第一篇:一类对称或循环不等式的配方法证明
一类对称或循环不等式的配方法证明
_------读熊斌《数学奥林匹克》之体会
数学组蔡玉书(215006)
纵观国内外数学奥林匹克中的不等式试题,有不少试题是关于a,b,c的对称或轮换对称的不等式,直接利用均值不等式、柯西不等式或者重要不等式有时很难达到目的,而利用它们的对称性,直接利用比较法进行适当的配方,就可以使得问题得到完美的解决。本文从历年的国内外数学奥林匹克试题中精心选择若干优秀试题,进行详细的分析与解答,供参赛选手和数学奥林匹克教练员参考。
例1设a,b,c是三角形的三边,求证:a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.(第6届IMO试题)证法一 注意到a3+b3+c3-3abc =(a+b+c)(a2+b2+c2-ab-bc-ca),得
3abc-[a2(b+c-a)+b2(c+a-b)+c2(a+b-c)]
=a3+b3+c3-3abc+a(b2+c2-2bc)+b(c2+a2-2ca)+c(a2+b2-2ab)
=(a+b+c)(a2+b2+c2-ab-bc-ca)+a(b2+c2-2bc)+b(c2+a2-2ca)+c(a2+b2-2ab)
1=(a+b+c)[(a-b)2+(b―c)2+(c―a)2]+a(b―c)2++b(c―a)2+c(a-b)2
2111=a+b-c)(a-b)2+b+c-a)(b―c)2+a+c-b)(c―a)2.222
∵a,b,c是三角形的三边,∴a+b-c >0, b+c-a >0, a+c-b >0.而(a-b)2≥0,(b―c)2≥0,(c―a)2≥0,故原不等式成立,当且仅当a=b=c,即△ABC是正三角形时等号成立.例2 已知a,b,c是正数, 证明:
abc3(1)(1963年莫斯科数学奥林匹克试题)b+cc+aa+b2
a2b2c2a+b+c(2)+≥(第2届世界友谊杯数学竞赛试题)b+cc+aa+b2
abc3证明(1)+ b+cc+aa+b2
2a(a+b)(c+a)+2b(a+b)(b+c)+2c(b+c)(c+a)-3(a+b)(b+c)(c+a)=2(a+b)(b+c)(c+a)
2(a3+b3+c3)-(a2b+ab2+b2c+bc2+c2a+ca2)=2(a+b)(b+c)(c+a)
a3+b3-(a2b+ab2)+b3+c3-(b2c+bc2)+b3+c3-(c2a+ca2)= 2(a+b)(b+c)(c+a)
(a+b)(a-b)2+(b+c)(b-c)2+(c+a)(c-a)2abc3= 0,+.2(a+b)(b+c)(c+a)b+cc+aa+b2
a2b2c2abcab(2)不难证明++=(a+b+c)(+ +)-(a+b+c),利用这个恒等式得到不等式+ b+cc+aa+bb+cc+aa+bb+cc+a
c3a2b2c2a+b+c+≥++.a+b2b+cc+aa+b2
y2-x2z2-y2x2-z2
例3 设x, y, z是正数, 则≥0.(W.Janous猜想)z+xx+yy+z
y2-x2z2-y2x2-z2y2-z2z2-x2x2-y2
证明 设 u = , v= , z+xx+yy+zz+xx+yy+z
z2-x2x2-y2y2-z2
则u-v = += z―x+x―y+y―z = 0, z+xx+yy+z
111111又u+v =(x2-y2)(-y2-z2)(-z2-x2y+zz+xz+xx+yx+yy+z
x-yy-zzx=(x2-y2)+(y2-z2)+(z2-x2)(y+z)(z+x)(z+x)(x+y)(x+y)(y+z)
(x+y)(x-y)2(y+z)(y-z)2(z+x)(z-x)2
= ++ ≥0,(y+z)(z+x)(z+x)(x+y)(x+y)(y+z)
y2-x2z2-y2x2-z2
所以,u=v>0.从而+0.z+xx+yy+z
x5-x2y5-y2z5-z2
例4正实数x,y,z满足xyz≥1,证明:++0.(第46届IMO试题)x+y+zy+z+xz+x+y证明 因为xyz≥1,所以
x5-x2x5-x2·xyzx4-x2yz2x4-x2(y2+z2)≥类似地,可得 x+y+zx+(y+z)·xyzx+yz(y+z)2x+(y+z)y5-y22y4-y2(z2+x2)z5-z22z4-z2(x2+y2)≥y+z+x2y+(z+x)z+x+y2z+(x+y)2a2-a(b+c)2b2-b(c+a)2c2-c(a+b)222令a=x,b=y,c=z,原不等式化为证明+0 2a+(b+c)2b+(c+a)2c+(a+b)a(a-b)+a(a-c)b(b-c)+b(b-a)c(c-a)+c(c-b)+≥0 2a+(b+c)2b+(c+a)2c+(a+b)c2+c(a+b)+a2-ab+b2112∑(a-b)(≥0∑(a-b)()≥0.2a+(b+c)2b+(c+a)(2a+(b+c))(2b+(c+a))cyccyc1119例5设x、y、z是正实数,求证:(xy+yz+zx)[+年伊朗数学奥林匹克试题)(x+y)(y+z)(z+x)4
