《三角形的内角和》教案

2024-05-19下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《《三角形的内角和》教案》及扩展资料,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《三角形的内角和》教案》。

《三角形的内角和》教案

《三角形的内角和》教案1

【设计理念】

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。

【教材分析】

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

【学情分析】

学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。

【学习目标】

1.通过测量、剪、拼等活动发现、探索和发现“三角形内角和是180°”。

2.学会根据“三角形内角和是180°”这一知识求三角形中一个未知数的度数。

3.在课堂活动中培养学生的观察、归纳、概括能力和初步的空间想象力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

4.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

【教学重点】

探索和发现“三角形的内角和是180°”。

【教学难点】

运用三角形的内角和解决实际问题。

【教学准备】

教师:多媒体、剪好的不同类型的三角形。

学生:量角器、剪刀、剪好的不同类型的`三角形。

【教学过程】

一、创设情景,引出问题

1.猜谜语。

师:同学们,你们喜欢猜谜语吗?今天老师给你们带来了一则谜语。请同学们读一下(出示谜语)。

师:打一几何图形。猜猜看!

学生猜谜语。

根据学生的回答,出示谜底。

师:真是三角形,同学们的反应真快!

2.复习三角形的内容。

其实,三角形我们并不陌生,它是一种特别的平面图形。关于三角形,你们已经掌握了哪些知识?

指名学生回答。

(当学生回答出三角形有3个顶点、3条边和3个角时,请这名学生到台上分别指出三角形的3个角,并标出角。)

3.引出课题。

师:同学们知道的还真不少,可见你们平时学习很用功。知道吗?其实三角形的这三个角就是三角形的三个内角,而这三个角的度数和就是三角形的内角和。你们知道三角形的内角和是多少度吗?今天这节课就让我们一起走进三角形内角和,探索其中的奥秘。

(板书课题:三角形的内角和)

二、探究新知

1.讨论、交流验证知识的方法。

师:那同学们用什么方法来研究三角形的内角和呢?赶紧商量一下。(同桌交流)

学生汇报:①用量的方法;②用拼的方法;③用折的方法...

2.操作验证。

师:同学们的点子还真多!现在请同学们拿出准备好的三角形,

选1个自己喜欢的三角形,选择自己喜欢的方法进行验证。(或说研究)等研究完了我们再交流,发现了什么,好吗?好,现在开始!

3.学生汇报。

师:如果你们已经完成了,就把你的小手举起来示意老师。老师有点迫不及待了,想赶紧分享一下你们研究的成果。谁先来说?

学生汇报,教师适时板书。

①用量的方法:

指名学生汇报度量的结果,教师板书。(指两名学生汇报)

教师白板演示测量方法,并计算和板书出结果。

教师:同样是测量的方法,有的同学得了180,有的不是180°,为什么会出现这种情况?(指名学生说)

师:可能我们测量的时候会有误差,但是同学们选择比较精确的测量工具,使用正确的测量方法,还是可以得到精确的结果。看来这个办法不能使人很信服,有没有别的方法验证?

②用拼的方法

a.学生汇报拼的方法并上台演示。

我这里也有一个钝角三角形,请两名同学上台演示。

b.请大家四人小组合作,用他的方法验证其它三角形。

c.展示学生作品。

d.师展示。

师:我们用量、拼得到了180度,还有什么方法?

③用折的方法

师:还想向同学们请同学们看一看他是怎么折的(演示)。

师:刚才我们用量的方法、拼的方法和折的方法研究了锐角三角形、直角三角形和钝角三角形内角和,得出什么结论了?

教师根据学生板书:(任意)三角形的内角和是180度。

④数学文化

师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°,到初中我们还要更严密的方法证明三角形的内角和是180°。其实,早在300多年前就有一位伟大的数学家,用科学的数学方法见证了任意三角形的内角和都是180度。这位伟大的数学家就是帕斯卡(出示帕斯卡),他是法国著名的数学家、物理学家。他在12岁时发现了三角形内角和定律,17时写出了《圆锥截线论》19岁设计了第一架计算机。

三、巩固练习

数学家发现了知识,今天我们也能够总结出知识。你们棒不棒?真厉害,接下来白老师要考考你们。眼睛看好啦!

1.出示:我是小判官(对的打“√”错的“×”。)

强调:把两个小三角形拼在一起,问:大三角形的内角和是多少度?

教师:为什么不是360°?学生回答。

2.接下来我要奖励你们一个游戏:《帮角找朋友》

3.求未知角的度数。

师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

①出示第一个三角形,学生尝试独立完成,教师巡视。

教师:刚才,我们利用了三角形的什么?

②教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?求出下面三角形各角的度数。

a.我三边相等;b.我是等腰三角形,我的顶角是96°。c.我有一个锐角是40°。

教师:如果我们去求一个三角形内角的度数的时候,首先我们要去观察三角形,找出它的特点,找出它给出的已知角的度数,然后再去计算三角形未知的内角的度数。

四、拓展延伸

师:看来三角形内角和的知识难不倒你们了,我们来一个挑战题。你们敢接受挑战吗?(出示四边形)你知道它的内角和是多少吗?指名生回答,并说出理由。同学们,你们能用今天学的知识算出它的内角和吗?

接着让学生尝试求5边形和6边形的内角和。

小结:求多边形的内角和,可以从一个顶点出发,引出它的对角线,这样就把这个多边形分割成了N个三角形,它的内角和就是N个180°

五、课堂总结。

师:这节课你有什么收获?

学生自由发言。

师生交流后总结:知道了三角形的内角和是180度,根据这个规律知道可以用180°减去两个内角的度数,求出第三个未知角的度数。

同学们,只要我们在日常的学习中,细心观察,大胆质疑,认真研究,一定会有意想不到的收获。

六、作业布置

完成教材练习十六的第1、3题。

七、板书设计:

( 任意)三角形的内角和是180°

∠1+∠2+∠3=180°

度量 剪拼 折拼

《三角形的内角和》教案2

【教学目标】

1、利用电子白板,借助生活情景,通过“量一量”,“算一算”,“拼一拼”,“折一折”的方法,推想归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。

2、经历猜测——验证——得出结论——解释与应用的过程,体验“归纳”、“转化”等数学思想方法。

3、通过数学活动使学生获得成功的体验,增强自信心,培养学生的创新意识,探索精神和实践能力。

【教学重、难点】

教学重点:引导学生发现三角形内角和是180°。 教学难点:用不同方法验证三角形的内角和是180°。 【教学过程】

一、创设情景,提出问题

小游戏:猜一猜藏在信封后面的是什么三角形。(出示)

师:三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。

【设计意图:运用电子白板,游戏引入,激起学生对于三角形已有知识的回忆,为下面探求新的知识作好铺垫。创设疑问,引出要探讨的问题,调动学生学习的兴趣。】

二、动手实践、自主探究

师:什么是内角?内角和是什么意思?三角形的内角和是多少度呢?

1.从特殊入手——计算直角三角板的内角和。

(1)师生拿出30度直角三角板

师:这是什么?是什么三角形?这个角是多少度?它的内角和是多少度,请口算?

(2)再拿出45度直角三角板。

师:这是什么三角形?这个角是多少度?它的内角和是多少度?

(3)师:通过刚才的计算,你有什么发现?

生:这两个三角形内角和都是180°。

【设计意图:这一环节先让学生在明确三角形内角和的概念基础上,先借助电子白板出示特殊三角形——“直角三角形”,让学生初步感知三角形的内角和,通过计算学生很容易发现直角三角形的内角和是180度,为学生作进一步猜想奠定理论基础。】

2、由特殊到一般——猜想验证,发现规律。

(1)提出猜想

师:其他所有三角形的内角和是否也是180°?

生:是、不是……

师:有的说是,有的说不是,我们的猜想对不对呢,需要验证。

(出示小组调查表。)

(2)验证猜想(生测量计算,师巡视指导,收集回报的素材)

师:哪个小组愿意将您们组的发现与大家分享一下?

生上台展示:我们小组研究的是直角三角形(锐角三角形、钝角三角形),我们测量它的三个角分别是 度 度 度,内角和是180°,我们发现直角三角形(锐角三角形、钝角三角形)的内角和是180°)

师:研究锐角三角形(锐角三角形、钝角三角形)的小组请举手,你们的结论和他们一样吗?请你们小组来谈谈你们的发现!

