一元一次不等式试题(大全5篇)

时间:2019-05-13 21:43:00下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《一元一次不等式试题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《一元一次不等式试题》。

第一篇:一元一次不等式试题

10.(2012湖北随州4分)若不等式组xb<0

x+a>0的解集为2

A.-2,3B.2,-3C.3,-2D.-3,2【答案】A。

【考点】解一元一次不等式组

【分析】∵解不等式x-b<0得:x<b,解不等式x+a>0得:x>-a,∴不等式组的解集是:-a<x<b,∵不等式组xb<0

x+a>0解集为2<x<3,∴-a=2,b=3,即a=-2,b=3。故选A。

11.(2012湖北孝感3分)若关于x的一元一次不等式组

范围是【】 xa>012x>x2无解,则a的取值

A.a≥1B.a>1C.a≤-1D.a<-

1【答案】A。

【考点】解一元一次不等式组。

【分析】解出两个不等式,再根据“大大小小找不到”的原则解答即可:

xa>0①,由①得:x>a,由②得:x<1。12x>x2②

∵不等式组无解,∴a≥1。故选A。

12.(2012湖北襄阳3分)若不等式组1+x>a

2x40有解,则a的取值范围是【】

A.a≤3B.a<3C.a<2D.a≤2

【答案】B。

【考点】解一元一次不等式组。

【分析】先求出不等式的解集,再不等式组有解根据“同大取大,同小取小,大小小大中间找,大大小小解不了(无解)”即可得到关于a的不等式,求出a的取值范围即可:

由1+x>a得,x>a﹣1;由2x40得,x≤2。

∵此不等式组有解,∴a﹣1<2,解得a<3。故选B。

20.(2012四川凉山4分)设a、b、c表示三种不同物体的质量,用天枰称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是【】

A.cbaB.bcaC.cabD.bac【答案】A。

30.(2012山东淄博4分)若ab,则下列不等式不一定成立的是【】

(A)ambm

(B)a(m21)b(m21)(C)

a2

b

2(D)a2b2

x24x32的解集为x<2,则a的取值范9.(2012湖北鄂州3分)若关于x的不等式组

xa02

围是▲.12.(2012四川广安3分)不等式2x+9≥13.(2012四川达州3分)若关于x、y的二元一次方程组

2xy3k1x2y

2的解满足x+y>1,则k的取值范围是▲.3(x+2)的正整数解是14.(2012四川绵阳4分)如果关于x的不等式组:

3x-a02x-b0,的整数解仅有1,2,那么

适合这个不等式组的整数a,b组成的有序数对(a,b)共有▲个。18.(2012广东河源6分)解不等式组:解不等式组:

x+3>02x1+33x

x+3>0,2(x-1)+3≥3x.,并判断﹣

1这两个数是否为该不等式组的解.

3.(2012年四川省德阳市,第22题)今年南方某地发生特大洪灾,政府为了尽快搭建板房

安置灾民,给某厂下达了生产A种板材48000㎡和B种板材24000㎡的任务.⑴如果该厂安排210人生产这两种材,每人每天能生产A种板材60㎡或B种板材40㎡,请问:应分别安排多少人生产A种板材和B种板材,才能确保同时完成各自的生产任务? ⑵某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知 建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:

【解析】(1)设有x人 生产A种板材,则有(210-x)人生产B板材,根据题意列方程4800060x

2400040(210x)

即可求得结果.

(2)设生产甲型板房m间,根据生产A种板材48000㎡和B种板材24000㎡列方程组

108m156(400m)48000

求出m的取值范围.再设400间板房能居住的人数为W,

61m51(400m)24000

W=12m+10(400-m),由一次函数在自变量的取值范围内,函数存在最值即可求出最值.

4.(2012浙江省温州市,23,12分)温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各

地的运费如图所示。设安排x件产品运往A地。

若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?(2)若总运费为5800元,求n的最小值。

【解析】数量关系:①运往C地的件数是运往A地件数的2倍;件数和为200;②运往B地的件数不多于运往C地的件数;③总运费不超过4000元 【答案】解:(1)①根据信息填表: 2003x2x②由题意得,160056x4000

解得40x

4267

∵x为整数,∴x=40或41或42,∴有三种方案,分别为:

(i)A地40件,B地80件,C地80件;(ii)A地41件,B地77件,C地82件;(iii)A地42件,B地74件,C地84件.(2)由题意得30x8n3x50x5800,整理得n7257x.