证明 不妨设x≥y≥z>0,1119xy+z(x+y)yz+x(y+z)zx+y(z+x)9(xy+yz+zx)[+++-(x+y)(y+z)(z+x)4(x+y)(y+z)(z+x)4
xyz3xy1yz1zx1+- y+zz+xx+y2(x+y)4(y+z)4(z+x)4
2(z-x)2(y-z)2(x-y)2(y-z)2(z-x)21(x-y)=+]-[+] 2(y+z)(z+x)(x+y)(y+z)(x+y)(z+x)4(x+y)4(y+z)4(z+x)1212121222={[--](x-y)+[y-z)}+[z-x)]} 4(y+z)(z+x)(x+y)(x+y)(z+x)(y+z)(x+y)(y+z)(z+x)1=Sz(x-y)2+Sx(y-z)2+Sy(z-x)2],① 4
212121其中Sz =- Sx, Sy =(y+z)(z+x)(x+y)(x+y)(z+x)(y+z)(x+y)(y+z)(z+x)因为x≥y≥z>0,所以2(x+y)2>(x+y)2>(y+z)(z+x),即Sz>0.又2(z+x)2-(x+y)(y+z)=(x2-xy)+(x2-yz)+2z2+3zx>0, 所以 Sy≥0.若Sx≥0,①的右端≥0,不等式得证.yy-zy若Sx<0,因为x≥y≥z>0,所以≥0,于是,(y-z)2≤()2(x-z)2.xx-zx
22yyS+xSSx(y-z)2+Sy(z-x)2≥Sx2(x-z)2+Sy(z-x)2(z-x)2.② xx22下面证明ySx+xSy≥0,事实上,y2Sx+x2Sy≥0⇔y2[2(y+z)2(z+x)-(x+y)(z+x)2]+x2[2(y+z)(z+x)2-(x+y)(y+z)2]
=y2(2y2z+xy2+3yz2+2xyz+2z3+xz2-2zx2-x3)+x2(2yz2+x2y+3xz2+2xyz+2z3+x2z-2zy2-y3)
=2xyz(x2+y2-2xy)+xy(x3+y3-x2y-xy2)+y2(2y2z+3yz2+2z3+xz2)+x2(2yz2+3xz2+z3+x2z)
=2xyz(x-y)2+xy(x+y)(x-y)2+y2(2y2z+3yz2+2z3+xz2)+x2(2yz2+3xz2+z3+x2z)>0,所以,②式右端≥0,所以Sz(x-y)2+Sx(y-z)2+Sy(z-x)2≥0.综上,不等式得证.例6 设a,b,c是一个三角形的三边长,求证a2b(a-b)+b2c(b-c)+c2a(c-a)≥0.并指出等号成立的条件.(第24届IMO试题)
证明a2b(a-b)+b2c(b-c)+c2a(c-a)
1= [(a+b-c)(b+c-a)(a-b)2+(b+c-a)(a+c-b)(b-c)2+(a+c-b)(a+b-c)(c-a)2]≥0.2
b+cc+aa+b(a2+b2+c2)(ab+bc+ca)例7已知a,b,c>0,证明:++3.(2006年罗马尼亚数学奥林匹克试题)abcabc(a+b+c)
b+cc+aa+b(a2+b2+c2)(ab+bc+ca)证明+3-abcabc(a+b+c)
b+cc+aa+b(a2+b2+c2)(ab+bc+ca)= 6-[3] abcabc(a+b+c)
(b-c)2(c-a)2(a-b)2(b+c)(b-c)2(c+a)(c-a)2(a+b)(a-b)2
=+[+] bccaabbc(a+b+c)ca(a+b+c)ab(a+b+c)
1(b+c)1(c+a)1(a+b)b-c)2+[-c-a)2+[-](a-b)2 bcbc(a+b+c)caca(a+b+c)abab(a+b+c)
abc=b-c)2+c-a)2a-b)2≥0.bc(a+b+c)bc(a+b+c)bc(a+b+c)
bca例8 在△ABC中,证明:a2(-1)+b2(-1)+c2(-1)≥0.(2006年摩尔多瓦数学奥林匹克试题)cab
证明 不等式两边同时乘以2abc,不等式化为证明2a3b(b-c)+2b3c(c-a)+2c3a(a-b)≥0.2a3b(b-c)+2b3c(c-a)+2c3a(a-b)
=a3[(b+c)+(b-c)](b-c)+ b3[(c+a)+(c-a)](c-a)+c3[(a+b)+(a-b)](a-b)
= a3(b-c)2+b3(c-a)2+c3(a-b)2+a3(b2-c2)+b3(c2-a2)+c3(a2-b2)
=a3(b-c)2+b3(c-a)2+c3(a-b)2+a2(c3-b3)+b2(a3-c3)+c2(b3-a3)
=a3(b-c)2+b3(c-a)2+c3(a-b)2+a2[(c-b)3+3cb(c-b)]+b2[(a-c)3+3ca(c-a)]
