第一篇:GPS在控制测量中的应用前景
试说明GPS在控制测量中的应用前景
一、GPS在城市领域范围控制测量中的应用研究。为加快郑州市城市化进程,代写工程管理硕士毕业论文扩大城市规模,把郑州建设成为国家区域性中心城市,河南目前正在实施“中心城市群”带动战略,要在郑东新区已经基本成形的基础上加快推进“大郑东新区”建设。常规控制测量如三角测量、导线测量,要求点间通视,费工费时,而且精度不均匀。GPS测量无需点间通视且能够高精度地进行各种控制测量。区域GPS控制网的特点是控制区域有限(或一个市或一个地区),边长短(一般从几百米到20km),观测时间短(静态定位的几十分钟至
一、两个小时),就其作用而言分为:1)建立新的地面控制网;2)检核和改善已有地面网;3)对已有的地面网进行加密;4)拟合区域大地水准面。GPS测量技术在区域控制测量中的应用,证明了以下结论:采用GPS技术进行高等级控制网的测量具有高精度、全天候、高效率、多功能、操作简便等优点。GPS新技术用于超大城区控制在资金和时间上有明显优势。用较短的作业时间达到了预期的目的。为保证按时完成其他测绘工程打下了坚实的基础。用较少的投入取得了控制面积100km2的测绘成果。用高精度保证了后工序各项成果的数学精度,该项目已顺利通过验收,全部成果质量被评为优。
二、GPS技术在公路测量中的应用前景探讨。GPS技术应用于公路测量是公路外业勘测的一项重大技术革命,其应用及开发的前景十分广阔。尤其是实时动态(RTK)定位技术在公路测量中蕴含着巨大的技术潜力,GPS中的RTK技术在公路测量中的应用及其对公路勘测的巨大推进作用。实时动态(RTK)定位有快速静态定位和动态定位两种测量模式,两种定位模式相结合,在公路工程中的应用可以覆盖公路勘测、施工放样、监理和GIS(地理信息系统)前端数据采集。GPS在公路勘测中的应用,对高等级公路的勘测手段和作业方法产生了革命性的变革,极大地提高了勘测精度和勘测效率,特别是实时动态(RTK)定位技术将在公路勘测、施工和后期养护、管理方面有着广阔的应用前景。
三、GPS在大地控制测量中的应用。GPS定位技术以其精度高、速度快、费用省、操作简便等优良特性被广泛应用于大地控制测量中。GPS网分为两大类:一类是全球或全国性的高精度GPS网,这类GPS网中相邻点的距离在数千公里至上万公里,其主要任务是作为全球高精度坐标框架或全国高精度坐标框架,为全球性地球动力学和空间科学方面的科学研究工作服务,或用以研究地区性的板块运动或地壳形变规律等问题。另一类是区域性的GPS网,包括城市或矿区GPS网,GPS工程网等,这类网中的相邻点间的距离为几公里至几十公里,其主要任务是直接为国民经济建设服务。作为大地测量的科研任务是研究地球的形状及其随时间的变化,因此建立全球覆盖的坐标系统一的高精度大地控制网是大地测量工作者多年来一直梦寐以求的。直到空间技术和射电天文技术高度发达,才得以建立跨洲际的全球大地网,但由于vlbi、slr 技术的设备昂贵且非常笨重,因此在全球也只有少数高精度大地点,直到GPS技术逐步完善的今天才使全球覆盖的高精度GPS网得以实现,从而建立起了高精度的(在1-2cm)全球统一的动态坐标框架,为大地测量的科学研究及相关地学研究打下了坚实的基础。GPS网的特点是控制区域有限(或一个市或一个地区),边长短(一般从几百米到20km),观测时间短(从快速静态定位的几分钟至一两个小时)。由于GPS定位的高精度、快速度、省费用等优点,建立区域大地控制网的手段我国已基本被GPS技术所取代。就其作用而言分为建立新的地面控制网;检核和改善已有地面网;对已有的地面网进行加密;拟合区域大地水准面。
第二篇:GPS在公路工程控制测量中的应用
GPS在公路工程控制测量中的应用 摘要:GPS(Global Positioning System)全球定位系统是美国研制并在1994年投入使用的卫星导航与定位系统。其应用技术已遍及国民经济的各个领域。在测量领域,GPS系统已广泛用于大地测量、工程测量、航空摄影测量以及地形测量等各个方面。本文将以开封市的省公路路网项目为例,概略叙述GPS系统在公路工程控制测量中的应用。