【设计意图:实物投影仪在这个环节发挥了重要的作用,学生充分展示自己的想法。在初步感知的基础上,教师让学生猜测是否所有的三角形的内角和都一样呢?这个问题为后面的猜测和验证进行铺垫,引发思考,激发学习兴趣。然后再通过算出特殊的三角形的内角和推广到猜测所有三角形的内角和,引导学生从特殊三角形过渡到一般三角形的验证规律。】

(3)揭示规律

师:通过计算我们发现直角三角形的内角和是180°,锐角三角形的内角和是——180度,钝角三角形的内角和也是——180度,这就验证了我们的猜想。现在我们可以说所有的三角形的内角和是(完善课题180°)。

注:学生的汇报中可能会出现答案不是唯一的情况,如:180°、179°、181°等。(板书)(分别对这几个数进行统计)

师:观察这些测量结果你能发现什么?(三角形内角和大约是180°左右)

(4)方法提升。

师:我们从直角三角形——锐角三角形——钝角三角形——推出所有三角形的内角和,这种由个别到一般的推理方法,在数学上叫归纳推理(板书)归纳推理是重要的推理方法。

【设计意图:通过度量、比较这一活动,让学生在实践中充分感知三角形的内角和大小。但由于测量本身有差异,教师并没有直接告知三角形内角和的结论,而是让学生去另辟蹊径想办法验证前面的猜想,想一想有没有别的方法来求三角形的内角和,让思维真正“展翅高飞”,充分调动学生学习的积极性、自主性。】

3、剪拼法再次验证——转化思想的'运用。

师:刚才我们通过测量发现了三角形的内角和是180°,现在我们不用量角器测量了,你能想办法证明三角形的内角和是180°吗?先思考再动手做。

生探究,师巡视指导,收集汇报素材。(呈现作品——说方法——统计点评)

班内交流,汇报撕拼法、折叠法。

师:将三角形的内角通过剪拼、折叠,转化成平角,你们应用了一种重要的数学思想——转化(板书),转化就是将我们不会直接解决的新问题,变成已会的旧知识,进而解决。

【设计意图:孩子的智慧来自于动手,电子白板适时演示,让学生通过“剪一剪,拼一拼,折一折”等操作方法,猜想、验证得出结论:三角形的内角和是180°,并利用语言概括出结论,提高语言表达能力。】

4.展示——再次强化。

师:现在大家知道这几个三角形的内角和是多少度吗?

师:我们可以请电脑来给我们验证一下。

(引入白板,通过拖动演示三角形从小到大度数的不断变化)

结论:不论三角形的大小、形状怎样变化,任何三角形的内角和都是180°。

【设计意图:让学生在白板上亲眼观看到拖拉出类别不同的三角形,让学生在拖动的过程中观察、体验。学生兴趣盎然,学习气氛热烈,学生不仅感受到这3个三角形的内角和是180°,还随着电子白板上这个三角形的任意拖动,发现三角形的3个角的度数在不断的变化,而三角形的内角和则始终没有变化,仍然是180°,深刻地理解了任意三角形的内角和都是180°。而这,恰恰就是本课的教学重点和难点。传统课中不容易突破的教学重难点轻而易举的攻破。抽象的知识变得直观、具体,促进学生知识内化的过程。】

三、巩固应用,内化提高

1.介绍科学家帕斯卡(白板出示帕斯卡的资料)

2.练习

(1). 做一做:在一个三角形中,∠1=140度, ∠3=25度,求∠2的度数。

(2). 求出下列三角形中各个角的度数。(书88页第9题)

(3). 算一算(书88页第10题):爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?

【设计意图:练习中使用白板的交互性,学生更愿意参与,得出结果也更有成就感。素质教育要求我们要面向全体学生。为此,根据问题的不同难度,教学时兼顾到不同层次的学生,使每位学生都有所收获,都有机会体会到成功的喜悦。设计练习有新意,同时也注意了坡度。既有基本练习,也有发展性练习,尽最大努力体现因材施教。】

四、课后思考、拓展延伸

同学们,数学奥妙无穷,三角形是边数最少的封闭平面图形,那么,四边形五边形六边形(出图示)……的内角和是多少度,他们又有什么规律呢?有兴趣的同学下课之后可继续研究,下课。

《三角形的内角和》教案3

设计说明

三角形的内角和等于180°是三角形的一个重要特征,明确三角形的内角和等于180°是以后学习和解决实际问题的基础。

1.让学生在生动具体的情境中学习数学。

《数学课程标准》指出:在教学中,教师应充分利用学生的生活经验,设计生动有趣、直观形象的数学教学活动,如讲故事、直观演示、模拟表演等,激发学生的学习兴趣,让学生在生动具体的情境中理解和掌握数学知识。在本节课的教学设计中,为了增强学生的学习兴趣,使其快速、积极、主动地投入到学习中,上课伊始的故事导入以及新知识的情境创设都能把学生带入快乐的学习氛围中。

2.通过操作、观察、猜测、交流,使学生体验数学知识的形成过程。

在本节课的设计中,对于三角形的内角和等于180°这一结论没有直接给出,而是通过量、算、剪、拼、折等活动证实了三角形的内角和等于180°,使学生在自主获取知识的过程中,培养了创新意识、探索精神和实践能力。

课前准备

教师准备 PPT课件 量角器 直尺

学生准备 量角器 直尺 各种三角形

教学过程

第1课时 三角形内角和(1)

⊙故事引入

三角形的家庭是一个团结的大家庭。但今天,三角形的家庭内部却发生了争论,一个钝角三角形说:“我的钝角比你们的角都大,所以我的内角和最大。”一个锐角三角形说:“我的个子比你高,我是大三角形,你是小三角形,所以我的内角和肯定比你大。”一个直角三角形说:“不能只看一个钝角大就说内角和大,也不能只看个子,这样不公平。”其他的三角形也跟着争执不休,都说自己的.内角和最大。这时,家庭里的王者来了,听了它们的诉说,也糊涂了。什么是三角形的内角?什么是三角形的内角和呢?

(课件演示三条线段围成三角形的过程)

师生共同小结:三条线段围成三角形后,在三角形内形成了三个角,这三个角就是三角形的三个内角(课件闪烁三个内角)。这三个内角的度数之和就是这个三角形的内角和。

导入:到底谁说得对呢?这节课我们一起来探究三角形的内角和。[板书课题:三角形内角和(1)]

设计意图:由故事引入,激发学生的学习兴趣,并通过故事提出问题,带着对问题的思考,唤起学生的求知欲望,从而使他们主动投入到学习中去。

⊙自主探究,合作交流

1.提出问题。

师:你有什么办法来比较两个三角形的内角和?

2.量一量,算一算。

(1)出示活动要求。

①在练习本上画一个锐角三角形、一个直角三角形和一个钝角三角形。

②用量角器测量所画三角形的各个内角的度数,把测量结果记录在表格中,并计算出每个三角形的内角和。

(2)小组合作,量一量,算一算。

(3)交流汇报。

师:观察计算结果,你发现了什么?

引导学生发现每个三角形的内角和都在180°左右。

《三角形的内角和》教案4

教学目标:

1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教学重点:

探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

教学难点:

对不同探究方法的指导和学生对规律的灵活应用。

教学准备:

多媒体课件、学具。

教学过程

一、创设情境,激趣引入。

认识三角形内角

1、提问:我们已经认识了什么是三角形,谁能说出三角形有什么特点?

2、请看屏幕(课件演示三条线段围成三角形的过程)。三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。三个内角的度数和就是三角形的内角和。

(设计意图:让学生整体感知三角形内角和的知识,有效地避免了新知识的横空出现。)

二、动手操作,探究新知。

1、猜想

先后出示两个直角三角形,让学生说出各个内角的度数,并求出这两个直角三角形的内角和。

提问:从刚才的计算结果中,你想说些什么呢?

(引出猜想:三角形的内角和是180°)

(设计意图:引导学生提出合理猜测:三角形的内角和是180°。)

2、验证

这只是我们的猜想,事实上是不是这样的呢?还需要我们进行验证。想想,你有什么办法验证三角形的内角和是不是180°呢?

(引导学生说出量一量、拼一拼、画一画等方法)

提问:现实中的三角形有千千万万,是不是我们都要对其进行一一验证呢?

引导学生回答出只要在锐角三角形、钝角三角形和直角三角形三种三角形分别进行验证就行。

组织学生以小组为单位进行动手操作验证。(每个小组都有三种三角形,让学生选择一种三角形,用自己喜欢的方法进行验证,把验证的过程和结果在小组里进行讨论交流。最后,小组派代表进行汇报)

(设计意图:让学生带着问题动手、动口、动脑,调动多种感官参与数学学习活动,通过操作、剪拼、验证,让学生去探索、去实验、去发现,从而让学生在动手操作积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力。)

3、总结

通过验证,你们得出了什么结论呢?(板书:结论:三角形的内角和是180°)

三、应用延伸,解决问题。

1、求三角形中一个未知角的度数。

(1)在三角形中,已知∠1=70°,∠2=50°,求∠3。

(2)在三角形中,已知∠1=78°,∠2=44°,求∠3。

(3)选算式:(1)∠A=180°-55°(2)∠A=180°-90°-55°(3)∠A=90°-55°

(分别请同学们板演,并说出解题思路。)

2、判断

(1) 一个三角形的三个内角度数是:80° 、75° 、24° 。 ( )

(2)三角形越大,它的内角和就越大。 ( )

(3)一个三角形至少有两个角是锐角。 ( )

(4)钝角三角形的两个锐角和大于90°。 ( )

(请同学回答,并说出判断的依据)

3、解决生活实际问题。

爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角呢?

(让学生结合题意画图,再说出答题的思路)

4、拓展练习。

利用三角形内角和是180°,求出下面四边形、六边形的内角和?

图 形

名 称 三角形 四边形 五边形 六边形

有几个三角形

内角和

(设计意图:习题是沟通知识联系的有效手段。在本节课的四个层次的'练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。)

四、全课总结,梳理反思。

今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?