∵n3x0∴x72.5.

又∵x0,∴0x72.5且x为整数.

∵n随x的增大而减少,∴当x=72时,n有最小值为221. 【点评】不等式问题中要把握一些关键词:如“不多于” “不超过”.

10.(2012深圳市 21,8分)“

生活方式。某家电商场计划用11.8万元购进节能型电 视机、洗衣机和空调共40台。三种家电的进价及售价如右表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机数量的三倍,请问商场有哪几种进货方案?(2)在“2012年消费促进月”促销活动期间,商家针对这三种节能型产品推出“现金购满1000元送50元家电消费券一张、多买多送”的活动,在(1)的条件下,若三种电器在活动期间全部售出,商家预计最多送出消费券多少张?

【解析】:第(1)问,首先,要读懂表格,其次,要用未知数表示三种家电的数量,设购进

电视机的数量为x台,则洗衣机的数量为x台,空调的数量为(402x)台;

再次,根据题目中的“计划用11.8万元购进节能型电视机、洗衣机和空调共40台”,有5000x2000x2400(402x)≤118000,“购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机数量的三倍”有402x≤3x,联立求解即可;第(2)问,建立一次函数模型,求出最多的销售总额方案,却可求最多出送出消费券多少张。

【解答】:(1)解:设购进电视机的数量为x台,则洗衣机的数量为x台,空调的数量为

(402x)台,依题意:

402x≤3x

解之得:8≤x≤10 

5000x2000x2400(402x)≤118000

由于x为正整数,故x8910,因此有三种方案:

① 电视机8台,洗衣机8台,空调24台;

② 电视机9台,洗衣机9台,空调22台; ③ 电视机10台,洗衣机10台,空调20台

(2)设售价总金额为y元,依题意有:

y5500x2160x2700(402x)2260x108000 2260>0,故y随x的增大而增大

由于:8≤x≤10,当x10,y有最大值226010108000130600

由于满1000元才能送出一张消费券,故送出消费券的张数为:130000

130(张)

1000

答:最多送出送出消费券的张数为130张

13(河南省信阳市二中)(10分)2012年春节期间,内蒙遭遇强冷空气,某些地区温度降至零下40℃以下,对居民的生活造成严重影响.某火车客运站接到紧急通知,需将甲种救灾物资2230吨,乙种救灾物资1450吨运往灾区.火车客运站现组织了一列挂有A、B两种不同规格的货车厢70节运送这批救灾物资.已知一节A型货车厢可装35吨甲种救灾物资和15吨乙种救灾物资,运费为0.6万元;一节B型货车厢可装25吨甲种救灾物资和35吨乙种救灾物资,运费为0.9万元.设运送这批物资的总运费为ω万元,用A型货车厢的节数为x节.(1)用含x的代数式表示ω;(2)有几种运输方案;

(3)采用哪种方案总运费最少,总运费最少是多少万元?

解:(1)ω=0.6x+(70-x)×0.9=63-0.3x. ………………………………2分

35x25(70x)2230,(2)根据题意,可得

15x35(70x)1450.解得48≤x≤50. ………………………………………………………5分∵x为正整数,∴x取48,49,50.

∴有三种运输方案.………………………………………………………………6分(3)x取48、49、50时,ω= 63-0.3x,且k=-0.3<0.

∴ω随x的增大而减少,故当x=50时ω最少.∴当A型货车厢为50节,B型货车厢为20节时,所需总运费最少.

最少总运费为ω=63-0.3×50=48(万元). …………………………………10分

第二篇:一元一次不等式说课稿

《一元一次不等式》说课稿

说课人:袁宗涛

各位评委老师:

大家好!

