第一篇:天文学考试论文要求原创
天文选修课上学到的绸缪束薪,三星在天。今夕何夕,见此良人。子兮子兮,如此良人何!
——题记
康德说:“世界上有两样东西能震撼人的心灵,一样是心中崇高的道德准则,一样是头顶上璀璨的星空。”徜徉在天文学课堂,仰望星空,感受宇宙的奥秘,大自然的神奇,是一个求知的过程,也是一个乐趣无穷的过程。
“三星”高照,星座物语,天狼神话,北斗回移,宇宙是何其微妙!白羊若水,宝瓶执着,双鱼隐逸,摩羯孤独,人类是何其智慧!在曼妙的天文学课堂,懂得了“三星”即猎户座的参星,天上原来有88个星座,天狼东南升西南落,北极星也会更替;明白了一个时代的人只能看到时空的一个片刻,宇宙中的任何一个时空点看到的法则都是一样的„„
宇宙膨胀,奇点奥秘,微博辐射,破缺之说,见证了古老的传奇:人类面对的三个最根本的问题——从哪里来,要干什么,到哪里去。宇宙是大自然奇妙设计、高度智慧的产物;在探索大自然的奥秘中,谱写了科学的瑰丽。感谢托勒密,感谢哥白尼,感谢伽利略,感谢牛顿,让宇宙的科学之光普照了大地。
在每周四晚的天文学课堂,%老师集众科学家发现于一身,带我们畅游天文世界,感受宇宙之奥秘,生命之神奇,悠哉,乐哉!
第二篇:中小学天文学课件
中小学天文学课件
中小学天文学课件怎么设计?以下是小编整理的相关范文,欢迎阅读。
教学目标
1. 能从资料中获取太阳系的有关知识。
2.情感、态度与价值观
理解没有太阳,地球上就没有生命。
科学知识
1.知道太阳是一个温度很高的大火球。
2.知道太阳系的组成及行星的排列顺序。
3.了解金星的基本情况。
教学导入
师:今天我们要乘坐一辆神奇校车,开始我们奇妙的太阳系之旅。
旅途中请大家弄清楚太阳系的组成,并了解组成太阳系的一些星球的知识,填写好资料卡。向同学提问,让学生先来说一说他们所知道的有关太阳知识。二.讲解教材,了解太阳以及太阳系的组成,填写资料卡
1.阐述太阳对于人类的重要性,强调“恒星”的初步概念——像太阳这样自己能发光发热,并且位置不变的星球叫恒星。
2.介绍太阳系的组成和各个行星的特点,并且通过用图片(用磁石固定在黑板上)展示太阳系的全貌和八个行星的独貌以及矮行星和小天体。让学生通过图片更加深刻的体会到宇宙的神秘和美丽。
讲解:太阳系中有一大恒星和八大行星,他们是太阳、水星、金星、地球、火星、木星、土星、天王星、海王星(水晶球、钻木取火、陆天海)。八大行星是这个家族里八个大小不
一、性格各异的兄弟。水星是个小个子,和月亮很相似,上面并没有水。
金星在质量、体积、构造方面则和地球有不少相似之处,不过大气很浓密,竟达地球的六十倍。
地球是太阳系里唯一一颗有生命存在的星球。其它行星不是太热就是太冷,没有维持生命的条件。(同学们可以看一下图片上地球在宇宙中的样子)火星只有地球一半大小,因为又亮又红,人们叫它“火星”。木星是九个行星中个头最大的一个,它比其它七大行星加起来还大。
(火星和木星之间有个小行星带,这里有无数颗小行星)
土星是带有最大最亮光环的行星。八大行星中有4颗行星有光环,他们分别是木星、土星、天王星、海王星。(大家找找图片中哪颗是土星,同学们真聪明!)天王星和海王星是离太阳系最远的两颗行星。
八个兄弟的感情都很好,他们各自运行在自己的轨道上,从不发生矛盾。这就告诉我们,要遵守纪律,要是这些星球也像有些同学一样,不守规矩,在宇宙中相撞了,就会发生大爆炸。
所以,我们上课时应该怎么样?(同学回答)不应该怎么样?(同学回答)
3.组织分好小组,每个小组发一张资料卡,以小组的形式进行填写资料卡环节。通过这个环节增强学生合作交流的能力。其中教材模仿著名丛书《神奇校车》编写。
组织交流
1.什么是太阳系?由哪些星体组成?