(设计意图:引导学生回顾与反思学习过程,进一步梳理知识,优化认知,感悟学习方法,从学会走向会学,带着收获的喜悦结束本节课的学习。)

五、板书设计:

三角形的内角和

猜想:三角形的内角和是180°。

验证:量一量、拼一拼、画一画

直角三角形

锐角三角形

钝角三角形

结论:三角形的内角和是180°。

《三角形的内角和》教案5

一、教材简介:

本微课选自北京师范大学出版社初中数学七年级下册第四章《三角形》的第一节《认识三角形》的内容,学生在学习了“三角形的概念”之后,自然要想到“三角形的内角和”,因此本节微课起着承上启下的作用。教学内容是《三角形内角和》。

二、设计理念:

我在设计这一堂微课时,主要从七年级学生以形象思维为主,对新事物容易产生兴趣的特点出发,创设问题情景“在以前小学学习三角形的内角和的结论时,是通过撕、拼的方法直观得到的,你知道其中的依据吗?”来激发学生探究的欲望。然后通过老师借助Z+Z超级画板展示“三角形的内角和等于180°”的动画以及通过旋转和平移三角形的两个角到第三个角的方法,一方面让学生去发现问题,另一方面使学生通过多角度思考、分析、说理、操作加深学生对三角形内角和为180°的理解,从而突出和解决了本节课的重点,同时在教学中注重在直观操作的基础上进行简单的推理,使学生学会用一定的方式有条理地表达推理过程。在学生探究得出三角形的内角和等于180°之后,教师通过借助Z+Z超级画板拖动三角形的任意一个点,改变三角形的形状,动态显示了“三角形的内角和”始终等于180°的数据。加深对“三角形的内角和“的理解。最后同过练习,检测学生对“三角形的'内角和”的应用掌握程度,拓展学生视野,提高学生认识水平。

设计特色是力求通过Z+Z超级画板动画等多媒体教学手段,使抽象知识动态化,降低学生认知难度。以问题为导向,引导学生推断分析,锻炼学生逻辑思维。教学过程充分体现出以学生为主体,教师为主导的特点,启发引导学生通过多角度思考、分析、说理、操作的过程中主动地去获取知识,体验过程、感悟方法,以提高学生学习的有效性。

三、学情分析:

七年级的学生形象思维比较好,但空间思维比较差,注意力容易转移,需要教师结运用多媒体技术展示三角形内角和,因此本节课我展示“三角形的内角和”的动画给学生看,将思维的可视化展示给学生,使学生能保持较大的学习兴趣,从而努力培养学生的发现问题的能力、推理能力、有条理的表达能力、发展空间观念。

四、教学目标

知识与技能:通过观察、操作、想象、推理“三角形内角和等于180°”的活动过程,发展空间观念,推理能力和有条理地表达能力。

过程与方法:通过自主探究,结合具体实例,掌握三角形三个角和等于180°。

情感、态度价值观:在探究学习中体会数学的现实意义,培养学习数学的信心,体验解决问题方法的多样性。

五、教学重难点

教学重点:三角形的内角和。

教学难点:三角形的内角和。

六、教学用具

“三角形的内角和”动画、制作多媒体课件。

七、教学过程:

教学环节

教学内容

教学活动

设计意图

教师的组织和引导

学生活动

提出问题,自主探究

一、三角形内角和

展示书本P81页的做一做,提出问题:

1、在小学通过撕、拼方法得到三角形内角和等于180°,依据是什么?

2、展示“三角形内角和等于180°”动画。

3、引导学生利用“平行线的判定与性质”探究、推理、得出“三角形内角和等于180°”的结论

3、利用“三角形内角和”的动画,拖动三角形的任意点,用数据显示三角形的内角和等于180°。

阅读课本p81页,回忆小学通过撕、拼方法得到三角形内角和等于180°。

观看“三角形内角和等于180°”动画。

探究、想象、推理、得出结论。

观看动画,加深理解三角形内角和等于180°。

根据做一做,激发学生的探究欲望。

动画形象地呈现在学生眼前,直观操作与说理结合起来。

培养学生的推理能力和有条理地表达能力,发展空间观念。

效果检测,引领提升

练习

展示有梯度的课堂练习。

做练习

对所学知识加以运用和深化归纳总结,深化认知

总结拓展

总结本节知识点

归纳知识点

学会总结

板书设计

一、三角形三个内角和等于180°

教学反思:

该微课针对我校生源不是很好的实际情况和“三角形内角和”很难理解的特点,面向学生,聚焦学习过程,关注个性差异,采用问题导学、自主探究模式,聚焦知识点讲解,呈现教师如何用Z+Z超级画板软件引导学生学习,学生如何在教师的引导下自主学习的过程,充分体现教师的主导作用和学生的主体作用;针对七年级学生以形象思维为主、好奇心强的特点,充分发挥多媒体在学科中的运用,教师展示“三角形内角和”动画,让学生根据“平行线的判定和性质”获得“三角形内角和等于180°”的结论,体现思维过程。培养学生的推理能力和有条理地表达能力,发展空间观念。符合新课标倡导的探究性学习的理念。事实证明,符合学生的认知心理,达到了很好的效果。

《三角形的内角和》教案6

学习目标:

(1) 知识与技能 :

掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。

(2) 过程与方法 :

通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。逐渐由实验过渡到论证。

通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。

(3)情感态度与价值观:

通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。使学生主动探索,敢于实验,勇于发现,合作交流。

一.自主预习

二.回顾课本

1、三角形的内角和是多少度?你是怎样知道的?

2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。

3、回忆证明一个命题的步骤

①画图

②分析命题的`题设和结论,写出已知求证,把文字语言转化为几何语言。

③分析、探究证明方法。

4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?

①平角,②两平行线间的同旁内角。

5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。如何把三个角转化为平角或两平行线间的同旁内角呢?

① 如图1,延长BC得到一平角BCD,然后以CA为一边,在△ABC的外部画A。

② 如图1,延长BC,过C作CE∥AB

③ 如图2,过A作DE∥AB

④ 如图3,在BC边上任取一点P,作PR∥AB,PQ∥AC。

三、巩固练习

四、学习小结:

(回顾一下这一节所学的,看看你学会了吗?)

五、达标检测:

六、布置作业

《三角形的内角和》教案7

教学内容:

p.28、29

教材简析:

本节课的教学先通过计算三角尺的3个内角的度数的和,激发学生的好奇心,进而引发三角形内角和是180度的猜想,再通过组织操作活动验证猜想,得出结论。

教学目标:

1、让学生通过观察、操作、比较、归纳,发现三角形的内角和是180。

2、让学生学会根据三角形的内角和是180 这一知识求三角形中一个未知角的度数。

3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。

教学准备:

三角板,量角器、点子图、自制的三种三角形纸片等。

教学过程:

一、提出猜想

老师取一块三角板,让学生分别说说这三个角的度数,再加一加,分别得到这样的2个算式:90+60+30=180,90+45+45=180

看了这2个算式你有什么猜想?

(三角形的三个角加起来等于180度)

二、验证猜想

1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。

老师注意巡视和指导。交流各自加得的结果,说说你的发现。

2、折、拼:学生用自己事先剪好的图形,折一折。

指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的`一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。

继续用该方法折钝角三角形,得到同样的结果。

直角三角形的折法有不同吗?

通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。

3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。

在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角180度。

小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180。

4、试一试

三角形中,角1=75,角2=39,角3=( )

算一算,量一量,结果相同吗?

三、完成想想做做

1、算出下面每个三角形中未知角的度数。

在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。

指出:在计算的时候,我们可根据具体的数据选择更佳的算法。

2、一块三角尺的内角和是180 ,用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?

可先猜想:两个三角形拼在一起,会不会它的内角和变成1802=360 呢?为什么?

然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180 。

3、用一张正方形纸折一折,填一填。

4、说理:一个直角三角形中最多有几个直角?为什么?

一个钝角三角形中最多有几个直角?为什么?

四、布置作业

第4、5题

《三角形的内角和》教案8

教学内容:

新课程实验教科书小学数学四年级下册85页例5。

设计思路:

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。先让学生思考直角三角形的另外两个角是什么角,再设疑让学生判断一个三角形中有两个角是直角,引出课题。接着让学生猜想是不是所有的三角形的内角和是180°。学生通过用量的方法得出三角形的内角和大约是180°(存在误差),再引导学生通过剪拼、折拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。接着引导学生理解将一个长方形按对角线剪成两个直角三角形,让学生发现可以用360度除以2推算所有直角三角形的内角和是180度。这一系列活动潜移默化地向学生渗透了“转化”数学思想,培养学生科学试验的态度,培养学生的统计观念。接着向学生渗透数学文化。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。整堂课让学生通过小组合作学习,经历探究知识的过程,明白解决问题策略的多样化。培养学生的空间观念,发展合情推理能力和初步的演绎推理能力。让学生体验数学学习的快乐。

教材分析:

依据是《新课程标准》(实验稿)。新课标中,分两个阶段分层写进了“三角形内角和”:1、在第二学段“几何与图形”第七条中说:“通过观察、操作了解三角形内角和是180°”;2、在第三学段“空间与图形”第4条第3点中说:“利用同位角、对角相等的基本事实证明三角形的内角和定理。

三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

学生分析

1、四年级的学生已经有了探索三角形内角和的知识(或技能)基础。如掌握了锐角、直角、钝角、平角的概念;知道直角或平角的度数、会用量角器度量角的度数。认识长方形、正方形,知道他们的四个角都是直角,认识了三角形,知道了三角形根据角分,有锐角三角形、直角三角形和钝角三角形。已经知道了等腰三角形和正三角形。

2、学生的起点。已经有不少学生知道了三角形内角和是180度的结论,但是很可能都知其然不知其所以然。

教学目标:

1、通过量、剪、拼等方法,探索和发现三角形内角和是180°。

2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。

3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

教学重点:引导学生发现三角形内角和是180°

教学难点:用不同方法验证三角形的内角和是180°

教具学具准备:课件、学生准备不同类型的三角形各一个,长方形。剪刀、量角器。

教学过程:

一、创设情景,引出问题

导语

师:第几次来这里上课?在这里上课和在教室有什么不一样吗?