我是九集镇龙门中学老师,今天我展示课的内容是人教版数学七年级下册第九章第二节的第一课时《一元一次不等式》。下面我就分别从教材、教法、学法、教学过程设计四个方面来说明我对这节课的教学设想。

一、教材分析

<一> 教材的地位和作用

在前面已学习了一元一次方程的相关知识和不等式的性质,本节课主要是通过类比一元一次方程的解法总结归纳出一元一次不等式的解法,并熟练运用不等式的性质解一元一次不等式。只有学生掌握好了一元一次不等式的解法,才能更好学习后面的不等式组及不等式(组)的应用。同时,学习本节课时涉及的类比思想、化归思想和数形结合思想对后续学习也是十分有益的,所以本课的教学不能仅仅停留在知识的探索上,更要注重数学方法和数学思想的渗透和传播。日常生产生活中不等关系的情况常常发生,所以不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。可见,本节课内容在本章乃至整个初中数学中都具有承上启下的作用,处于一个基础性、工具性的地位,不仅是对已有知识的运用和深化,还为后续继学习打下基础。

<二>教学目标

根据《课标》要求和上述教材分析,结合学生的实际情况,我制定了以下教学目标: 知识与技能

1.了解一元一次不等式.2.利用不等式性质解一元一次不等式,并通过解一元一次方程的步骤来探索解一元一次不等式的一般步骤,体会“比较”和“转化”的数学学习方法.3.用数轴表示解集,启发学生对数形结合思想的进一步理解和掌握.过程与方法

1.通过类比一元一次方程的解法,引导启发学生掌握一元一次不等式的解法.2.通过练习巩固,能正确应用不等式性质解一元一次不等式.情感、态度与价值观

3.在教学过程中引导学生体会数学中“比较”和“转化”的思想方法.4.通过本节的学习让学生体会不等式解集的奇异的数学美,激发学生学习数学的兴趣.<三>教学重难点和教学关键

根据上面的教材分析和《课标》要求,确定本节课的教学重点是:初步掌握一元一次不等式的解法;掌握解一元一次不等式的一般步骤,并能用数轴表示解集.为突出重点,本节课让学生积极参与、自主探索并掌握一元一次不等式的解法。根据教材分析和学生对不等式的性质3掌握不好的实际情况,特确定教学难点是:不等号方向改变问题。为突破难点,教学关键是运用类比的方法,比较解不等式和解方程不同的地方,并加强“去分母”和“化系数为1”这两个步骤的训练。

二、说教法

为创设宽松民主的学习气氛,激发学生思维的主动性,顺利完成教学任务、达到教学目标,坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则。鉴于教材特点以及学生的年龄特点、心理特征和认知水平,主要采用动手操作、观察比较,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。给学生充分的自主探索时间,引导学生与已有知识联系,减少学生获取新知识的难度。通过教师的引导,启发调动学生的积极性,组织学生参与“探究——讨论——交流——总结” 的学习活动过程,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来。同时,还充分利用多媒体教学,提高课堂实效,让每个学生动手、动口、动眼、动脑,培养学生多方面的能力。

三、说学法

本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、类比、归纳的思想方法。在类比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上采用自主探究和合作交流的方法组织教学,鼓励学生积极参与其中,使学生真正成为教学的主体,体验参与的乐趣和成功的喜悦。

四、说教学过程

1.温故知新 铺垫新知

在这节课开始之初先引领学生复习不等式的三条基本性质,不等式的性质是对不等式进行变形的依据,而本课的重点就是要掌握一元一次不等式的解法,所以复习旧知是为学习新知做准备。

2.创设情境 导入新知

课件出示一些简单的不等式,要求学生观察分析,讨论这些不等式的共同特点。学生归纳总结出共同特点后,启发学生类比一元一次方程给这些不等式取名字。通过观察,猜想,设置悬念,激发学生强烈的求知欲,培养学生类比推理,归纳总结,发展学生分析问题,解决问题的能力。