2.请介绍你印象最深的内容。
3.教师说明书本中定义的太阳系组成。
回顾课堂
1.概括课堂主要内容。
2.预告下节课要讲述的内容。
课外作业 观察金星(肉眼可看见)
1.提示学生特别注意安全。
2.告知学生金星是很明亮的星体,它常常出现在朝阳和落日的附近。有时,金星在日出前4小时或日落后4小时出现在空中。在深夜是看不到金星的。
[中小学天文学课件]
第三篇:浅谈天文学之射电天文学
浅谈天文学之射电天文学
摘要:天文学是自然科学六大基础学科之一,它推动了人类社会的进步和科技的发展。天文学对于提高民族素质、培养创新精神及科学的思维方法,建立正确的世界观、宇宙观方面有着不可替代的作用。普及天文知识,对破除迷信、反对伪科学也具有重要的科学意义。发达国家及一些发展中国家的大学、中学都普遍开设了天文学课程。现在,我们学校也同样开设了天文学选修课,这为我们这些从小就对天文产生好奇、现在对天文依然抱有兴趣的人开了一扇圆梦的窗口。
关键字:天文 星系 射电 望远镜
引言:自小就对天文方面颇感兴趣,但一直都没机会深入了解这方面的内容,课本上对天文方面的知识都是浅谈辄止,而我们也就只有通过看看课外书籍或者新闻来了解那神秘的未知世界。2005年“神舟六号”载人航天飞船的成功升天与着陆,让我们看到了以前遥不可及的星际并不是梦想。嫦娥奔月一直只是作为一个神话故事,而浩瀚的宇宙亦是那么的遥不可及,而今飞天梦想的实现,宇宙以不再是秘密!
一:天文学的性质
当您抬头仰望天空时,您知道那些闪闪发光的东西是什么吗?一些是行星,但多数为恒星,还有一些是巨大的星系,每个星系中都有成百上千亿颗恒星。天文学就是研究宇宙中的行星、恒星以及星系的科学。天文学家的任务就是解释我们在夜空中所看到的各种天体,他们还致力于了解其他一些东西,例如,恒星的年龄以及他们与地球之间的距离等等。内容包括天体的构造、性质和运行规律等。主要通过观测天体发射到地球的辐射,发现并测量它们的位置、探索它们的运动规律、研究它们的物理性质、化学组成、内部结构、能量来源及其演化规律。现在天文学按研究方法分类已形成天体测量学、天体力学和天体物理学三大分支学科。按观测手段分类已形成光学天文学、射电天文学和空间天文学几个分支学科。
同时天文学是简洁,优美的,令人陶醉的!不少人认为天文学离现实生活很远,其实这也对,但说的不够严谨!天文学不仅是一门自然科学,而且还是一门自然哲学,吸引无数人研究!总的来说,天文学是一门古老而又年轻的科学!天文学的发展历程象征着人类文明的成果与辉煌!