(交代话筒的分布)

今天有很多听课的老师都想了解你,能向老师介绍你自己吗?

你介绍了自己的姓名

你介绍的内容更丰富了,有姓名、岁数。

你的声音很响亮,有更响亮的吗?

看来我们虹桥镇一小四一班的同学真的很棒。

可以上课了吗?上课。同学们好

我们先来猜个谜语,请大家齐读一遍。

猜谜语:(课件)

形状似座山,稳定性能坚

三竿首尾连,学问不简单(打一几何图形)三角形(板书)

1、小游戏

猜三角形(课件)

师:这个三角形的一部分被长方形给遮住了,你知道这是什么三角形吗?

师:被遮住的两个角是什么角?

生:两个角都是锐角。

师:如果有人说被遮住的两个角中还有一个角是直角,你们觉得对吗?为什么?

(这个环节容易忘记)

生:在一个三角形里面不可能有两个直角

生:这样就不是三角形了

生:三角形的内角和是180度,如果有两个角是直角,另一个角不是没有度数了。

(让学生拿出直角三角板上来说明三角形的内角和是180°)

2、引出课题

这就是三角形里角的奥秘,这节课我们就来研究有关三角形角的知识”三角形内角和“。(板书课题)

二、探究

1、三角形的内角、内角和

(1)三角形内角(课件)

三角形里面的三个角都是三角形的内角。为了方便研究我们把每个三角形都标上内角∠1、内角∠2、内角∠3。

(2)三角形内角和

师:内角和指的是什么?

生:三角形的三个角的度数的和,就是三角形的内角和。

(多让几个学生说一说)

2、猜一猜

师:这个三角形的'内角和是多少度?

生:180°

师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?

生:是。

生:不是

预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

预设2师:可以用什么方法验证三角形的内角和是180度。

生:量一量。(量角器)

师:用量角器度量,你能说的更明白一些吗?

3、量一量

(1)出示要求(课件)

师:(我在信封里为大家准备了三个不同的三角形和一张表格)三个三角形和一张表格,四人小组合作,你们觉得怎样分工度量的速度会最快?

生:每一个同学量一个三角形的内角度数另一个人记录。

师:量的同学:量出的每个角的度数,把每个角的度数写在三角形里面。三个角的度数都量好后,再汇报给记录的同学登记。(还要在实物投影上例举)

师:记录的同学:要监督小组其他同学量的是不是很准确、真实,不能改掉小组成员度量出来的数据。(开始)

量一量、算一算不同类型三角形内角和各是多少度?

(2)小组合作探究

(大部分的同学已经量好了。没有量好的小组,先停下来。让我们一起来分享其他同学的测量成果。我这里收集到了两个小组的测量记录表,这张是那个小组的?请这个小组的组长带上三个三角形上来给大家介绍他们组的测量情况。请你给大家介绍你们组测量的三角形的形状,每个角的度数和内角和是多少?)学生汇报的时候教师板书。

(3)汇报交流

测量记录表

三角形的形状

每个内角的度数

三个内角和

(实物投影)选择有代表性的作品展示

学生的汇报中可能会出现答案不是惟一的情况。如180°179°181°等

(板书)

(分别对这几个数进行统计)

我们来统计测量出来是多少度的同学最多。例如、179°的有2人,180°的有13人,181的有1人等等。(度量结果是181度的同学请举手,179度的请举手,还有不一样的吗?)

师:观察这些测量结果你能发现什么?

生:都在180°左右。

生:从大到小的顺序。

4、剪拼、折拼

(1)剪拼、撕拼

(学生的注意力要集中)

预设1师:用度量的方法验证,得到的结果不统一,有没有比度量更精确的验证方法?(让学生多思考),也就是不用度量你能用别的方法验证吗?

预设2师:不着急,看黑板(板书),内角和就是(~~)

生:就是把内角合并在一起。

度量的验证方法是分别量出每个角的度数,分成单个研究。

如果把三个角合在一起考虑呢?你还有什么验证方法?

求三角形内角和就是把三角形的三个角和起来考虑问题,三个角和起来是什么角?三个角和起来是多少度的角,你有办法吗?

预设3师:如果三角形的内角和是180度,180度的角就是我们以前学过的平角

把三角形的三个角拼起来是不是一个平角?

有什么方法能把三角形的三个内角合并在一起?

预设4师:我在电脑里收索一个验证方法。(课件演示)

生:把三角形的三个角剪下来,再拼成一个角。

师:你能说的更明白一些吗?

让学生在实物投影上演示(可以把剪下来的三个角,用固体胶固定在白色的长方形卡纸上。)

师:你们觉得他得方法可行吗?

要求

请大家四人小组合作,用他的方法验证。

全班小组操作

大部分的小组已经拼好了,还没拼好的小组先停一停。我们一起来分享其他小组的验证结果

汇报交流

预设1师:(把学生的作品展示)把三个角拼在一起你们有什么发现?

(你能看出这是用什么三角形拼成的?为什么?三个角拼在一起你有什么发现?)

预设2让学生上来介绍

师:你怎么做?发现了什么?(课堂纪律)

让学生展示不同类型的三角形拼成一个平角。说明三角形的内角和是180°

(板书:剪拼一个平角)

课件演示

师:这种验证方法是谁第一个发现的,我们用掌声来祝贺他。

(2)折拼

师:用剪拼的方法是比较精确,美中不足就是把三角形给剪了或是撕了,有没有更好验证方法?

预设1生:用折的方法

小组合作把剩下的一个三角形的折成一个平角。

展示

师:要把三角形的三个角折成一个平角靠我们现在的经验是有点难。看电脑是怎样折的。

课件演示

师:先要找到两条边的中点,用线连接起来,再按这条线折起来。再把另外的两个角折起来就可以了。

预设2学生不会想到用折的方法。

师:我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)

5、计算,推理(看学生基础选用)

A、将一个长方形按对角线剪成两个完全一样的直角三角形。因为长方形的四个角都是直角,长方形的内角和是360°,所以剪成后的直角三角形的内角和是180°

(回家以后,同学们可以剪一个三角形折一折,我在信封里还为大家准备一个长方形彩色卡纸,如果将一个长方形剪成两个直角个三角形)

师:你发现了什么?

生:直角三角形的内角和是180°

师:你能说得更明白一些吗?

师:你能算出这个直角三角形的内角和吗?

生:90°乘4等于360°,在把360°除以2就等于180°(板书)

师:我们给这种验证方法娶个名字?(推算)

师:这个直角三角形可以用推算的方法验证,是不是所有的直角三角形都可以用这种方法推算呢?

(课件演示)

师:推算的验证方法是谁先发现的,我们也对他表示祝贺。

小结

师:这节课通过我们班同学共同合作,我们用了几种验证方法。

师:撕拼和折拼方法有什么相同点?(注意说话有说服力)

生:都是把三角形的三个角拼成一个平角。

师:为什么度量的方法会得到不同的结果?

师:可能是度量的时候有误差,如果准确测量结果就是180°(把不是180°的数据擦掉)

数学文化

师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180°(课件)帕斯卡(BlaisePascal,1623~1662),法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。

6、解疑

为什么在一个三角形中不可有两个角是直角或两个角是钝角?

生:因为三角形的内角和是180°

反思:在活动中,我没有像过去那样告诉学生怎样去做,让学生做机械的操作员,也不是随意放开,让学生盲目地做,而是把放与引有机结合,鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。

三、应用三角形的内角和解决问题

我们就用这个结论来解决问题

1.看图求出未知角的度数。

180°-55°-65°180°-(55°+65°)

=125°-65°=180°-120°

=60°=60°

刚才是已知两个内角的度数,求另一个内角的度数。如果只告诉你一个内角的度数,你会求出另外两个内角的度数吗?如果一个内角的度数也不告诉你,你能知道三个内角的度数吗?

2、请说出下列每个三角形每个角的度数。

180°÷3=60°180°-96°=84°180°-90°-40=50°

84°÷2=42°90°-40°=50°

3、判断(请大家用手语来判断)

(1)一个三角形的三个内角度数是:80°、75°、24°。

(2)大三角形比小三角形的内角和大。()

教师准备两个大小不一样角度一样的三角形

(3)两个小三角形拼成一个大三角形,大三角形的内角和是360°()

师:你能改正吗?

生:两个小的三角形拼成一个大四边形,四边形的内角和是360。

(准备两个三角形刚好可以拼成四边形)

师:小三角形的两个直角角已经不是大三角形的内角,要减去180°所以大三角形的内角和是180°

4、求四边形、五边形、六边形的内角和

下课的时间就要到了,我们来一个挑战题。你们敢接受挑战吗?