+c2[(b3-a3)+3ba(b-a)]
=a3(b-c)2+b3(c-a)2+c3(a-b)2-a2(b-c)3-b2(c-a)3-c2(a-b)3
+3abc[a(c-b)+b(c-a)+c(b-a)]
=a3(b-c)2+b3(c-a)2+c3(a-b)2-a2(b-c)3-b2(c-a)3-c2(a-b)3
= a2(b-c)2(c+a-b)+b2(c-a)2(a+b-c)+c2(a-b)2(b+c-a).在△ABC中, c+a-b, a+b-c, b+c-a都是正数,而(b-c)2≥0,(c-a)2≥0,(a-b)2≥0,所以不等式得证.例9在△ABC中,a,b,c是它的三条边,p是半周长,证明不等式: a(p-b)(p-c)bbc
(p-b)(p-c)+bc(p-c)(p-a)cca(p-c)(p-a)+ca(p-a)(p-b)≥p.(2006年摩尔多瓦数学奥林匹克试题)ab(p-a)(p-b)p ab
≥x+y+z(z+x)(z+y)
≥2(x+y+z)(z+x)(z+y)
x+y2 y+z证明令x=p-a,y=p-b,z=p-c,则a=y+z,b=z+x,c=x+y.a⇔(y+z⇔2(y+z⇔z+x)(x+y)(x+z)z+x(x+y)(x+z)+(x+y)(y+z)(y+x)x+y(y+z)(y+x)(y+z)z(y+z)y+(y+zx+yx+z-x+y
y+z2(z+x)z(z+x)x)++-(z+x)(x+zx+yy+z2≥2(x+y+z)x+z
zx+yy2)+(z+x)(x+z(x+y)x(x+y)y+-(x+y)(y+zx+zx2y2z2⇔)-(x+y+z)≥(y+z)(y+zz+xx+y
+(x+y)(y+z2)x+zzx+yx2)y+z
(x+y+z)(x-y)2(x+y+z)(y-z)2(x+y+z)(z-x)2(x+y+z)2(y-z)2
⇔+≥(y+z)+(y+z)(z+x)(z+x)(x+y)(x+y)(y+z)(z+x)(x+yz(x+z)+y(x+y))2
(x+y+z)2(z-x)2(x+y+z)2(x-y)2
(z+x+(x+y).①(x+y)(y+z)(z(y+zx(x+y))2(y+z)(z+x)(x(x+z)+y(y+z))2
(x+y+z)(x-y)2(x+y+z)2(x-y)2(x+y+z)(x+y)(x+y ⇔1≥2(y+z)(z+x)(y+z)(z+x(2
⇔(2≥(x+y+z)(x+y)⇔≥2xy.因为z是正数,这是显然的.同理可证其余两个不等式.于是不等式①成立.11131111例10 已知a,b,c>0,且abc=1,-2(.(2004年匈牙利数学奥林匹克试abca+b+cabca+b+c题)11131111证明因为abc=1,所以++≥++)等价于 abca+b+cabca+b+c
1113111abc-2(.abca+b+cabca+b+c
注意到(a3+b3)-(a2b+ab2)=(a2-b2)(a-b)=(a+b)(a-b)2有
1113111abc+-2(+)abca+b+cabca+b+c
[(a+b+c)(ab+bc+ca)-3abc](a2+b2+c2)-(a2b2+b2c2+c2a2)(a+b+c)= abc(a+b+c)(a+b+c)
(a2b+ab2+b2c+bc2+c2a+ca2)(a2+b2+c2)-(a2b2+b2c2+c2a2)(a+b+c)= abc(a+b+c)(a+b+c)
[(a4b+ab4)-(a3b2+a2b3)]+[(b4c+bc4)-(b3c2+b2c3)]+[(a4c+ac4)-(a3c2+a2c3)]= abc(a+b+c)(a+b+c)
ab[(a3+b3)-(a2b+ab2)]+bc[(b3+c3)-(b2c+bc2)]+ca[(a3+c3)-(a2c+ac2)]=abc(a+b+c)(a+b+c)
ab(a+b)(a-b)2+bc(b+c)(b-c)2+ca(c+a)(c-a)2
= 0.所以,原不等式成立.abc(a+b+c)(a+b+c)
111xyz例11 已知x,y,z∈[1,2],证明:(x+y+z)()≥6(+年越南数学奥林匹克试题)xyzy+zz+xx+y
证明 不妨设2≥x≥y≥z≥1,(x-y)2(y-z)2(z-x)2111因为(x+y+z+)-+, xyzxyyzzx
2(y-z)2(z-x)2xyz31(x-y)又因为+[+y+zz+xx+y22(y+z)(z+x)(x+y)(z+x)(y+z)(x+y)
111xyz所以(x+y+z)-6(++)xyzy+zz+xx+y
131313x-y)2+()(y-z)2+()(z-x)2≥0 xy(y+z)(z+x)yz(x+y)(z+x)zx(y+z)(x+y)
z(x+y)(z2+zx+zy-2xy)(x-y)2+x(y+z)(x2+xy+xz-2yz)(y-z)2+y(z+x)(y2+yz+yx-2zx)(z-x)2