二:射电天文学的概述
射电天文学是通过观测天体的无线电波来研究天文现象的一门学科。由于地球大气的阻拦,从天体来的无线电波只有波长约1毫米到30米左右的才能到达地面,绝大部分的射电天文研究都是在这个波段内进行的。射电天文学以无线电接收技术为观测手段,观测的对象遍及所有天体:从近处的太阳系天体到银河系中的各种对象,直到极其遥远的银河系以外的目标。射电天文波段的无线电技术,到二十世纪四十年代才真正开始发展。对于历史悠久的天文学而言,射电天文使用的是一种崭新的手段,为天文学开拓了新的园地。
三:射电天文学的起源
1860年,苏格兰物理学家麦克斯韦提出一个理论,预言整个辐射家族都与电磁现象(即电磁辐射)有联系,而一般可见光只是这个家族中的一小部分而已。25年以后,即在麦克斯韦因患癌症过早去世7年后,才找到了证实他的预言的第一个确实的证据。1887年,德国物理学家H.R.赫兹从感应线圈的火花中制造振荡电流,结果产生出波长极长的辐射,比一般红外辐射的波长长得多。H.R.赫兹探测到了这些辐射。这些辐射后来称做无线电波或射电波。波长可以用微米(1/1000000米)来量度; 可见光的波长从0.39微米(极紫)到0.78微米(极红)。接下去是近红外辐射(0.78~3微米),再就是中红外辐射(3~30微米),然后是远红外辐射(30~1000微米)。从此开始便是射电波:所谓的微波从1000~160000微米,长波射电波长高达几十亿微米。辐射的特性不仅可以用波长来表示,也可以用频率来表示。频率就是每秒钟产生的辐射的波数。可见光和红外辐射频率的数值太大,因此在这两种情况下通常不使用频率来表示。但是,对射电波来说,频率降低到比较低的数字,因而得到广泛地应用、每秒钟1000个波叫做1千周;每秒钟1000000个波叫做1兆周。微波的范围从300000兆周到1000兆周。一般电台使用的射电波波长都很长,都低到千周的范围。在赫兹发现射电波后的10年期间,光谱的另一端也有了同样的扩展。1895年,德国物理学家伦琴意外地发现了一种神秘的辐射,他称之为X射线,结果证明,X射线的波长比紫外辐射的波长短。后来卢瑟福证明,与放射性有关的γ射线的波长比X射线的还要短。于是,牛顿最初的光谱得到极大的扩展。如果我们把波长每增加一倍看作是相当于1个8度音程的话(如同声音那样),那么我们所研究的全部电磁波谱大约等于60个8度音程:可见光在靠近光谱的中心部分,仅占1个8度音程的范围。有了比较宽的光谱,我们对恒星的认识当然会更加全面。例如,我们知道,太阳光中包含着大量紫外辐射和红外辐射,这些辐射大部分被我们的大气吸收了;但是1931年非常意外地发现了一个探索宇宙的射电窗口。贝尔电话实验室的一位年轻的无线电工程师央斯基,在研究经常伴随着无线电接收而产生的静电时,偶然发现了一种非常稳定的噪声,这种噪声不可能来自任何通常的噪声源。他最后断定,这种静电是由来自外层空间的射电波引起的。最初,来自空间的射电信号似乎在太阳方向上最强,但一天天过去后,接收到的最强信号慢慢地从太阳方向移开,并且在天空中环行一圈。到1933年,央斯基断定,这些射电波来自银河,特别是来自靠近银河系中心的人马座方向。到1933年,央斯基断定,这些射电波来自银河,特别是来自靠近银河系中心的人马座方向。于是射电天文学诞生了。
四:射电望远镜
射电望远镜(radio telescope)是指观测和研究来自天体的射电波的基本设备,可以测量天体射电的强度、频谱及偏振等量。包括收集射电波的定向天线,放大射电信号的高灵敏度接收机,信息记录、处理和显示系统等。基本原理 经典射电望远镜的基本原理和光学反射望远镜相似,投射来的电磁波被一精确镜面反射后,同相到达公共焦点。用旋转抛物面作镜面易于实现同相聚焦,因此,射电望远镜天线大多是抛物面。射电望远镜表面和一理想抛物面的均方误差如不大于λ/16~λ/10,该望远镜一般就能在波长大于λ的射电波段上有效地工作。