图形

名称

三角形

四边形

五边形

六边形

有几个三角形

1

内角和

180°

如果要求10边形的内角和,你会求吗?你有什么发现?

四、回顾

这节课你有什么收获?我们是怎样研究三角形的内角和是180°?

师:这节课我们分别用度量、撕拼、折拼推算个的方法对猜想进行验证,最后运用三角形内角和是180°的知识解决问题。如果给你重新选择,你会选择什么方法验证?

我们用360度除以2推算出所有直角三角形的内角和是180度,你会应用直角三角形的内角和是180度,推算这个大锐角三角形的内角和吗?(课件)

(4)、一个锐角三角形、钝角三角形分成两个直角三角形。也可以推出锐角三角形的内角和是180°

板书

三角形内角和180°

猜想实验验证

度量180°179°181°182°183°

剪拼一个平角

折拼

《三角形的内角和》教案9

教学目标

1.使学生经历自主探索三角形的内角和的过程,知道三角形的内角和是180°,能运用这一规律解决一些简单的问题。

2.使学生在观察、操作、分析、猜想、验证、合作、交流等具体活动中,提高动手操作能力和数学思考能力。

3.使学生在参与数学学习活动的过程中,获得成功的体验,感受探索数学规律的乐趣,产生喜欢数学的积极情感,培养积极与他人合作的意识。

课前准备

多媒体课件,任意三角形,剪刀,纸,三角板,量角器等。

教学过程

一、创设情境,导入新课

师:我们已经学习了三角形的分类,你知道三角形按角分可以分为哪几类吗?

生:三角形按角分可以分为钝角三角形、直角三角形、锐角三角形。

师:(出示一副三角尺)这是一副三角尺,它们都是什么形状?每块三角尺的三个角分别是多少度?

生:它们都是直角三角形,(拿起等腰的三角尺)这块三角尺三个角的度数分别是45°、45°和90°;另一块三角尺的三个角分别是30°、60°、90°。

教师指三角尺的角:这三个角都叫做三角形的内角。(板书:内角)一个三角形有几个内角?

生:一个三角形有三个内角。

师:这两个三角形三个内角的和分别是多少度?

生:都是180°。

师:一个三角形中三个内角的和称为三角形的内角和。今天我们就来研究三角形的内角和。(板书课题)

二、提出问题,猜想验证

1.猜想。

师:请同学拿出两块同样的三角尺,把这两块同样的三角尺拼成一个大的三角形,看一看拼成的三角形的内角和是多少度?

学生活动后,反馈:你拼成的三角形是什么样子的'?它的内角和是多少度?

生1:我拼成的三角形每个内角都是60°,它的内角和是180°。

生2:我拼成的三角形,三个内角分别是30°、30°、120°,它的内角和也是180°。

生3:我拼成的三角形,三个内角分别是45°、45°、90°,它的内角和也是180°。

师:从这一现象中,你能猜想一下,三角形的内角和可能存在的规律吗?

生1:我猜想三角形的内角和是180°。

生2:我猜想钝角三角形的内角和比180°大。

生3:不对。我拼的这个三角形(用两块三角尺拼成一个三个内角是30°、30°、120°的三角形)就是一个钝角三角形,但它的内角和也是180°。

师:还有不同的猜想吗?

师:研究数学问题就要像这样,既能大胆地猜想,又敢于对结论提出质疑。有人对“三角形的内角和等于180°”这一猜想提出质疑吗?你能说清楚三角形的内角和等于180°的理由吗?(没有人举手)是的,由猜想得出的结论往往是不可靠的,需要我们进一步去验证。

2.验证。

师:怎样验证“三角形的内角和等于180°”呢?请同学们先在小组里讨论讨论,可以怎样进行验证?再选择合适的材料,以小组为单位进行验证。比一比,哪个组验证的方法多,有创意。

学生分小组活动,教师参与学生的活动,并给予必要的指导。

师:哪个小组先来汇报,你们是怎样验证的?

小组1:我们小组每个人画了一个三角形,用量角器量,量出各个三角形的内角度数,再加一加,并列出了一张表格,(在实物投影仪上展示下面的表格)请大家来看一看。通过计算,我们认为三角形内角和是180°这一结论是正确的。

小组2:我们小组把三角形的三个内角拼在一起,(边说边演示)我们发现三角形的三个内角正好拼成了一个平角,所以我们也认为三角形内角和是180°这一结论是对的。

小组3:我们小组采用了折一折的方法。我们将正方形纸沿对角线对折,这样,就折成了两个大小一样的三角形。因为正方形的四个直角的和是360°,所以三角形的内角和就是它的一半,是180°。

小组4:我们小组采用的是拼一拼的方法。我们将两个完全一样的三角形拼成了一个长方形,长方形的内角和360°,所以三角形的内角和就是它的一半,是180°。

3.归纳。

师:通过刚才的活动,我们得出了什么结论?

生:三角形的内角和等于180°。

师:刚才,我们是怎样得出“三角形内角和等于180°”这个结论的?

生:我们是用先猜想再验证的方法得出结论的。

师:是的,“猜想—验证”是一种很有效的科学研究方法。有很多重大的科学发现,就是通过这一方法得到的。

4.教学“试一试”。

师:知道了三角形的内角和等于180°,就可以运用它去解决一些问题。我们来“试一试”。(出示“试一试”的题目)你能根据∠1和∠2的度数,算出∠3的度数吗?自己先算一算,再用量角器量一量,看与算出的结果是否相同。

学生汇报结果。

三、灵活运用,巩固练习

1.出示“想想做做”第1题。

师:你能算出下面每个三角形中未知角的度数吗?独立完成。

学生活动后,集体反馈。

2.出示下图。

师:用今天学习的结论还能解决生活中的一些问题呢。这里的三张纸片都被撕去了一个角,你能猜一猜,它们原来是什么三角形吗?

生1:第一个三角形是锐角三角形,因为已知的两个角的和大于90°了。

生2:第二个三角形是直角三角形,因为两个已知的角的和等于90°。

生3:第三个三角形是钝角三角形,因为已知的两个角的和只有40°,被撕去的那个角一定是钝角。

师:从这几道题中,还知道了什么?

生:在一个三角形中最多有一个直角或一个钝角。

师:大家的判断真是有理有据,算一算,每个三角形中被去撕去的角是多少度。

学生计算后校对。

3.出示“想想做做”第4题。

师:你能算出下面三角形中∠3的度数吗?

学生练习后,集体反馈。

4.出示“想想做做”第5题。

师:在一个直角三角形中,已知一个锐角的度数,你能算出另一个锐角的度数吗?先看第一个直角三角形,一个锐角是35°,另一个锐角是多少度?你是怎样算的?

生1:因为直角三角形中有一个直角,所以,用180° - 90° - 35° = 55°,∠2等于55°。

生2:因为直角三角形中有一个角是90°,所以,两个锐角的和一定是90°。可以直接用90°减去∠1的度数,得到∠2等于55°。

师:第二个直角三角形中,∠2等于多少度?

(略)

四、总结评价,延伸拓展

师:今天你的收获是什么?你还有什么不明白的地方吗?你还想学习三角形的什么知识?

学生口答。

师:学习了今天的知识,我们还能利用它去研究一些更复杂的问题呢!有信心吗?(有)我们来看这样的问题。(出示第34页思考题)这个问题请同学们课后去研究,如果谁发现了其中的规律,就把你发现的规律写在黑板上,与大家共同分享。

《三角形的内角和》教案10

教学目标:

1. 掌握三角形内角和定理及其推论;

2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

教学重点:

三角形内角和定理及其推论。

教学难点:

三角形内角和定理的证明

教学用具:

直尺、微机

教学方法:

互动式,谈话法

教学过程:

1、创设情境,自然引入

把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

问题2 你能用几何推理来论证得到的关系吗?

对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

2、设问质疑,探究尝试

(1)求证:三角形三个内角的和等于

让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

问题1 观察:三个内角拼成了一个

什么角?问题2 此实验给我们一个什么启示?

(把三角形的三个内角之和转化为一个平角)

问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的'工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

学生回答后,电脑显示图表。

(3)三角形中三个内角之和为定值

,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?

问题2 三角形一个外角与它不相邻的两个内角有何关系?

问题3 三角形一个外角与其中的一个不相邻内角有何关系?

其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

3、三角形三个内角关系的定理及推论

引导学生分析并严格书写解题过程

《三角形的内角和》教案11

教学要求:●通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。●能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。●培养学生动手动脑及分析推理能力。

教学重点:三角形的内角和是180°的规律。

教学难点:使学生理解三角形的内角和是180°这一规律。

教学用具:每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。

教学过程:

一、复习准备

1.三角形按角的不同可以分成哪几类?

2.一个平角是多少度?1个平角等于几个直角?

3.如图,已知∠1=35°,∠2=75°,求∠3的度数。

二、教学新课

1.投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)

2.三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。

3.以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?

4.指名学生汇报各组度量和计算的结果。你有什么发现?

5.大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。

6.刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?

提示学生,可以把三个内角拼成一个角,就只需测量一次了。

7.请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。

8.三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的.内角和是180°)

9.拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)

10.那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11.老师板书结论:三角形的内角和是180°。

12.一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?