=Sz(x-y)2+Sx(y-z)2+Sy(z-x)2≥0.①
由2≥x≥y≥z≥1,易知(x+y)(z+x)-3yz≥2y·2z-3yz>0, 所以Sx>0,又Sy≥0⇔(y+z)(x+y)-3zx≥0⇔xy+yz+y2-2zx≥0.②
由2≥x≥y≥z≥1,易知,y+z≥2≥x,所以y(y+z)≥zx, xy≥zx,相加得②.所以Sy≥0.如果Sz≥0,则①式右边≥0,不等式得证.如果Sz<0,则(x-y)2=[(x-z)-(y-z)]2=(z-x)2+(y-z)2-2(x-z)(y-z),Sz(x-y)2+Sx(y-z)2+Sy(z-x)2=(Sy+Sz)(z-x)2+(Sx+Sz)(y-z)2-2Sz(x-z)(y-z)≥(Sy+Sz)(z-x)2+(Sx+Sz)(y-z)2.下面证明Sy+Sz≥0, Sx+Sz≥0.Sx+Sz=x(y+z)(x2+xy+xz-2yz)+z(x+y)(z2+zx+zy-2xy)
≥z(x+y)[(x2+xy+xz-2yz)+(z2+zx+zy-2xy)]= z(x+y)[(x+2z)(x-y)+z2]≥0, Sy+Sz=y(z+x)(y2+yz+yx-2zx)+z(x+y)(z2+zx+zy-2xy)
≥z(x+y)[(y2+yz+yx-2zx)+(z2+zx+zy-2xy)]
= z(x+y)[xy+(y+z-x)(y+z)]≥0,所以Sz<0时,不等式也成立.111xyz于是,只要x, y, z∈[1,2], 就有(x+y+z)(++≥).xyzy+zz+xx+y
第二篇:化为同分母循环和 证明一类分式不等式
本文发表于《中学数学研究》(南昌)2004年第12期
化为同分母循环和
证明一类分式不等式
215006苏州市第一中学刘祖希
分式不等式的证明难,其难点首先体现在如何去掉分母.本文将通过一些例子获得一个证明分式不等式的有效方法,并希望能成为一个通法:这就是将分式不等式的各部分巧妙地化为同分母循环和(即
A1)获证.下面详细予以说明.ABC
例1设a,b,c是正实数,且abc1,求证:
(1996年IMO37预选题)
证明:∵abc1,ababab(作差法易证), 5522abbcca1.a5b5abb5c5bcc5a5ca
aba2b2c5∴5(齐次化)5522ababababc
a2b2cc, 2222abababcabc
同理,bca,55bcbcabc
cab,c5a5aabc
1111.333333ababcbcabccaabcabc三式相加即得原不等式,当且仅当abc1等号成立(考虑篇幅,等号成立条件以下略).例2求证:对所有正实数a,b,c,有
(1997年美国数学奥林匹克试题)
证明:先证齐次不等式
33abcabcabc1.a3b3abcb3c3abcc3a3abc∵ababab(作差法易证),∴abcabcc,a3b3abcabababcabc
abca,b3c3abcabc
abcb,c3a3abcabc
abcabcabc1,三式相加得,333333ababcbcabccaabc同理,即1111.a3b3abcb3c3abcc3a3abcabc
abbcca.ababbcbccaca对例
2、例3的推广形式: 推广:设a,b,c是正实数,且abc1,记f
1,则f1;
21②若1或,则f1;2
1③若1,则f1.2①若1或
(《中学数学月刊》2002.12P40)
例3设ABC中,求证:abc2.bccaab
aa2a2a22a21; 证明:∵bcabacaabacabc
a2a,bcabc
b2b同理,caabc
c2c,ababc
abc2.三式相加,得bccaab
abc例4在ABC中,记f,试证: abcbcacab
2①当11时,有f;
12②当1时,有f.1∴
(《中等数学》2002.4数学奥林匹克问题高115)
证明: 只要1,总有
1bca0
11bc1a0 2
11bc1a2b2c1a1a2b2c0
11abca2b2c0
112a12a2b2c1abc0
12a0 abc1abc即1a1a
abc21a,1abc
∴ 1f1a
abc1b
bca1c
cab
212121abc 1abc1abc1abc
21, 1
21, 1
22;②当1时,有f.11即1f故①当11时,有f
注:例4中取0,即为例3.例5设0a,b,c1.证明:abc2.bc1ca1ab1
证明:∵2abc1aabc
abc1aabcbc1
abc1aab1c10 a2a,bc1abc
b2b同理,ca1abc
c2c,ab1abc
abc2.三式相加,得bc1ca1ab1∴
a2
例6在ABC中ma,mb,mc分别表示边a,b,c上的中线长,证明:22.2mbmc
(《中等数学》2003.4P18)
证明:由三角形中线长定理,mb212c22a2b2,