对米波或长分米波观测,可以用金属网作镜面;而对厘米波和毫米波观测,则需用光滑精确的金属板(或镀膜)作镜面。从天体投射来并汇集到望远镜焦点的射电波,必须达到一定的功率电平,才能为接收机所检测。目前的检测技术水平要求最弱的电平一般应达 10 —20瓦。射频信号功率首先在焦点处放大10~1,000倍,并变换成较低频率(中频),然后用电缆将其传送至控制室,在那里再进一步放大、检波,最后以适于特定研究的方式进行记录、处理和显示。天线收集天体的射电辐射,接收机将这些信号加工、转化成可供记录、显示的形式,终端设备把信号记录下来,并按特定的要求进行某些处理然后显示出来。表征射电望远镜性能的基本指标是空间分辨率和灵敏度,前者反映区分两个天球上彼此靠近的射电点源的能力,后者反映探测微弱射电源的能力。射电望远镜通常要求具有高空间分辨率和高灵敏度。
当代先进射电望远镜有﹕以德意志联邦共和国 100米望远镜为代表的大﹑中型厘米波可跟踪抛物面射电望远镜﹔以美国国立射电天文台﹑瑞典翁萨拉天文台和日本东京天文台的设备为代表的毫米波射电望远镜﹔以即将完成的美国甚大天线阵。贵州平塘的射电望远镜FAST是现在世界上最大口径的射电望远镜。
在贵州平塘县一个叫大窝凼的山沟里,正在建设世界上最大单口径射电望远镜。这个望远镜叫FAST(Five-hundred-meterApertureSphericalradioTelescope),已于2011年3月在我国正式开工建设,相当于30个足球场大。大窝凼的三座山峰形成一个天然“灶台”,可以将FAST这口“大锅”稳稳架在“灶台”上面。
如果射电望远镜足够大,那么就连外星人的电视信号都探测得到——假如外星人真的存在而且爱看电视的话。
4年前,在美国佛州奥兰多市举行的“光学工程国际协会”研讨会上,一位天文学家说:“从理论上说,如果外星人的确有电视节目的话,只要将足够大的射电望远镜对准外星人的星球,就能够接收得到。”
据了解,与被评为“人类20世纪十大工程”之首的美国300米望远镜相比,该望远镜综合性能提高了约10倍。FAST建成之后,将保持世界领先地位二三十年。
不过大窝凼的村民都叫不惯FAST这个有些拗口的名字,而是给它取了一个颇为形象的名字:天眼。
五:射电天文学的研究方法
对于研究射电天体来说,测到它的无线电波只是一个最基本的要求。人们还可以应用颇为简单的原理,制造出射电频谱仪(见太阳射电动态频谱仪)和射电偏振计,用以测量天体的射电频谱和偏振。研究射电天体的进一步的要求是精测它的位置和描绘它的图像。一般说来,只有把射电天体的位置测准到几角秒,才能够较好地在光学照片上认出它所对应的天体,从而深入了解它的性质。为此,就必须把射电望远镜造得很大,比如说,大到好几公里。这必然会带来机械制造上很大的困难。因此,人们曾认为射电天文在测位和成像上难以与光学天文相比。可是,五十年代以后,射电望远镜的发展,特别是射电干涉仪(由两面射电望远镜放在一定距离上组成的系统)的发展,使测量射电天体位置的精度稳步提高。五十年代到六十年代前期,在英国剑桥,利用许多具射电干涉仪构成了“综合孔径”,系统,并且用这种系统首次有效地描绘了天体的精细射电图像。接着,荷兰、美国、澳大利亚等国也相继发展了这种设备。到七十年代后期,工作在短厘米波段的综合孔径系统所取得的天体射电图像细节精度已达2″,可与地面上的光学望远镜拍摄的照片媲美(见综合孔径射电望远镜)。射电干涉仪的应用还导致了六十年代末甚长基线干涉仪的发明。这种干涉仪的两面射电望远镜之间,距离长达几千公里,乃至上万公里。用它测量射电天体的位置,已能达到千分之几角秒的精度。七十年代中,在美国完成了多具甚长基线干涉仪的组合观测,不断取得重要的结果。
六:结语
近几十年来,随着观测手段的不断革新,射电天文学在多个层次中发现的天体射电现象,不仅是光学天文的补充,而且常常超出原来的想象,开辟出许多新的研究领域。由此看来,天文学在不断的向前发展,人类定会在无边的宇宙中不断的展望和迈步。