关键词:GPS定位系统 公路工程 控制测量 应用
一、概述
GPS全球定位系统(Global Positioning System)在公路工程测量中的应用,在最近的两年得到了迅速推广,这主要依赖于GPS系统可以向全球任何用户全天候地连续提供高精度的三维坐标、三维速度和时间信息等技术参数。我们先了解一下GPS系统的组成,工作原理以及在测量领域的应用特点。
1.1GPS系统的组成GPS全球定位系统由空间卫星群和地面监控系统两大部分组成,除此之外,测量用户当然还应有卫星接收设备。
1.1.1 空间卫星群 GPS的空间卫星群由24颗高约20万公里的GPS卫星群组成,并均匀分布在6个轨道面上,各平面之间交角为60o,轨道和地球赤道的倾角为55o,卫星的轨道运行周期为11小时58分,这样可以保证在任何时间和任何地点地平线以上可以接收4到11颗GPS卫星发送出的信号。
1.1.2 GPS的地面控制系统 GPS的地面控制系统包括一个主控站、三个注入站和五个监测站,主控站的作用是根据各监控站对 GPS的观测数据计算卫星的星历和卫星钟的改正参数等并将这些数据通过注入站注入到卫星中去;同时还对卫星进行控制,向卫星发布指令,调度备用卫星等。监控站的作用是接收卫星信号,监测卫星工作状态。注入站的作用是将主控站计算的数据注入到卫星中去。GPS地面控制系统主要设立在大西洋、印度洋、太平洋和美国本土。
1.1.3 GPS的用户部分由GPS接收机、数据处理软件及相应的用户设备如计算机、气象仪器等组成,其作用是接收GPS卫星发出的信号,利用信号进行导航定位等。在测量领域,随着现代的科学技术的发展,体积小、重量轻便于携带的GPS定位装置和高精度的技术指标为工程测量带来了极大的方便。例如:我们在控制测量中使用的天宝(Trimble)4800GPS测地型接收机其技术指标为:
双频主机、天线,RTK电台一体化;
独特的电池设计、无需接线,使用4h以上;
5次/秒的快速位置更新,可靠的卫星“超跟踪”技术;
新型于薄式控制器,4M或10M的PCMCIA数据存储卡;
测量精度:静态测量5mm+lppm
RTK测量 10mm十1ppm(平面)
20mm十1ppm(高程)
这些技术指标充分的满足了控制测量的精度要求。
1.2GPS的工作原理
GPS系统是一种采用距离交会法的卫星导航定位系统。在需要的位置P点架设GPS接收机,在某一时刻ti同时接收了3颗(A、B、C)以上的GPS卫星所发出的导航电文,通过一系列数据处理和计算可求得该时刻GPS接收机至GPS卫星的距离SAP、SBP、SCP,同样通过接收卫星星历可获得该时刻这些卫星在空间的位置(三维坐标)。从而用距离交会的方法求得 P点的维坐标(Xp,Yp,Zp),其数学式为:
SAP2=[(Xp-XA)2+(Yp-YA)2+(Zp+ZA)2]
SBP2=[(Xp-XB)2+(Yp-YB)2+(Zp+ZB)2]
SCP2=[(Xp-XC)2+(Yp-YC)2+(Zp+ZC)2]
式中(XA,YA,ZA),(XB,YB,ZB),(XC,YC,ZC)分别为卫星A,B,C 在时刻ti的空间直角坐标。在GPS测量中通常采用两类坐标系统,一类是在空间固定的坐标系统,另一类是与地球体相固联的坐标系统,称地固坐标系统,我们在公路工程控制测量中常用地固坐标系统。(如: WGS-84世界大地坐标系和1980年西安大地坐标系。)在实际使用中需要根据坐标系统间的转换参数进行坐标系统的变换,来求出所使用的坐标系统的坐标。这样更有利于表达地面控制点的位置和处理GPS观测成果,因此在测量中被得到了广泛的应用。
二 GPS测量的技术特点
相对于常规的测量方法来讲,GPS测量有以下特点:
2.1 测站之间无需通视。测站间相互通视一直是测量学的难题。GPS这一特点,使得选点更加灵活方便。但测站上空必须开阔,以使接收GPS卫星信号不受干扰。
2.2 定位精度高。一般双频GPS接收机基线解精度为5mm+1ppm,而红外仪标称精度为5mm+5ppm,GPS测量精度与红外仪相当,但随着距离的增长,GPS测量优越性愈加突出。大量实验证明,在小于50公里的基线上,其相对定位精度可达12×10-6,而在100~500公里的基线上可达10-6~10-7。
2.3 观测时间短。观测时间短采用GPS布设控制网时每个测站上的观测时间一般在30~40min左右,采用快速静态定位方法,观测时间更短。例如使用Timble4800GPS接收机的RTK法可在5s以内求得测点坐标。
2.4 提供三维坐标。GPS测量在精确测定观测站平面位置的同时,可以精确测定观测站的大地高程。
2.5 操作简便。GPS测量的自动化程度很高。目前GPS接收机已趋小型化和操作傻瓜化,观测人员只需将天线对中、整平,量取天线高打开电源即可进行自动观测,利用数据处理软件对数据进行处理即求得测点三维坐标。而其它观测工作如卫星的捕获,跟踪观测等均由仪器自动完成。
2.6 全天候作业。GPS观测可在任何地点,任何时间连续地进行,一般不受天气状况的影响。
三、GPS系统在实际测量工作中的应用,公路工程的测量主要应用了GPS的两大功能:静态功能和动态功能。静态功能是通过接收到的卫星信息,确定地面某点的三维坐标;动态功能是通过卫星系统,把已知的三维坐标点位,实地放样地面上。开封市的省路网改造项目应用GPS测量是于2001年开始的,2002年在省道豫04线和尉氏--通许段48公里的中线测量和国道310线郑汴高速连接线11.8公里的控制测量中推广使用了静态功能这一技术。据开封市公路工程勘察设计院有关专家介绍,经过多次的复测验证,GPS技术定线测量的精度可以完全满足公路勘察设计和公路建设的精度要求。
3.1 国道310线郑汴高速连接线控制测量
3.1.1建立布网方案
国道310线郑汴高速连接线北连郑汴高速,向南穿越正在开发的开封经济技术园区,地物地貌较为复杂,部分区域和方向有遮挡,该测区内原有BJ54坐标系的E级控制点二个(已知起算点),其中a1(X=3852759.5680,Y=528870.9190,H=72.0080)位于医药商厦门前,b1(X=3852808.6230,Y=527915.2590,H=72.0000)位于大学西边的路口处,根据工程需要在市委、水利局、书店、雕塑、检察院附近加密控制点,以便于测设,我们建立控制网。
3.1.2 大地测量法
主要采用大地测量仪器如经
纬仪、全站仪、测距仪等。国道
310线郑汴高速连接线控制网采用
测边网,高程采用测距三角高程,按照观测技术要求进行施测。外
业观测数据经数据处理并进行平差计算。
3.1.3 GPS静态测量法GPS静态测量法就是根据制定的观测方案,将三台天宝4800GPS接收机安置在待定点(a2,c1,c2,c3)上同时接收卫星信号,直至将所有环路观测完毕。观测数据经平差计算得到54北京坐标系的坐标。
3.1.4大地测量法与GPS测量法结果比较
由于两种测量方法本身的测量误差和坐标转换数学模型误差以及在平差计算中观测量权配置等因素引起两种测量方法的结果存在一定的差值,由于其三维坐标差值均小于±10mm,因此可以满足国道310线郑汴高速连接线加密施工控制网的精度要求。
3.2 GPS的动态测量(RTK)在东京大道新建工程的应用
东京大道新建工程周围地势起伏较大,在北城墙外JD4~JD5区间穿越五十公顷面积的国家森林公园,大范围的密林、密灌地使通视较为困难,而规范对附合导线长、闭合导线长及结点导线间长度等有严格规定,一般对于高等级公路均要求达到一级导线要求。这样,导线附合或闭合长度和结点导线结点间距等指标都有严格规定,这种要求一般在实际作业中难以达到,往往出现超规范作业。开封市公路局勘察设计院于2000年用10人花费20天时间,用全站仪和测距仪通