13.出示教材85页做一做。让学生试做。

14.指名汇报怎样列式计算的。两种方法均可。

∠2=180°-140°-25°=15°

∠2=180°(140°+25°)=15°

三、巩固练习

1.88页第9题

这一题是不是只知道一个角的度数?另一个角是多少度,从哪看出来的?独立完成,集体订正。

直角三角形中的一个锐角还可以怎样算?

2、88页第10题

①等腰三角形有什么特点?(两底角相等)

②列式计算180°-70°-70°=40°或180°-(70°×2)=40°

2.88页第10题

①连接长方形、正方形一组对角顶点,把长方形、正方形分成两个什么图形?

②一个三角形的内角和是180°,两个三角形呢?

布置作业

图形的拼组

1小组同学合作,用三角形拼四边形

让学生明确:

不是任意两个三角形就能拼成四边形

两个完全一样的三角形能拼成四边形

两个相同的直角三角形能拼成长方形

两个相同的锐角或钝角三角形能拼成平行四边形

用三个相同的三角形拼成了梯形

2用三角形拼出美丽的图案

《三角形的内角和》教案12

教学目标:

1、通过直观操作的方法,探索并发现三角形内角和等于180。在实验活动中,体验探索的过程和方法。

2、能应用三角形内角和的性质解决一些简单问题。

教学过程:

这是我上的一节研究课,这节课过去好久了,每当我静下心来,总是能感受到学生思考的气息,我不知道用什么样的方式记录学生灵动的智慧和敏锐的思考力。每当我和别人交流的时候,我的眼睛里总是闪着光,说话的声音自然就提高了,然后就会沉浸在学生思考的快乐之中。

朋友都说我是个教育痴,我的幸福来自于学生的思考和快乐,在这个案例的描述中大家能感受到学生的思维状态给我们的课堂带来的挑战与生机。

对于三角形内角和是多少度,学生是不陌生的。因为学生有前面认识角的基础和提前预习的习惯。在了解学生学习情况的基础上,我的教学思路是:交流验证问题结论。

果然不出我所料,几乎所有的学生都能清楚地说出三角形三个内角的和是180,在这个过程中学生知道了内角这个概念,但是他们却不知道怎样才能得出三角形的内角和是180。于是,我提出研究的问题:验证三角形的内角和是180。

在学生研究前,我们简单交流了验证的方法以及合作学习的要求。这个过程主要是给学生提供研究的方法和合作时需要注意的规则,每个小组可以选择一种或者几种方法进行验证。在每个小组的成员进行分工交流后,大家开始研究了,我留给学生的时间是8分。

学生的研究开始了,一个个俨然是小科学家,积极主动,非常投入。课堂中少了一份喧闹,多了一份沉静和思考,偶尔会有一两个同学的争论声,在这轻声的辩论中,学生的思维在研究中不断地进行碰撞。

在小组合作学习的时候,我轻轻地走进每一个小组,寻找需要我帮助的小组和解决问题的地方,我发现大部分小组能很好地进行合作,在组长的带领下进行有效的小组学习和交流。其中第2小组,不知道用什么方法验证,我给他们提供了方法,进行指导后,小组学习进入正常的轨道。之后,我进入了需要我参与的第5小组,这个小组存在的问题是组长不停地指责组员做得不好,组员在组长的埋怨声中不知所措。我加入这个小组后,首先帮助他们确定验证的方法,给每个人分工,然后和他们一起用测量的方法进行验证。

现在我们一起来分享来自学生的精彩。

画一个更小的三角形

一个小组用量的方法,即用量角器分别量出三角形的三个内角的度数,把它们加起来大约是180。他们的测量结果如下:

这个小组在交流的时候,首先说明了大小钝角三角形指的是形状的大小,接着根据测量结果得出了一个结论:大的三角形内角和比180大,小的三角形内角和比180小。这个小组的意见有一个小组赞成。

话音未落,周启航站起来说,这个结论还需要验证,请再画一个更小的三角形试一试。他边说边在黑板上画了个很小的锐角三角形,大家屏住呼吸看着他测量,最后得出测量的结果是184,结论推翻。周启航得意洋洋地回到了座位,这时候,问题又出现了。

周启航,请问你为什么说结论推翻了呢?

我觉得这个结论只要举出一个不正确的例子,就可以知道它是不对的,就可以推翻。

大家点头表示同意周启航的说法,这种数学学习思路很重要,我及时和学生讨论,让他们体会在验证某一结论是否正确的时候,一个正例是不够的,但是一个反例就可以推翻一个结论。

我追问学生还有没有别的问题,学生摇头,看来学生还没有意识到这是误差造成的原因,也没有提出三角形的内角和到底是多少度的问题。也就是说,这个小组的测量结果,对学生头脑中原有的三角形内角和是180的印象没有造成任何的冲突。我想,这个问题先放一下,我期望随着研究的深入他们会自然意识到。因为教师需要给学生的思维提供一个发展的空间。

我怎么折不成呢

接下来,我们一起研究了折的方法。一个小组在实物展台上用等边三角形进行对折,折出三角形三个内角在一条直线上,验证了三角形的内角和是180,针对这个小组的交流,我提出了能不能用这种对折的方法验证所有的三角形内角和都是180呢?下面的同学用自己剪的三角形纸进行操作,教室里除了折纸的声音,非常安静。

突然,刘青小声嘀咕了一句:我怎么折不成呢,对折后它们每两个角之间都有缝隙。她的这一声引起了大家的共鸣,很多同学点头同意。

我在试教的过程中,就遇到了这个问题,这个问题很难处理,很多老师建议我省掉这一环节,或者是我在前面做一个示范就可以了,不要学生动手折,这样就不会出现问题了。我想这是学生学习和研究的好机会,老师不能为了上课而上课,回避学生容易出现的问题,于是我保留这个环节,让学生动手折一折,体验这种方法的直观性。

对我来说,这个原因很清楚,如果不能准确地找到三角形的中位线,就会很容易出现上面存在的问题。对于学生来说,先找中位线,再进行对折,验证三角形的内角和是180,却不是一件容易的事情,因为学生对中位线的概念没有准确的认识。针对学生的这个特点,我不用语言的讲解,而是结合教材中折的方法,利用多媒体课件进行直观演示。让学生在仔细观察、用心体悟的基础上,动手操作,只要学生能用自己的语言描述清楚就可以了,不要求用程式化的语言。

教材中的结论错了

再一起交流撕的方法,即把三角形三个内角撕下来拼在一起形成一个平角,从而推导出三角形的内角和是180,如下图:

学生在撕和拼的过程中,每两个角之间总是有空隙,这个问题引起了大家的争论,从而我们又回过头来看前面量和折的方法,也是有很大的误差的,这时候,班若愚提出了自己的疑问:我们用三种方法来验证三角形内角和是180,是不太准确的,我觉得书上的结论是错的。

这个疑问给学生带来了很大的震撼,对我来讲也是如此,学生虽然能理解误差是不可避免存在的,但是很难正视这个问题,所以对教科书上的结论产生了怀疑,这是非常具有挑战性的问题。

在大家的交流中,我们获得一个结论:三角形三个内角和在180左右。

学生的思路在不断地深化,他们不唯书不唯上的精神令我感动,那么怎样把学生的思维引向深入呢?我思索着。

一张长方形纸的启示

教室里有片刻的安静,怎样准确计算出三角形的内角和是180,怎样启发学生利用原有的认知去获得结论呢?当学生思维停滞的时候,教师的作用就是给一个台阶,让他们接着走下去。

我手拿一张长方形纸,提醒学生一个直角是90,这个长方形有4个直角,那么它的内角和是360,这个长方形纸可以折成 两个大小一样的直角三角形,从中可以知道什么?

片刻后,学生欢呼,立刻悟到可以计算出直角三角形的内角和是180。这个发现让学生兴奋,我提出了一个具有挑战性的问题给学生:能利用直角三角形的内角和是180这个结论,得出钝角三角形和锐角三角形的内角和是180吗?只有这样才能验证所有的三角形的内角和都是180。

这个过程对学生来说是比较艰难的,对学生的思维要求很高,对我来说也是一种挑战,我已经放弃了预先设计的让他们做一些基本练习的想法,而是放手让他们进一步探索。

放手后的精彩

学生研究5分后,居然做出来了,虽然只是个别学生,我还是很兴奋。

李佳辉:我们可以沿锐角三角形一个顶点向对边作高。这样就把一个锐角三角形变成了两个直角三角形,多了四个角,其中两个是直角,两个是锐角,两个锐角其实就是原来三角形的一个内角,这样就等于多了两个直角,所以这个锐角三角形的内角和就是:180+180-90-90=180。

李佳辉在展台前边算边讲的时候,学生不断地点头,表示理解,全班学生出现了恍然大悟状。

老师,我们知道了,钝角三角形也是如此计算的。

验证所有三角形的内角和是180,只要验证三类三角形的内角和就行了。

老师,书上的结论是对的。

老师,不知道还有没有其他的方法?

老师,四边形的内角和是多少度?

在学生的欢呼声中,我明白学生真的懂了,不需要我再说什么了。

聆听着学生提出的问题,看着他们把问题存在问题银行里,满脸洋溢着的快乐和幸福,我想他们收获的不仅仅是一个结论,更重要的是一种数学思想和方法,是对数学的一种热爱。

最想倾诉的几个问题

1、学生小组合作学习的时候,教师需要干什么?