44a2a24a2m2m24a2b2c22a2a2b2a2c2
bc
4a2
22a2ab2ac
2a2, abc
a2
即22.2mbmc
至此,我们是否可以获得这样的启示:以上这些分式不等式都具有对称性,而且不等式的另一端多为常数,这就为我们统一处理、集中去分母提供了便利,同分母循环和的方法应运而生.例7设a,b,c是正实数,n是正整数,求证: anan1an1an
n1n1;②nn1n1.①nnnbcbcbcbc
(《中等数学》2001.3P23)
nn证明:①
∵bcbn1cn1(作差法易证),annan1∴
n
n1n1 nbcbc1an1
n1n1(车贝雪夫不等式)
3bcan1n1n1(三元均值不等式)bcan1
n1n1; bc
②类似①可得,an1n1an
bncn
bn1cn1
1an
n1n1 3bcann1n1 bcan
n1n1.bc
第三篇:关于对称不等式的证明
有关对称不等式的证明
四川省资阳中学黄学文
关于对称不等式(任意互换两个字母,不等式不变)的证明,常见的方法除了有比较法,分析法,综合法,反证法外,还可以运用构造法,轮换法等方法证明,下面举列说明。一构造法
1、构造函数
例1 设 0 1证明:构造函数f(x)= x(1-y)+y(1-z)+z(1-x),整理,得f(x)=(1-y-z)x+(y+z-yz)因为0 (1)当0<1-y-z<1时,f(x)在(0,1)上是增函数,于是f(x)<1-yz<1; (2)当-1<1-y-z<0 时,f(x)在(0,1)上是减函数,于是f(x) (3)当1-y-z=0,即 y+z=1时,于是f(x)=y+z-yz=1-yz<1,所以原不等式成立。 2、构造向量 例2 正实数a、b、c,满足a+b+c=1,求 2证:13a13b3c6 223,23) 证明:设m=(23a,2 3b,3c), n=(22 3,222 则m·n=3(13a+3b+3c) 23a13b13c= 222 2· 33(abc)3a 222 2· 3 3(abc) 3=2 所以 3b 3c6 当且仅当a=b=c=3时,等号成立。构造复数 例3 设0 a(1b) 求证:ab++ (1a)b + (1a)(1b) 证明:构造复数Z1 =a+biZ2 =a+(1-b)iZ3 =(1-a)+biZ4=(1-a)+(1-b)i 用复数模的性质,得左边=z1+z2+z3+z4z1z2z3z4=22i=22 所以原不等式成立。 二轮换法 例4a、b、cR+,求证:证明:因为 12a 12b 212a 12b 12a 12b 12c 1ab 1bc12a 12b 1ca 2ab 1ab 2ab 所以 同理可得所以 12a 12b12b 12c12c 2bc1ab, 12c 1 12a 1 2ca bcca abC 所以原不等式得证。 例5已知a、b、cR+,求证:abcab证明:设abc,则 abab ba ba abcab (abc) aa-b=1 b 所以aabbabba 同理可得aabbbccb,ccaacaac三式相乘,得(aabbcc)2ab+cba+cca+b 从而得(aabbcc)3(abc)a+b+c所以原不等式成立。 三、换元法 x 例6 求证:yz yzx zxy 2(其中x、y、z均为正数) 证明:设y+z=2a、z+x=2b、x+y=2c, 则x=b+c-a、y=c+a-b、z=a+b-c 因为a、b、c>0,得左边= bca2a cab2b abc2c (b2a a2b)(c2b b2c)(a2cc2a) 32111 32 右边。所以原不等式得证。 例7 已知a、bR,且a+b=1求证:(a+2)2+(b+2)2 证明:设a= 12t, b=1 212 t(tR) 252 则(a+2)2+(b+2)2=(+t+2)2+(-t+2)2=(t+)2+(t-)2=2t2+ 55252 252 当且仅当t=0时,等号成立。四放缩法 例8a、b是正实数,且a+b=1求证:a1 1b1 1ba1b 1ab1a 2abab1 1b132 证明: a1 所以原不等式得证。 不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。1比较法 比较法是证明不等式的最基本方法,具体有“作差”比较和“作商”比较两种。基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较) 例1已知a+b≥0,求证:a3+b3≥a2b+ab 2分析:由题目观察知用“作差”比较,然后提取公因式,结合a+b≥0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。 ∵(a3+b3)(a2b+ab2) =a2(a-b)-b2(a-b) =(a-b)(a2-b2) 证明: =(a-b)2(a+b) 又∵(a-b)2≥0a+b≥0 ∴(a-b)2(a+b)≥0 即a3+b3≥a2b+ab2 例2 设a、b∈R+,且a≠b,求证:aabb>abba 分析:由求证的不等式可知,a、b具有轮换对称性,因此可在设a>b>0的前提下用作商比较法,作商后同“1”比较大小,从而达到证明目的,步骤是:10作商20商形整理30判断为与1的大小 证明:由a、b的对称性,不妨解a>b>0则 aabbabba=aa-bbb-a=(ab)a-b ∵ab0,∴ab1,a-b0 ∴(ab)a-b(ab)0=1即aabbabba>1,又abba>0∴aabb>abba 练习1 已知a、b∈R+,n∈N,求证(a+b)(an+bn)≤2(an+1+bn+1)2基本不等式法 利用基本不等式及其变式证明不等式是常用的方法,常用的基本不等式及变形有: (1)若a、b∈R,则a2+b2≥2ab(当且仅当a=b时,取等号) (2)若a、b∈R+,则a+b≥ 2ab(当且仅当a=b时,取等号) (3)若a、b同号,则 ba+ab≥2(当且仅当a=b时,取等号) 例3 若a、b∈R,|a|≤1,|b|≤1则a1-b2+b1-a2≤ 1分析:通过观察可直接套用: xy≤x2+y2 2证明: ∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1 ∴b1-a2+a1-b2≤1,当且仅当a1+b2=1时,等号成立 练习2:若 ab0,证明a+1(a-b)b≥ 33综合法 综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。 例4,设a0,b0,a+b=1,证明:(a+1a)2+(B+1b)2≥252 证明:∵ a0,b0,a+b=1 ∴ab≤14或1ab≥ 4左边=4+(a2+b2)=1a2+1b2=4+[(a+b)2-2ab]+(a+b)2-2aba2b2 =4+(1-2ab)+1-2aba2b2≥4+(1-12)+8=252 练习3:已知a、b、c为正数,n是正整数,且f(n)=1gan+bn+cn 3求证:2f(n)≤f(2n) 4分析法 从理论入手,寻找命题成立的充分条件,一直到这个条件是可以证明或已经证明的不等式时,便可推出原不等式成立,这种方法称为分析法。 例5:已知a0,b0,2ca+b,求证:c-c2-ab<a<c+c2-ab 分析:观察求证式为一个连锁不等式,不易用比较法,又据观察求证式等价于 |a-c|<c2-ab也不适用基本不等式法,用分析法较合适。 要证c-c2-ab<a<c+c2-ab 只需证-c2-ab<a-c<c2-ab 证明:即证 |a-c|<c2-ab 即证(a-c)2<c2-ab 即证 a2-2ac<-ab ∵a>0,∴即要证 a-2c<-b 即需证2+b<2c,即为已知 ∴ 不等式成立 练习4:已知a∈R且a≠1,求证:3(1+a2+a4)>(1+a+a2) 25放缩法 放缩法是在证明不等式时,把不等式的一边适当放大或缩小,利用不等式的传递性来证明不等式,是证明不等式的重要方法,技巧性较强常用技巧有:(1)舍去一些正项(或负项),(2)在和或积中换大(或换小)某些项,(3)扩大(或缩小)分式的分子(或分母)等。 例6:已知a、b、c、d都是正数 求证: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b< 2分析:观察式子特点,若将4个分式商为同分母,问题可解决,要商同分母除通分外,还可用放缩法,但通分太麻烦,故用放编法。 证明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b> ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d= 1又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+c+dcb+c+d<c+aa+b+c+ddc+d+a<d+bc+d+a+dad+a+b<a+ca+b+c+d ∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b< b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2 综上知:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2 练习5:已知:a<2,求证:loga(a+1)<1 6换元法 换元法是许多实际问题解决中可以起到化难为易,化繁为简的作用,有些问题直接证明较为困难,若通过换元的思想与方法去解就很方便,常用于条件不等式的证明,常见的是三角换元。 (1)三角换元: 是一种常用的换元方法,在解代数问题时,使用适当的三角函数进行换元,把代数问题转化成三角问题,充分利用三角函数的性质去解决问题。 