3.类比推理 深化新知

在学生识别了什么是一元一次不等式后,出示一元一次方程;并解此方程,让学生回忆起解一元一次方程的一般步骤,为后续解一元一次不等式的一般步骤的形成做铺垫。解完方程在老师的引导下让学生类比归纳:解一元一次方程,就是把一元一次方程逐步变形为x=a(a为常数)的形式,解一元一次不等式,就是把不等式逐步变形为x﹥a(x≥a)、x﹤a(x≤a)的形式。继该程序之后,出示较简单的一元一次方程和一元一次不等式,通过类比,思考并比较解不等式与解方程,寻找联系和区别。尝试用解一元一次方程的解法来解这个不等式.在讲解时要求学生说出每一步的依据,让学生熟练掌握一般一元一次不等式的解法的同时理解一元一次不等式解法的真谛,同时为后面解复杂一元一次不等式做铺垫.例题讲解设计到的不等式相对于前面的不等式而言较为复杂,故让学生先独立思考,后用化归的思想将不等式化为一般不等式来解.在讲解的时候先给学生分析清楚,如何用划归的思想将不等式化为一般的一元一次不等式然后再求解。此环节在从简单到复杂,类比一元一次方程的解法,运用不等式的性质,顺利完成了解不等式,对总结解一元一次不等式的一般步骤起了水到渠成的作用。熟练掌握一元一次不等式的解法后,让学生运用上节课所学的知识在数轴上将其解集表示出来,利用数形结合,使解集更加形象直观.此环节的设置培养学生团结合作,类比推理的能力,让学生养成勤动笔,勤动脑的习惯.积累学生分析问题,解决问题的能力。为了突破难点,让学生在解一元一次不等式时,心中有数,避免出错,总结完一元一次不等式的一般步骤后,提出了在每一步中应注意的细节问题,强调“去分母”和“将系数化为1”时结合性质2、3,考虑不等号的方向是否要改变。

4.运用新知 形成能力

为了巩固本节课的教学效果,反馈学生学习的情况,本着学以致用的原则,设置了两道解不等式的练习题,让学生熟练掌握刚学的知识.。

5.回顾反思 知识梳理

引导学生回顾本节课内容,让学生自己说出本节课得到的收获,体会教学方法,把知识纳入系统。帮助学生理解所学知识,提高学生认知水平,从而培养学生的归纳总结能力,语言表达能力,自我评价能力。

6.课外作业 知识延伸

在学习了本节课的知识内容后,为了让每一个学生及时巩固这一节的内容,同时检测本节课教学成效,也为下一课时做准备,布置了两道作业题。这样,既系统化了学生的知识,加深了学生对本节课知识的印象,又使教师在课后辅导时,层次分明,有的放矢。

五、课后反思:

本节课的教学过程中,本着重视过程,主动建构,突出应用的原则,从学生已有认知出发,让学生主动地建构其新的认知结构,提升学生的智能,让学生形成良好的思维习惯.很珍惜这次难得的学习机会,恳请大家对我的教学提出宝贵意见,我的说课到此结束,敬请各位评委老师批评指正。谢谢大家!

第三篇:一元一次不等式教案

教学目标

1、能够根据实际问题中的数量关系,列一元一次不等式(组)解决实际问题.

2、通过例题教学,学生能够学会从数学的角度认识问题,理解问题,提出问题,?? 学会从实际问题中抽象出数学模型.

3、能够认识数学与人类生活的密切联系,培养学生应用所学数学知识解决实际问题的意识.

教学重点?? 能够根据实际问题中的数量关系,列出一元一次不等式(组)解决 实际问题

教学难点?? 审题,根据实际问题列出不等式.

例题?? 甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费。顾客到哪家商场购物花费少??

解:设累计购物x元,根据题意得

(1)当0 < x≤50时,到甲、乙两商场购物花费一样;

(2)当50< x≤100时,到乙商场购物花费少;

(3)当x > 100时,到甲商场的花费为100+0.9(x-100),到乙商场的花费为50+0.95(x-50)则

50+0.95(x-50)> 100+0.9(x-100),解之得x >150

50+0.95(x-50)< 100+0.9(x-100),解之得x < 150

50+0.95(x-50)= 100+0.9(x-100),?? 解之得x = 150

答:当0 < x≤50时,到甲、乙两商场购物花费一样;

当50< x≤100时,到乙商场购物花费少;当x>150时,到甲商场购物花费少;当100 < x <150时,到乙商场购物花费少;当x=150时,到甲、乙两商场购物花费一样。

变式练习? 学校为解决部分学生的午餐问题,联系了两家快餐公司,两家公司的报价、质量和服务承诺都相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费。问:选择哪家公司较好?