经常会看到,学生小组合作时,教师会边走边不停地提示学生干什么,怎么干。其实,这个时候教师的提示对学生而言,是没有任何价值的,不仅影响学生的'思路,还会干扰学生的学习状态。

我想,这个时候教师需要做的是快速浏览每个小组,看看每个小组的问题所在,帮助每个小组排除学习的障碍,然后找到最需要你帮助的小组,参与到这个小组的学习中,了解学生的状态,为后面的交流做好准备。因为在几分的交流时间内,教师不可能每个小组都照顾到,但是一定要做到心中有数,使每个小组有解决问题的思路。

2、当学生的认知和原有的经验发生了冲突,怎么办?

这个问题很好回答,在新课程理念下,就是让学生去研究和探索,然后获得结论。但是,在实际的课堂情境下,会有很多情况出现,如果我这样做了,我的教学任务就完不成了;如果我这样做了,我可能会偏离我的教学设计,学生的问题可能会让我不知所措等。

其实,在课堂中,这是进行教学的最好契机,抓住学生最核心的问题,重组我们的课堂思路,留给学生思考的空间,让学生去探讨问题。我想,课堂教学是为学生的学习和成长服务的,教师要勇于放手,给学生更大的思维空间。比如,在验证三角形的内角和是180的时候,学生一直没有想到要验证所有的三角形内角和是 180,只要验证按角分的三类就行了。教学时,我一直想提醒大家,但是总是不甘心,希望学生能自己去体悟,最后学生悟的不错。我想这样的学习对学生来说是有价值的。

3、要重视学生的反思和交流。

教师教给学生的,学生不一定能听得懂。但是让学生及时地对自己的学习过程进行反思,并和同伴交流自己的思路,这个过程对学生来说是个再思考的过程,教师能从中感受到学生学习的状态和感受。

在整理案例的时候,我试图从两方面去体现这一点。一方面是让学生不停地提出问题的过程,其实就是在不断深入学习的过程中,学生反思自己的思考过程,又提出新的问题;另一方面是学生之间的交流,在对话中体现出学生自己的思路和经验,这一点体现得还不够,我的笔不能把学生的交流充分表达出来,不能不说是一种遗憾。

本案例很好地展现了教师在课堂中是如何处理课堂的预设和生成的。这是本案例的最大一个亮点。

课堂上经常会出现一些教师意料之外的事情。比如说,本案例中,在学生对书上的结论三角形内角和是180提出质疑的时候,教师并没有按照原先的课堂预设,而是及时对课堂进行重组,让学生就此问题展开讨论,教师适时进行引导,帮助学生获得最后的结论。当然,这是由教师自身数学素养较深所决定的。其实,课堂教学中生成的一些火花源若能被教师捕捉到,将是进行教学的最好契机。这些都是学生思维火花的闪现,教师应及时地予以关注。

《三角形的内角和》教案13

尊敬的各位评委老师:

大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:

一、教材分析

“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。

二、教学目标

1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。

2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。

3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。

三、教学重难点

教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。

教学难点:采用多种途径验证三角形的内角和是180°。

四、学情分析

通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。

五、教学法分析

本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。领悟转化思想在解决问题中的应用。

六、课前准备

1、教师准备:多媒体课件、三角形教具。

2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。

七、教学过程

(一)、创设情境,激趣导入

导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。

课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。板书课题。

(二)、自主探究、合作交流

1、探索特殊三角形内角和

拿出自己的一副三角板,同桌之间互相说一说各个角的度数。

三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°

90°+45°+45°=180°

从刚才两个三角形内角和的计算中,你发现了什么?

2、探索一般三角形的内角和

一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。

3、汇报交流

请小组代表汇报方法。

1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)

没有统一的结果,有没有其他方法?

2)剪―拼:把三角形的三个内角剪下来拼在一起,成为一个平角,利用平角是180°这一特点,得出结论。(学生尝试验证)

3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个平角。所以得出三角形的内角和是180°。(学生尝试验证)

4)教师课件验证结果。

请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?

学生回答后教师板书:三角形的内角和是180°

为什么有的.小组用测量的方法不能得到180°?(误差)

4、验证深化

质疑:大小不同的三角形,它们的内角和会是一样吗?(一样)

谁能说一说不能画出有两个直角的三角形的原因?

(三)、应用规律,解决问题:

揭示规律后,学生要掌握知识,就要通过解答实际问题。

1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。

第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)

第二关,提高练习,

①已知等腰三角形的底角,求顶角。②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。

让学生灵活应用隐含条件来解决问题,进一步提高能力。

2、小组合作练习,完成相应做一做。

(四)、课堂总结,效果检测。

一节成功的好课要有一个好的开头,更要有一个完美的结尾,数学是使人变聪明的学科,通过这节课的学习,你收获了什么?学生们畅所欲言。接下来老师要检查大家的学习效果,学生完成答题卡,组长评判,集体汇报。

(五)作业课下继续探究三角形,看你有什么新发现。

八、板书设计

通过这样的设计,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,使学生在自主中学习,在探究中发现,在发现中成长。以上便是我对《三角形的内角和》这一堂课的说课,谢谢大家!

《三角形的内角和》教案14

探索三角形内角和的度数以及已知两个角度数求第三个角度数。

教学目标:

1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?

2、已知三角形两个角的度数,会求第三个角的度数。

3、培养学生动手实践,动脑思考的习惯。

教学重点:

了解三角形三个内角的度数。

教学难点:

理解三角形三个内角大小的关系。

教具学具准备:

课件三角形若干量角器剪刀。

教材与学生

教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。

学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。

教学过程:

一、呈现真实状态。

师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?

学生各抒己见。

二、提出问题:

师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。

(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。

(2)组内交流。

(3)全班交流。由小组汇报测出结果(三角形内角和)

(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。

三。自主探索、研究问题、归纳总结:

师引导提问:三角形的内角和会不会就是180呢?

(一)组内探索:

(1)以小组为单位探索更好的办法。

(2)以小组为单位边展示边汇报探索的过程与发现的结果。

(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)

(3)把你没有想到的方法动手做一次

(使学生更直观地理解三角形的内角和是180的证明过程)

(4)根据学生的反馈情况教师进行操作演示。

(二)教师演示

撕拼法1。教师取出三角形教具,把三个角撕下来,拼在一起,如图所示

2.师:这三个内角放在一起你有什么发现?

生:发现三个内角拼成一个平角。

师:平角是多少度呢?说明什么?

生:180?说明三个内角和刚好等于180。

师:这种方法是不是适用各种三角形呢?

3。学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?

进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。

折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。

你们也来试一试好吗?

在学生完成这一实践后肯定这一发现

三角形三个内角和等于180?

:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率

四。巩固练习,知识升华。

1.完成课本第28页的“试一试”第三题。

2.想一想:钝角三角形最多有几个钝角?为什么?

锐角三角形中的两个内角和能小于90吗?

3.有一个四边形,你能不用量角器而算出它的四个内角和吗?

试一试,看谁算得快。

师:谁来说说自己的计算过程?

角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?

生:它们的内角和都是 180 度。

师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是 180 度呢?

[回答可能有二]:

(一种全部说是:)

师:请问,你们是怎么想的,为什么这么认为?

生: ……

师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

(一种有一部分同学说是,有一部分同学说不是:)

师:看来,大家的意见不一致, 想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

(二)动手操作,探究新知

师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?

生:我准备用量的方法。

师:然后呢?

生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?

师:说的真不错,还有没有其它的方法?

生:我是把三角形的三个角剪下来,拼在一起( 师鼓励: 你的想法很有创意, 等一会儿用你的行动来验证你的猜想吧!)

生:……

(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)

师: 好啦, 老师相信咱们班的同学个个都是小数学家, 一定能找出更多的方法的, 请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!

开始吧!(学生研究,师巡回指导)预设时间:5 分钟

师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?

师:请你告诉大家,你是怎么研究的,最后发现了什么结果?

( 预设: 如果第一类同学说的是量的方法)

师:你是用什么来研究的?

生:量角器。

师: 那请你说一下你度量的结果好吗?

( 生汇报度量结果)

师: 刚才有的同学测量的结果是180 度,有的同学测量的结果是179 度,有的同学测量的结果是182 度,各不相同,但是这些结果都比较接近于多少?

生:180 度。

师:那到底三角形的内角和是不是180 度呢?还有哪位同学有其它的方法进行验证吗?

生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。

师:他演示的真好,你们听明白了吗? 李 老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击 FLASH :把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)

师:好极了,刚才这个小组的同学用拼的方法得到XX 三角形的内角和是180 度,你们还有别的方法吗?

生:我们还用了折的方法(生介绍方法)

师: 你们听明白了吗? 李老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击 FLASH :先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)

生:是个平角。180 度。

师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?

师:请这位同学来说给大家听听吧!

生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360 度,那么一个三角形的内角和就是180 度。

师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是 180 度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?

生 1 :量的不准。

生 2 :有的量角器有误差。

师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是 180 度。

师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?

生:三角形的内角和是180 度。(师板书)

师:把你们伟大的发现读一读吧!