例 7、若x、y∈R+,且 x-y=1 A=(x-1y)(y+1y)。1x,求证0<A< 1证明: ∵x,y∈R+,且x-y=1,x=secθ,y=tanθ,(0<θ<xy) ∴ A=(secθ-1secθ(tanθ+1tanθ·1sec2θ =1-cos2θcosθ·s2m2θ+cos2θcosθ·s2mθ·cos2θ =sinθ ∵0<θ<x2,∴ 0<s2mθ <1因此0<A<1 复习6:已知1≤x2+y2≤2,求证:12 ≤x2-xy+y2≤ 3(2)比值换元: 对于在已知条件中含有若干个等比式的问题,往往可先设一个辅助未知数表示这个比值,然后代入求证式,即可。 例8:已知 x-1=y+12=z-23,求证:x2+y2+z2≥431 4证明:设x-1=y+12=z-23=k 于是x=k+1,y=zk-1,z=3k+ 2把上式代入x2+y2+z2=(k+1)2(2k-1)2+(3k+2)2 =14(k+514)2+4314≥4314 7反证法 有些不等式从正面证如果不好说清楚,可以考虑反证法,即先否定结论不成立,然后依据已知条件以及有关的定义、定理、公理,逐步推导出与定义、定理、公理或已知条件等相矛盾或自相矛盾的结论,从而肯定原有结论是正确的,凡是“至少”、“唯一”或含有否定词的命题,适宜用反证法。 例9:已知p3+q3=2,求证:p+q≤ 2分析:本题已知为p、q的三次,而结论中只有一次,应考虑到用术立方根,同时用放缩法,很难得证,故考虑用反证法。 证明:解设p+q>2,那么p>2-q ∴p3>(2-q)3=8-12q+6q2-q 3将p3+q3 =2,代入得 6q2-12q+6<0 即6(q-1)2<0 由此得出矛盾∴p+q≤ 2练习7:已知a+b+c>0,ab+bc+ac>0,abc>0.求证:a>0,b>0,c>0 8数学归纳法 与自然数n有关的不等式,通常考虑用数学归纳法来证明。用数学归纳法证题时的两个步骤缺一不可。 例10:设n∈N,且n>1,求证:(1+13)(1+15)…(1+12n-1)>2n+12 分析:观察求证式与n有关,可采用数学归纳法 证明:(1)当n=2时,左= 43,右=52 ∵43>52∴不等式成立 (2)假设n=k(k≥2,k∈n)时不等式成立,即(1+13)(1+15)…(1+12k-1)>2k+12 那么当n=k+1时,(1+13)(1+15)…(1+12k-1)(1+12k+1)>2k+12·(1+12k+1)① 要证①式左边>2k+32,只要证2k+12· 2k+22k+1>2k+32② 对于②〈二〉2k+2>2k+1·2k+3 〈二〉(2k+2)2>(2k+1)(2k+3) 〈二〉4k2+8k+4>4k2+8k+3 〈二〉4>3③ ∵③成立 ∴②成立,即当n=k+1时,原不等式成立 由(1)(2)证明可知,对一切n≥2(n∈N),原不等式成立 练习8:已知n∈N,且n>1,求证: 1n+1+1n+2+…+12n>132 49构造法 根据求证不等式的具体结构所证,通过构造函数、数列、合数和图形等,达到证明的目的,这种方法则叫构造法。 1构造函数法 例11:证明不等式:x1-2x <x2(x≠0) 证明:设f(x)=x1-2x-x2(x≠0) ∵f(-x) =-x1-2-x+x2x-2x2x-1+x 2=x1-2x-[1-(1-2x)]+x2=x1-2x-x+x2 =f(x) ∴f(x)的图像表示y轴对称 ∵当x>0时,1-2x<0,故f(x)<0 ∴当x<0时,据图像的对称性知f(x)<0 ∴当x≠0时,恒有f(x)<0 即x1-2x<x2(x≠0) 练习9:已知a>b,2b>a+c,求证:b-b2-ab<a<b+b2-ab 2构造图形法 例12:若f(x)=1+x2,a≠b,则|f(x)-f(b)|< |a-b| 分析:由1+x2 的结构可知这是直角坐标平面上两点A(1,x),0(0,0)的距离即 1+x2 =(1-0)2+(x-0)2 于是如下图,设A(1,a),B(1,b)则0A= 1+a2 0B=1+b2 |AB|=|a-b|又0A|-|0B<|AB|∴|f(a)-f(b)|<|a-b| 练习10:设a≥c,b≥c,c≥0,求证 c(a-c)+c(b-c)≤ab 10添项法 某些不等式的证明若能优先考虑“添项”技巧,能得到快速求解的效果。 1倍数添项 若不等式中含有奇数项的和,可通过对不等式乘以2变成偶数项的和,然后分组利用已知不等式进行放缩。 例13:已知a、b、c∈R+,那么a3+b3+c3≥3abc(当且仅当a=b=c时等号成立)证明:∵a、b、c∈R+ ∴a3+b3+c3=12 [(a3+b3)+(b3+c3)+(c3+a3)]≥12 [(a2b+ab2)+(b2c+bc2)+(c2a+ca2)]=12[a(b2+c2)+b(c2+a2)+c(a2+b2)]≥12(a·2bc+b·2ca+c·2ac)=3abc 当且仅当a=b,b=c,c=a即a=b=c时,等号成立。 