过导线形式完成了该路段进行了控制测量。2001年在工程开工前对 该路段实施GPS的RTK动态测量,对中线进行恢复和校核。
以已知控制点 JD4、JD5为基准点,然后在基准点JD4上架设GPS基准台,用GPS1H和GPS2两台天宝(Trimble)4800GPS接收机分别安置在控制点上,测出点HZ4、ZD7、ZD8、ZD9、ZD10、ZH5、的三维坐标,每点测量时间为5s。根据所测坐标计算出相应边长值。
为验证市勘察设计院2000年的对东京大道新建工程在控制测量的精度,我们分别以JD4和JD5为基准站对国家森林公园周围原加密的控制点A、B、C、D、E也进行了RTK测量,进行了坐标比较。
运用GPS测量的基线有14条,边长差值最大为16mm。控制点坐标测量点数7点,除E点发现有人为的破坏痕迹外,三维坐标能够比较的元素有27个,差值小于施工测量规范规定的要求,从以上比较可知,RTK测量可以用于工程的控制测量是非常有效的新技术。原来10人20天的外业任务,使用GPS测量仅用5人6小时时间,可见利用GPS测量能大大提高作业的效率,减轻劳动强度,保证了高等级公路测设质量。
四、小结
通过以上对GPS测量的应用事例的探讨,可以看出GPS在公路工程的控制测量上具有很大的发展前景:
第一 GPS作业有着极高的精度。它的作业不受环境和距离限制,非常适合于地形条件困难地区、局部重点工程地区等。
第二 GPS测量可以大大提高工作及成果质量。它不受人为因素的影响。整个作业过程全由微电子技术、计算机技术控制,自动记录、自动数据预处理、自动平差计算。
第三 GPSRTK技术将彻底改变公路测量模式。RTK能实时地得出所在位置的空间三维坐标。这种技术非常适合路线、桥、隧勘察。它可以直接进行实地实时放样、中桩测量、点位测量等。
第四 GPS测量可以极大地降低劳动作业强度,减少野外砍伐工作量,提高作业效率。一般GPS测量作业效率为常规测量方法的3倍以上。
第五 GPS高精度高程测量同高精度的平面测量一样,是GPS测量应用的重要领域。特别是在当前高等级公路逐渐向山岭重丘区发展的形势下,往往由于这
些地区地形条件的限制,实施常规的几何水准测量有困难,GPS高程测量无疑是一种有效的手段。
第三篇:GPS在国土资源管理中的应用及前景
GPS在国土资源管理中的应用及前景
【摘 要】GPS技术经过这些年的发展,日益成熟,广泛应用于各种行业,它与GIS技术的有机结合将成为人们信息处理最强有力的工具。GPS技术在国土资源管理工作中发挥重要作用。本文着重阐述了GP5在土地测绘中的应用以及前景预测。
【关键词】地籍测量;动态监测;勘测定界
GPS技术具有速度快、精度高、效益好等优点,在国土资源管理领域应用中取得了良好效果,并且随着我国土地使用制度改革的不断深化,GPS应用前景更加广阔。
1.GPS在地籍测量中的应用
1.1GPS在地籍控制测量中的应用
根据国家土地局颁布的《城镇地籍调查规程》要求,地籍平面控制网可布设为二、三、四等三角网、三边网及边角网,一、二级小三角网,并且各等级地籍平面控制网点,根据城镇规模均可作为首级控制。四等网中最弱相邻点的相对点位中误差及四等以下网最弱点(相对于起算点)的点位中误差不得超过5cm。《全球定位系统实时动态(RTK)测量技术规范》中一二三级控制点的点位中误差≤5cm,完全满足《城镇地籍调查规程》的要求。所以,严格按照《全球定位系统实时动态(RTK)测量技术规范》的要求,先用合适的仪器,无论做动态RTK测量或静态测量,所得控制结果应满足《城镇地籍调查规程》要求。
1.2把GPS新技术引入地籍要素测量中