解:设购买午餐x份,每份报价为“1”,根据题意得

0.9x > 100+0.8(x-100),解之得x >200

0.9x < 100+0.8(x-100),解之得x < 200

0.9x = 100+0.8(x-100),解之得x = 200

答:当x>200时,选乙公司较好;当0 < x <200时,选甲公司较好;当x=200时,两公司实际收费相同。

作业

1、某商店5月1号举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠。已知小敏5月1日前不是该商店的会员。请帮小敏算一算,采用哪种方案更合算?

2、某单位计划10月份组织员工到杭州旅游,人数估计在10~25之间。甲乙两旅行社的服务质量相同,且组织到杭州旅游的价格都是每人200元。该单位联系时,甲旅行社表示可以给予每位旅客七五折优惠;乙旅行社表示可先免去一带队领导的旅游费用,其余游客八折优惠。问该单位怎样选择,可使其支付的旅游总费用较少?

第四篇:一元一次不等式教案

一元一次不等式教学设计

教学目标: 1 掌握一元一次不等式的解法,能熟练的解一元一次不等式 在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。教学重点: 掌握解一元一次不等式的步骤. 教学难点: 必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.教学过程:

一、问题导入,提出目标

1导入:请同学们思考两个问题: 一是不等式的基本性质有哪些?

二是什么是一元一次方程?并举出两个例子。

解一元一次方程:1-2x =x + 3,目的是为了与解例1进行类比,找到它们的联系与区别。

2、出示学习目标,检验学生预习

(1)能说出一元一次不等式的定义。

(2)会解答一元一次不等式,并能把解集在数轴上表示出来。

二、指导自学,小组合作

请同学们根据导学提纲进行自学,先个人思考,后小组合作学习。(导学提纲内容如下)

1、观察下列不等式,说一说这些不等式有哪些共同特点?

(1)3x-2.5≥12(2)x≤6.75(3)x<4(4)5-3x>14

什么叫做一元一次不等式。

2、(1)自己举出2或3个一元一次不等式的例子,小组交流。(2)下列不等式中,哪些是一元一次不等式? 3x+2>x–1 5x+3<0 +3<5x–1(4)x(x–1)<2x

3、通过自学例1:

解一元一次不等式,并将解集在数轴上表示出来:3-x < 2x + 6

4、思考:一元一次不等式与一元一次方程的解法有哪些类似之处?有什么不同?

5、解下列不等式,并把它们的解集在数轴上表示出来。

4(x-1)+2> 3(x+2)-x(x-2)/ 2≥(7-x)/ 3

6、总结:解一元一次不等式的依据和解一元一次不等式的步骤。

三、互动交流,教师点拨

1、交流导学提纲中的1—6题。

学生易出错的问题和注意的事项:

(1)确定一个不等式是不是一元一次不等式,要抓住三个要点:左右两边都是整式,只有一个未知数,未知数的次数是1。

(2)对于例1,让学生说明不等式3-x < 2x + 6的每一步变形的依据是什么,特别注意的是:解不等式的移项和解方程的移项一样。即移项要变号(培养学生运用类比的数学思想)。

(3)不等式两边同时除以(-3)时,不等号的方向改变。

2、重点点拨例2和例3,学生到黑板上板演。

(1)例2易出错的地方是:去括号时漏乘,移动的项没有变号。

(2)例3易出错的地方是:去分母时漏乘无分母(或分母为1)的项。

3、归纳解一元一次不等式的步骤(与解一元一次方程的步骤类比):去分母,去括号,移项,合并同类项,系数化为1

四、当堂训练,达标检测

巩固练习题目

当堂检测题

1.下列各式是一元一次不等式的是()A.21>1 B.2x>1 C.2x2≠1 D.2< xx1x+3>-5是一元一次不等式()21>-8不是一元一次不等式()x2.判断正误:(1)(2)x+2y≤0是一元一次不等式()(3)3.方程26-8x=0的解是______,不等式26-8x>0的解集是______,不等式26-8x<•0的解集是________.

4.如果a与12的差小于a的9倍与8的和,则a的取值范围是_______. 5.解下列不等式:

(1)(x-3)≥2(x-4)(2)

(3)(1-2x)>10-5(4x-3)(4)1<x

48x≥0 5x10 2

第五篇:一元一次不等式测试题1

一元一次不等式测试题

班级________姓名_________学号_________

一、精心选一选,慧眼识金!