2平方添项 运用此法必须注意原不等号的方向 例14 :对于一切大于1的自然数n,求证: (1+13)(1+15)…(1+12n-1> 2n+1 2) 证明:∵b > a> 0,m> 0时ba> b+ma+m ∵ [(1+13)(1+15)…(1+12n-1)]2=(43、65…2n2n-1)(43、65…2n2n-1)>(54、76…2n+12n)(43、65…2n2n-1)=2n+13> 2n+14> ∴(1+13)(1+15)…(1+12n-1)>2n+1 2) 3平均值添项 例15:在△ABC中,求证sinA+sinB+sinC≤3 32分析:∵A+B+C=π,可按A、B、C的算术平均值添项sin π 3证明:先证命题:若x>0,y<π,则sinx+siny≤2sin x+y2(当且仅当x=y时等号成立)∵0<x+y2< π,-π2< x-y2< π2sinx+siny=2sin x+y2cosx-y 2∴上式成立 反复运用这个命题,得sinA+sinB+sinC+sin π3≤2sinA+B2+2sinc+π32≤2·2sinA+B2+c+π322 =4sinπ3=332 ∴sinA+sinB≠sinC≤332 练习11 在△ABC中,sin A2sinB2sinC2≤18 4利用均值不等式等号成立的条件添项 例16 :已知a、b∈R+,a≠b且a+b=1,求证a4+b4> 18 分析:若取消a≠b的限制则a=b= 12时,等号成立 证明:∵a、b∈R+∴a4+3(12)4 ≥ 44a4 [(12)4]3=12a① 同理b4+3(12)4 ≥b② ∴a4+b4≥12(a+b)-6(12)4=12-6(12)4=18③ ∵a≠b ∴①②中等号不成立∴③中等号不成立∴ 原不等式成立 1.是否存在常数c,使得不等式 x2x+y+yx+2y≤c≤xx+2y+y2x+y对任意正数x,y恒成立? 错解:证明不等式x2x+y+ yx+2y≤xx+2y+y2x+y恒成立,故说明c存在。 正解:x=y得23 ≤c≤23,故猜想c= 23,下证不等式 x2x+y+ yx+2y≤23≤xx+2y+y2x+y恒成立。要证不等式xx+2y+xx+2y≤23,因为x,y是正数,即证3x(x+2y)+3y(2x+y)≤2(2 x+y)(x+2y),也即证3x2+12xy+3y2 ≤2(2x2+2y2+5xy),即2xy≤x2+y2,而此不等式恒成立,同理不等式 23≤xx+2y+y2x+y也成立,故存在c=23 使原不等式恒成立。 6.2已知x,y,z∈R+,求证:x2y2+y2z2+z2x2x+y+z ≥ xyz 错解:∵ x2y2+y2z2+z2x2≥ 3 3x2y2y2z2z2x2=3xyz3xyz 又x+y+z ≥ 3xyz ∴x2y2+y2z2+z2x2x+y+z≥ 3xyz33xyz33xyz=xyz 错因:根据不等式的性质:若a >b> 0,c >d >0,则ac bd,但 ac>bd却不一定成立 正解:x2y2+y2z2≥ 2x y2z,y2z2+z2x2≥ 2x yz2,x2y2+z2x2≥ 2x 2yz,以上三式相加,化简得:x2y2+y2z2+z2x2≥xyz(x+y+z),两边同除以x+y+z: x2y2+y2z2+z2x2x+y+z ≥ xyz 6.3 设x+y>0,n为偶数,求证yn-1xn+xn-1yn≥ 1x 1y 错证:∵yn-1xn+xn-1yn-1x-1y =(xn-yn)(xn-1-yn-1)xnyn n为偶数,∴ xnyn >0,又xn-yn和xn-1-yn- 1同号,∴yn-1xn+xn-1yn≥ 1x-1y 错因:在x+y>0的条件下,n为偶数时,xn-yn和xn-1-yn-1不一定同号,应分x、y同号和异号两种情况讨论。 正解:应用比较法: yn-1xn+xn-1yn-1x-1y=(xn-yn)(xn-1-yn-1)xnyn ① 当x>0,y>0时,(xn-yn)(xn-1-yn-1)≥ 0,(xy)n >0 所以(xn-yn)(xn-1-yn-1)xnyn ≥0故:yn-1xn+xn-1yn≥ 1x-1y ② 当x,y有一个是负值时,不妨设x>0,y<0,且x+y>0,所以x>|y| 又n为偶数时,所以(xn-yn)(xn-1-yn-1)>0 又(xy)n >0,所以(xn-yn)(xn-1-yn-1)xnyn ≥0即 yn-1xn+xn-1yn≥ 1x-1y 综合①②知原不等式成立 安康学院 数统系数学与应用数学 专业 11 级本科生 论文(设计)选题实习报告 11级数学与应用数学专业《科研训练2》评分表 注:综合评分60的为“及格”; <60分的为“不及格”。第四篇:证明不等式方法
第五篇:不等式证明若干方法