地籍要素测量的内容有:界址点、线及重要的界村设施,行政区域和地籍区、地籍子区的界线,建筑物和永久性的构筑物地类界和保护区的界线。由地籍调查规程所知,界址点分为1至3级,界址点相对于邻近控制点点位误差和相邻界址点间的间距误差中误差分别为5cm、10cm、15cm。应用GPS迸行地籍控制测量,不要求通视,这样避免了常规地籍控制工作点位选取的局限条件,利用GPS的RTK技术能满足上述精度要求,建议在适合GPS技术的测区使用该项技术。配合全站仪等测量工具,采用极坐标法、图解交会法等进行测量,这样有利于加快地籍细部测量进度。
2.手持式GPS接收机在土地利用动态监测中的应用
监察工作作为国土资源管理工作的重要方面,具有时效性。在当前的工作模式下,由国土监察人员在动态巡察时,发现有违法用地或违法采矿时,通知测绘部门进行实地测绘、定位、面积计算工作。这种工作模式效率低,同时存在人为因素。而在新近国土资源部推出监察试点城市,即将配备的动态监察车辆中,有摄像头、手持GPS接收机、上网部件等设备,摄像头拍摄违法现状,手持GPS接收机实测违法用地或违法采矿点点位坐标和范围,并通过网络将数据发至省级国土部门和国土资源部监察部门。这种工作模式将使监测速度和精度大大提高,克服了传统监测方法的种种弊端。省时省工,适用于各种各样复杂的变更情况,真正地实现了动态监测的实时性和数值化,保证了土地利用现状调查的现势性。目前,国内土地动态监测系统还不完善,由此,把尖端的GPS技术应用于土地利用动态监测的大胆尝试,将大大加快动态监测的进程.为形成实时、高效的动态监测体系奠定基础。但是,手持差分型GPS接收机的内业数据处理软件中的绘图模块所绘制图件与土地利用现状图相差较大.由此就存在着野外实测与内业成图的不匹配。利用GPS差分技术进行监测点定位,定位数据使用微机软件自动成图,解决好野外监测与内业成图的连续性,在这方面还有待于有关人员研究开发。
3.实时动态定位(RTK)技术在建设用地勘测定界中的应用
土地勘测定界是根据土地征收、征用、划拨、出让、农用地转用、土地利用规划及土地开发、整理、复垦等工作的需要,实地界定土地使用范围、测定界址位置、调绘土地利用现状,计算用地面积,为国土资源行政主管部门用地地籍管理等提供科学、准确的基础资料而进行的技术服务性工作。建设用地勘测定界的工作穆序为:审查用地文件及有关图件――现场踏勘――图上红线设计――实地放样――复核测量――面积量算――绘建设地界图――填绘建设用地管理图――资料的管理――归档。对照《土地勘测定界规程》和《全球定位系统实时动态(RTK)测量技术规范》,GPS的RTK技术完全能够满足《土地勘测定界规程》的精度要求,利用GPS的RTK技术进行勘测定界放样,能避免解析法放样、关系距离放样等放样方法的复杂性,同时也简化了建设用地勘测定界的工作程序,特别是对公路、铁路、河道、输电线路等线性工程和特大工程的放样更为有效和实用。
4.GPS与GIS的有机结合对地籍信息系统的影响
GIS技术即地理信息系统,最早由土地部门发展起来,是在计算机硬件和软件技术下,运用地理信息科学和系统工程理论,科学管理和综合分析各种地理数据,提供管理、模拟、决策、规划、预测和预报等任务所需要的各种地理信息的技术系统。它在国土管理方面应用主要包括:土地管理信息系统、土地利用动态监测系统和地籍管理信息系统。GPS由于定位的高精度和应用的灵活性,目前已经成为土地调查中进行空间定位的主要手段。在土地资源分布调查中,GPS可以作为独立数据获取手段之一。对于权属划拨引起的用地类型改变的情况,可以使用GPS接收机在野外获取变化区域的定位数据,在此基础上对土地资源数据库进行更新。此外,在土地利用动态监测中,GPS可以作为遥感技术的辅助定位手段。
随着GPS技术的不断发展,特别是GPS、GIS、R S(遥感系统)的有机结合,GPS将在国土资源管理工作中应用更为广泛。GPS技术在国土领域发挥重大作用并产生巨大的经济效益和社会效益。
【参考文献】
[1]城镇地籍调查规程.
[2]土地勘测定界规程.
[3]全球定位系统实时动态(RTK)测量技术规范.
[4]现代应用测量学,西安地图出版社,ISBN7-80670-514-7.
