挖掘第一次作业电子商务这一行业目前还处于摸索期,有很多需要完善和可以创新的地方。这学期选修了袁老师的《电子商务》,印象最深的就是老师提过这样的想法:电商......

    数据仓库与数据挖掘结业论文

    结合《数据仓库与数据挖掘》课程内容,写一篇与该课程内容相关的论文。 参考题目: 1. 数据挖掘技术在数据仓库中的应用 2. 关联规则在数据仓库中的应用 3. Aproior算法及其改进......

    数据挖掘与统计学的关系浅析

    龙源期刊网 http://.cn 数据挖掘与统计学的关系浅析 作者:魏 瑜 陆 静 来源:《沿海企业与科技》2005年第09期 [摘要]数据挖掘和统计学有很多共同点,但与此同时它们也有很多差异......

    大数据建模与数据挖掘培训心得体会

    大数据建模与数据挖掘培训心得体会 公司在2017年08月24日 — 08月27日组织参加了在北京举办的“大数据建模与分析挖掘”培训班,首先感谢公司给予的这次难得的机会,虽然只有短......