(三)拓展应用,深化认识

师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生: 180 度)右边呢(生:也是 180 度)

师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?

(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是 180 度。)

师:刚才我们在讨论学习三角形知识的`时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)

师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!

师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?

师:好,请看大屏幕!

(出示基础练习)在一个三角形中角一是 140 度,角三是 25 度,求角二的度数。

生答后,师提问:你是怎样想的?

生陈述后,师鼓励:说的真好!

出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。

(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是 70 度,它的顶角是多少度?

师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

(预设:师:根据三角形的内角和是180 度,你能求出下面四边形、五边形、六边形的内角和吗?

师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?

师: 同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?

师:嗯,真不错, 你们知道吗? 三角形的内角和等于 180 度是 法国著名的数学家帕斯卡 在 1635 年他 12 岁时独自发现的, 今天凭着同学们的聪明智慧也研究出了三角形的内角和是180 度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!

师:好,下课!同学们再见!

《三角形的内角和》教案15

教学目标:

知识与技能目标:

1、会用平行线的性质与平角的定义证明三角形内角和等于180o;

2、能用三角形内角和等于180o进行角度计算和简单推理,并初步学会利用辅助线解决问题,体会转化思想在解决问题中的应用。

过程与方法目标:

1、通过拼图实验、合作交流、推理论证的过程,体现“做中学”,发展学生的合情推理能力和逻辑思维能力,初步获得科学研究的体验;

2、掌握三角形内角和定理,并初步学会利用辅助线证题,同时培养学生观察、猜想和论证能力。

情感态度与价值观目标:

通过操作、交流、探究、表述、推理等活动,培养学生的合作精神,体会数学知识内在的联系与严谨性,鼓励学生大胆提出疑问,培养学生良好的学习习惯。

重点:

三角形内角和定理的'证明及其简单的应用;

难点:

在三角形内角和定理的证明过程中如何添加辅助线。

教学流程:

一、情境引入

内角三兄弟之争

在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起了……”“为什么?”老二很纳闷。

同学们,你们知道其中的道理吗?

目的:通过对话激发学生的求知欲;让学生通过小组讨论:其中的道理。

《7.5三角形的内角和定理》知识点

学习目标:

1、掌握三角形外角的两条性质;

2、进一步熟悉和掌握证明的步骤、格式、方法、技巧。

3、灵活运用三角形的外角和两条性质解决相关问题。

4、三角形内角和定理

三角形内角和定理:三角形的内角和等于180°。

《7.5三角形内角和定理》同步测试含答案解析

一、选择题

1、若一个三角形三个内角度数的比为2:7:4,那么这个三角形是()

A、直角三角形

B、锐角三角形

C、钝角三角形

D、等边三角形

【考点】三角形内角和定理。

【分析】根据三角形内角和定理可分别求得每个角的度数,从而根据最大角的度数确定其形状。

【解答】解:依题意,设三角形的三个内角分别为:2x,7x,4x,∴2x+7x+4x=180°,∴7x≈97°,∴这个三角形是钝角三角形。

故选:C。

【点评】此题主要考查学生对三角形内角和定理及三角形形状的判断的综合运用。

2、已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=∠A,则此三角形()

A、一定有一个内角为45°

B、一定有一个内角为60°

C、一定是直角三角形

D、一定是钝角三角形

【考点】三角形内角和定理。

【分析】由三角形内角和定理和已知条件得出∠A=90°,即可得出结论。

【解答】解:∵∠A+∠B+∠C=180°,∠B+∠C=∠A,∴2∠A=180°,∴∠A=90°,即△ABC一定是直角三角形;

故选:C。

【点评】本题考查了三角形内角和定理、直角三角形的判定方法;熟练掌握三角形内角和定理,并能进行推理论证是解决问题的关键。

三角形内角和教案

教学内容:课本第67页。

教学目标:通过操作活动探索发现和验证“三角形的内角和是180度”的规律。

通过量一量、剪一剪、拼一拼,培养学生合作能力、动手实践能力和运用新知识解决问题的能力。

使学生体验数学学习的乐趣,激发学生主动学习数学的兴趣。教学重点:探索发现和验证三角形内角和是180度。教学难点:对不同探究方法的指导和学生对规律的应用。教学准备:课件,三角形,量角器。教学设计:

一、复习旧知,引出课题。谁能说说它们分别是什么三角形?

预设:锐角三角形,直角三角形,钝角三角形。

请一位同学分别标出这些三角形的角,其余的同学在自己准备的三角形中标角。独立完成,集体订正。

其实这些角是三角形的内角,谁能大胆猜一猜三角形内角和是多少度? 预设:360°,180°,90°…….今天我们一起来探究三角形内角和。板书课题:三角形内角和

二、探究新知

1、小组合作。

课件展示:活动要求(1)4人一组,每人任选一个三角形用你的方法验证三角形内角和。

(2)小组交流各自的验证方法和验证结果,评选出较好的验证方法并说明理由。(3)每组选派一名同学汇报。

预设:我们组选用的是量角法,依次测量出三角形内角和是170°,185°,180°… 哪一组和这一组验证方法不同?

预设:我们是把三角形的3个角剪下来拼在一起发现得到一个平角因此得知三角形内角和是180°。

你能把你拼的过程给大家说详细一些吗?

预设:选出一个角,再选出一个角使得它的一边与前一个角的一边重合,剩下的角的一边和前一个角的另一条边重合,此时拼出一个平角因此三角形内角和是180°。

我发现你选用的是锐角三角形,那直角三角形,钝角三角形的内角和是怎样的?请同学们尝试用这种方法验证三角形内角和。

预设:直角三角形内角和是180°,钝角三角形内角和是180°。总结:通过撕(剪)拼法,我们验证任意三角形内角和是180°。

追问:同学们我有一个困惑刚才有部分同学通过测量角计算内角和为什么不是180°,问题出在哪里?

预设:测量角的方法不正确。预设:三角形做得不规范。

预设:测量过程中存在误差,导致不精确。

总结:撕(剪)拼法在验证三角形内角和精确性上优胜于量角法。还有没有同学想出不一样的验证方法呢?

预设1:课件展示折拼法,请一位同学说出具体的操作过程。剩下的同学仿照这种方法任选一个三角形验证三角形内角和。

预设2:同学上台展示操作过程,其余同学观察后并自行操作。

总结:

折拼法依然能验证任意三角形内角和是180°。看来解决数学问题的方法不是唯一的,希望同学们在今后的学习当中能多思,多想充分挖掘自己的聪明才智。

三、知识运用,巩固练习。

请同学们独立完成下题。(每题10分共100分。)

1、如图∠1=140°,∠3=25°,∠2=(°)。

2、一个直角三角形,一个锐角是50°,另一个锐角是(°)。

3、一个顶角是50°的等腰三角形的底角是(°)。

4、等边三角形每个角是(°)。

5、等腰直角三角形的一个底角是(°)。

6、在一个三角形中,∠A=90°,∠B+∠C=(°)。

7、一个三角形中,有一个角是65°,另外的两个角可能是(°)和(°)。

8、某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃,那么最省事的办法是带()去。为什么?

②③①

9、把下面这个三角形沿虚线剪成两个三角形,每个小三角形的内角和是多少度?

10、根据三角形内角和是 180 °。你能求出下面四边形的内角和吗?

四、课后小结

请你谈谈本节课的收获。

五、板书设计

任意三角形内角和是180°。

下载《三角形的内角和》教案word格式文档
下载《三角形的内角和》教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    三角形内角和教案

    三角形的内角和 教学设计 北坊小学 许燕 一、教学内容:人教版义务教育课程标准实验教科书四年级下册第五单元“三角形的内角和”。 二、教学目标: 1、让学生亲自动手,通过量、......

    三角形内角和教案

    三角形内角和 ----- 08数本 彭春玲 【教学内容】:人教版九年义务教育小学数学四年级下册第95页内容。 【教学目标】: 1、掌握三角形内角和定理,并能进行简单的运用。 2、在探......

    三角形内角和教案

    三角形内角和教学设计 一、教材分析: 教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于......

    三角形内角和教案

    三角形内角和教学设计 讲课人:闫转 一、 教学内容:三角形内角和(教材85页的例五) 二、 教学目标: 1、 2、 3、 知道三角形的内角和是180°。 正确计算三角形中某一个角的度数。......

    三角形的内角和教案

    课题:三角形的内角和 教学目标: 1、认识三角形的内角和是180度这一特性; 2、运用三角形的内角和根据已知角的度数求未知角的度数; 3、通过量、拼、折等方法,培养学生的合作能力、......

    三角形的内角和教案

    《三角形内角和》 教学内容: 人教版义务教育课程标准实验教科书四年级上册第五单元,教材第67页的例6。 教学目标: 1.通过数学探究活动使学生发现并验证三角形的内角和等于180度......

    三角形的内角和教案

    三角形的内角和 一、教学目标: (1)知识与技能: 掌握多边形的内角和与外角和的计算方法,并能用其解决一些简单的问题;通过多边形内角和计算公式的推导,体验转化和类比的数学思想方法......

    三角形的内角和教案

    三角形的内角和教案程 昆 教学内容:人教版义务教育课程标准实验教科书小学《数学》四年级下册第五单元《三角形内角和》 教学目标: 1. 使学生经历自主探索三角形的内角和的......