第四篇:中国古代天文学
中国古代天文学
我国古代天文学从原始社会就开始萌芽了。公元前24世纪的帝尧时代,就设立了专职的天文官,专门从事“观象授时”。早在仰韶文化时期,人们就描绘了光芒四射的太阳形象,进而对太阳上的变化也屡有记载,描绘出太阳边缘有大小如同弹丸、成倾斜形状的太阳黑子。公元16世纪前,天文学在欧洲的发展一直很缓慢,在从2世纪到16世纪的1000多年中,更是几乎处于停滞状态。在此期间,我国天文学得到了稳步的发展,取得了辉煌的成就。我国古代天文学的成就大体可归纳为三个方面,即:天象观察、仪器制作和编订历法。
我国最早的天象观察,可以追溯到好几千年以前。无论是对太阳、月亮、行星、彗星、新星、恒星,以及日食和月食、太阳黑子、日珥、流星雨等罕见天象,都有着悠久而丰富的记载,这些记载至今仍具有很高的科学价值。在我国河南安阳出土的殷墟甲骨文中,已有丰富的天文象现的记载。这表明远在公元前14世纪时,我们祖先的天文学已很发达了,有世界上最早最完整的天象记载。我国是欧洲文艺复兴以前天文现象最精确的观测者和记录的最好保存者。
我国古代在创制天文仪器方面,也做出了杰出的贡献,创造性地设计和制造了许多种精巧的观察和测量仪器。最古老、最简单的天文仪器是土圭,也叫圭表。它是用来度量日影长短的,它最初是从什么时候开始有的,已无从考证。
此外,西汉的落下闳改制了浑仪,这种我国古代测量天体位置的主要仪器,几乎历代都有改进。东汉的张衡创制了世界上第一架利用水利作为动力的浑象。元代的郭守敬先后创制和改进了10多种天文仪器,如简仪、高表、仰仪等。
古人勤奋观察日月星辰的位置及其变化,主要目的是通过观察这类天象,掌握他们的规律性,用来确定四季,编制历法,为生产和生活服务。我国古代历法不仅包括节气的推算、每月的日数的分配、月和闰月的安排等,还包括许多天文学的内容,如日月食发生时刻和可见情况的计算和预报,五大行星位置的推算和预报等。一方面说明我国古代对天文学和天文现象的重视,同时,这类天文现象也是用来验证历法准确性的重要手段之一。测定回归年的长度是历法的基础。我国古代历法特别重视冬至这个节气,准确测定连续两次冬至的时刻,它们之间的时间间隔,就是一个回归年。
根据观测结果,我国古代上百次地改进了历法。郭守敬于公元1280年编订的《授时历》来说,通过三年多的两百次测量,经过计算,采用365.2425日作为一个回归年的长度。这个数值与现今世界上通用的公历值相同,而在六七百年前,郭守敬能够测算得那么精密,实在是很了不起,比欧洲的格里高列历早了300年。
我国的祖先还生活在茹毛饮血的时代时,就已经懂得按照大自然安排的“作息时间表”,“日出而作,日入而息”。太阳周而复始的东升西落运动,使人类形成了最基本的时间概念— “日”,产生了“天”这个最基本的时间单位。大约在商代,古人已经有了黎明、清晨、中午、午后、下午、黄昏和夜晚这种粗略划分一天的时间概念。计时仪器漏壶发明后,人们通常采用将一天的时间划分为一百刻的做法,夏至前后,“昼长六十刻,夜短四十刻”;冬至前后,“昼短四十刻,夜长六十科”;春分、秋分前后,则昼夜各五十刻。尽管白天、黑夜的长短不一样,但昼夜的总长是不变的,都是每天一百刻。
包括天文学在内的现代自然科学的极大发展,最早是从欧洲的文艺复兴时期开始的。文艺复兴时期大致从14世纪到16世纪,大体相当于我国明初到万历年间。这200年间,我国天文学的主要进展至少可以列举以下几项:翻译阿拉伯和欧洲的天文学事记;从公元1405-1432年的20多年间,郑和率领舰队几次出国,船只在远洋航行中利用“牵星术”定向定位,为发展航海天文学做出了贡献;对一些特殊天象做了比较仔细的观察,譬如,1572年的“阁道客星”和1604年的“尾分客星”,这是两颗难得的超新星。
我国古代观测天象的台址名称很多,如灵台、瞻星台、司天台、观星台和观象台等。现今保存最完好的就是河南登封观星台和北京古观象台。