1、不等式①x>-3;②xy≥1;③x2

3;④

xx

231;

⑤x1x

1中,是一元一次不等式的有().A、1

B、2C、3D、42、在数轴上表示不等式x≥-2的解集,正确的是()

ABCD3、不等式3(x2)x4的非负整数解有()个.A、4B、5C、6

D、无数

4、不等式4x14x11

4的最大的整数解为().A、1B、0

C、-1

D、不存在5、与2x6不同解的不等式是()

A、2x+1<7B、4x<12C、-4x>-12

D、-2x<-66、不等式axb0

a0的解集是()

A、x>-baB、x<-b

a

C、x>b

a

D、x

a7、若关于x的方程3x+2m=2的解是正数,则m的取值范围是()

A、m>1

B、m<1C、m≥1

D、m≤18、使代数式x92

1的值不小于代数式x131的值,则x应为()

A、x>17B、x≥17C、x<17D、x≥27

二、填一填,你能填得又快又准吗?

9、当x___________时,代数式x35x1的值是非负数.610、当代数式

x

3x的值大于10时,x的取值范围是__________.11、若代数式3(2k5)的值不大于代数式5k-1的值,则k的取值范围是__________.212、x的35

与12的差不小于6,用不等式表示为__________________.三、做一做,体验一下成功的快乐。

13、解不等式,并将解集在数轴上表示出来.(1)、2(2x3)5(x1)(2)、104(x3)2(x1)

(3)、193(x7)0(4)、x5213x

214、关于x的一元一次方程4x+m+1=3x-1的解是负数,求m的取值范围.15、x为何值时,代数式x3x1

25的值是非负数?

16、不等式3x1x12a的解集是x>-1,请确定a是怎样的值.17、某种商品的进价为800元,出售时标价为1200元.后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%,请你帮忙算一算,该商品至多可以打几折?

下载一元一次不等式试题(大全5篇)word格式文档
下载一元一次不等式试题(大全5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    解一元一次不等式练习题

    1、判断下列式子是否一元一次不等式:(是的打√,否的打╳) (1)7>4(2) 3x ≥ 2x+1(3) 20(4) x+y>1(5)x2+3>2xx 1、解下列的一元一次不等式(并在数轴上表示出来,自己画数轴) (1)x-5 2x+1 -2x+3 >......

    一元一次不等式练习题(含五篇)

    一元一次不等式练习题 解下列不等式,并把解集在数轴上表示出来: 3x-2>2x+1 3(x3)5(x1)7(3)2x-19<7x+3126(4)3x-2(9-x)>3(7+2x)-(11-6x). (5)2(3x-1)-3(4x+5)≤x-4(x-7)(6)2(x-1)-x>3......

    一元一次不等式测试题2(大全)

    一元一次不等式测试题 班级________姓名_________学号_________ 一、精心选一选,慧眼识金! 1、下列不等式中,是一元一次不等式的是 A、2x10B、12C、3x2y1D、y235 2、已知两个不......

    《一元一次不等式组》说课稿大全

    《一元一次不等式组》说课稿作为一无名无私奉献的教育工作者,时常需要编写说课稿,说课稿有助于教学取得成功、提高教学质量。那要怎么写好说课稿呢?以下是小编整理的《一元一次......

    《一元一次不等式组》说课稿范文

    《一元一次不等式组》说课稿 尊敬的各位专家评委,大家好! 我是自考教师资格证 号考生,今天我说课的题目叫《一元一次不等式组》,它属于义务教育第三学段(即初中七年级)的课程内容......

    一元一次不等式组说课稿

    《一元一次不等式组》说课稿 绥阳县坪乐中学:韩成友 尊敬的各位老师: 下午好! 我说课的课题是《一元一次不等式组》。 我将从教材分析、学情分析、教学目标、教学重难点、教学......

    《一元一次不等式组》说课稿

    《一元一次不等式组》说课稿1 各位评委老师:大家好!我是九集镇龙门中学老师,今天我展示课的内容是人教版数学七年级下册第九章第二节的第一课时《一元一次不等式》。下面我就......

    一元一次不等式教学设计

    一元一次不等式导学提纲 主备课人:辛高鹏 审核:初二数学组 时间:2011.4 教学目标: 掌握一元一次不等式的解法,能熟练的解一元一次不等式 教学重点:是掌握解一元一次不等式的步......