我国还有不少太阳黑子记录,如公元前约140年成书的《淮南子》中说:“日中有乌。”公元前165年的一次记载中说:“日中有王字。” 战国时期的一次记录描述为“日中有立人之像”。更早的观察和记录,可以上溯到甲骨文字中有关太阳黑子的记载,离现在已有3000多年。从公元前28年到明代末年的1600多年当中,我国共有100多次翔实可靠的太阳黑子记录,这些记录不仅有确切日期,而且对黑子的形状、大小、位置乃至分裂、变化等,也都有很详细和认真的描述。这是我国和世界人民一份十分宝贵的科学遗产,对研究太阳物理和太阳的活动规律,以及地球上的气候变迁等,是极为珍贵的历史资料,有着重要的参考价值。
我国对哈雷彗星观测记录久远、详尽。《史记·秦始皇本纪》记载的秦始皇七年(公元前240年)的彗星,各国学者认为这是世界上最早的哈雷彗星记录。从那时起到1986年,哈雷彗星共回归了30次,我国史籍和地方志中都有记录。实际上,我国还有更早的哈雷彗星记录。我国已故著名天文学家张钰哲在晚年考证了《淮南子·兵略训》中“武王伐纣,东面而迎岁,„„彗星出而授殷人其柄”这段文字,认为当时出现的这颗彗星也是哈雷彗星。他计算了近四千年哈雷彗星的轨道,并从其他相互印证的史料中肯定了武五伐纣的确切年代应为公元前1056年,这样又把我国哈雷彗星的最早记录的年代往前推了800多年。1973年,我国考古工作者在湖南长沙马王堆的一座汉朝古墓内发现了一幅精致的彗星图,图上除彗星之外,还绘有云、气、月掩星和恒星。天文史学家对这幅古图做了考释研究后,称之为《天文气象杂占》,认为这是迄今发现的世界上最古老的彗星图。早在2000多年前的先秦时期,我们的祖先就已经对各种形态的彗星进行了认真的观测,不仅画出了三尾彗、四尾彗,还似乎窥视到今天用大望远镜也很难见到的彗核,这足以说明中国古代的天象观测是何等的精细入微。
我国古代对著名的流星雨,如天琴座、英仙座、狮子座等流星雨,各有好多次记录,光是天琴座流星雨至少就有10次,英仙座的至少也有12次。狮子座流星雨由于1833年的盛大“表演”而特别出名。从公元902~1833年,我国以及欧洲和阿拉伯等国家,总共记录了13次狮子座流星雨的出现,其中我国占7次,最早的一次是在公元931年10月21日,是世界上的第二次纪事。从公元前7世纪算起,我国古代至少有180次以上的这类流星雨纪事。
中国古代天文地理学成就
1、日食记录:流星,新星和超新星,彗星,五星连珠,太阳黑子,石刻。
2、历法:治历方法,节气,《太初历》、《大明历》、《大衍历》、《授时历》。
3、天文著作:《甘石星经》、《灵宪》。
4、天文仪器:圭表,日晷,漏刻,浑仪,浑天仪,地动仪,浑象,简仪,仰仪,水运仪象台。
5、著名天文学家:甘德,落下闳,张衡,祖冲之,张遂(僧一行),郭守敬,沈括。
6、著名地理学家:裴秀,郦道元,徐霞客,魏源。
7、天文地理学成就:制图六体,风的观测和仪器,降水的观测和仪器,湿度的观测和仪器,地震仪的发明,云的观测和云图集,《水经注》,《徐霞客游记》,《海国图志》。
第五篇:创文最新格式要求
(三)档案材料格式要求
1.纸张要求:材料以A4规格为标准,大于A4幅面的要按A4规格进行折叠,小于A4幅面的要用A4纸进行托裱或复制,如小A4幅面且已装订成册的原始材料加设A4封面夹于材料之上即可;纸质文件的文本格式必须符合公文格式要求,带文号文件必须使用红头文件纸打印(上级文件用彩色打印)。没有文号的方案、总结等的文字材料,首页一律使用便签头格式彩色打印。
2.版面设置:上边距3厘米;下边距2厘米;左边距3厘米;右边距2.5厘米。单倍行距。不设页码或用铅笔在每页页脚正中手写标注页码。
3.字体字号:除文件原件和“四表”、照片、光盘整理外,凡方案、总结等文字材料必须使用统一字体、字号。
文件标题:2号宋体; 一级标题:3号黑体; 二级标题:3号楷体; 正文:3号仿宋体;
数字、年月日:均应使用阿拉伯数字,不加美术修饰; 落款(署名):3号仿宋体。