第四篇:GPS在高速公路测量中的应用
GPS测量的特点
相对于经典测量学来说,GPS测量主要有以下特点:
--测站之间无需通视。测站间相互通视一直是测量学的难题。GPS这一特点,使得选点更加灵活方便。但测站上空必须开阔,以使接收GPS卫星信号不受干扰。
--定位精度高。一般双频GPS接收机基线解精度为5mm+1ppm,而红外仪标称精度为5mm+5ppm,GPS测量精度与红外仪相当,但随着距离的增长,GPS测量优越性愈加突出。大量实验证明,在小于50公里的基线上,其相对定位精度可达12×10-6,而在100~500公里的基线上可达10-6~10-7。
--观测时间短。在小于20公里的短基线上,快速相对定位一般只需5分钟观测时间即可。
--提供三维坐标。GPS测量在精确测定观测站平面位置的同时,可以精确测定观测站的大地高程。
--操作简便。GPS测量的自动化程度很高。在观测中测量员的主要任务是安装并开关仪器、量取仪器高和监视仪器的工作状态,而其它观测工作如卫星的捕获,跟踪观测等均由仪器自动完成。
--全天候作业。GPS观测可在任何地点,任何时间连续地进行,一般不受天气状况的影响。
GPS测量在公路测量中的应用
公路路线一般处在一条带状走廊内。其平面控制测量往往采用导线形式,这包括附合导线、闭合导线、结点导线等导线网形式。对于重要构造物如大桥、特大桥、长大隧道等,也有布设成三角网、线形锁等形式。
--常规测量方法的缺陷:
1、规范对附合导线长、闭合导线长及结点导线间长度等有严格规定,一般对于高等级公路均要求达到一级导线要求。这样,导线附合或闭合长度最长不得超过10公里,结点导线结点间距不能超过附合导线长度的0.7倍。这种要求一般在实际作业中难以达到,往往出现超规范作业。
2、搜集到的用于路线测量控制的起算点间一般很难保证为同一测量系统,往往国测、军测、城市控制点混杂一起,这就存在系统间的兼容性问题,如果用不兼容的起算点,势必影响测量质量。
3、国家大地点破坏严重,影响测量作业。由于国家基础控制点,大多为五六十年代完成,经过30多年,有些点由于经济建设的需要被破坏,有些点则由于人们缺乏知识遭人为破坏。在这些地区进行路线测量作业,往往在50公里以上均找不到导线的联测点。这样路线控制测量的质量得不到保证。
4、地面通视困难往往影响常规测量的实施。一般路线的控制点要求布设在距路线的300米范围内。由于通视的原因,这一条件难以满足,甚至在大范围密林、密灌及青纱帐地区,根本无法实施常规控制测量。
对于长大隧道,特大桥用常规测量有下列局限:
1、长大隧道、特大桥等构造物一般要求测量等级在四等以上。用常规测量方法,往往采用增加测回数,延长观测时间等费时、费工的方法来设法提高精度。
2、长大隧道、特大桥多为地形复杂困难地带,进行常规控制测量,为通视和网形,往往砍伐工作量相当大,这样测设费用很大,作业艰苦。
3、长大隧道及特大桥的控制网高精度及与路线网的低精度衔接,虽说用平差方法可以得到克服,但由于地形条件困难,其联结的测量工作量很大,且不太方便。实际工作中,构造物的控制测量与路线的控制测量经常出现脱节现象。
利用GPS测量能克服上述列举的缺陷,并提高作业的效率,减轻劳动强度,保证了高等级公路测设质量。
--GPS测量用于加密国家控制点:
京珠国道主干线粤境高速公路汤塘至广州北二环段路线长约60公里,所处地形为重丘区,路线设计为6车道。
该段有11个各种系统的平面控制点,经过实地寻找,找出了7个,有4个被破坏,破坏中有2个国家Ⅱ等点。在已找出的的7个控制点中,国家测绘局系统Ⅰ等点1个,Ⅲ等点1个;城市测量系统点2个;总参军控点3个。这些平面控制点分属不同测量系统,且等级不同。
为提高京珠国道粤境高速公路汤塘至广州北二环段测设质量,决定在国家测绘系统基础进行控制点的加密。加密的控制点布设方案是:沿公路路线每10km布设一对点,该对点相距约1km,且应通视良好。这样,该段共设了6对GPS加密点,加密点的精度要达到四等控制网的要求。GPS四等网由18个点组成,其网形略图如图1。(图1 汤塘至广州北二环GPS四等国家大地点加密)
该四等网采用4台Trimble SE400单频接收机作业。该机的标称精度为10mm+2PPm。四等网的观测时间为90min。数据采样间隔为15s。
基线预处理采用厂家提供的TrimvecPlus软件,平差计算采用武汉测绘科技大学编制的GPSADJ Ver2.0软件包。
通过平差处理,该四等网最弱点位中误差为4.11cm,平均点位中误差3.18cm,最弱边相对中误差1/27669,平均边长相对中误差1/453578。
整个四等网作业仅花4d时间。其效率较常规测量手段至少提高3倍。
在此基础上,我院同湖北省测绘局、湖南省第二测绘院合作,在京珠国道主干线湖南耒阳广州花都段进行了近600km的GPS加密国家控制点的测量。该地区路线跨越南岭山脉,沿线山高深、植被茂盛、地形地貌复杂、通视条件极差。国家一、二等三角点破坏严重,测设内可供利用的三角点稀少,在路线走廊范围内仅找到7个保存完好的国家三角点。
经过平差处理,网中最弱点点位中误差为4.13cm,最弱边相对中误差为1/12.5万。控制网的各项指标达到甚至超过国家四等网的技术要求。
近600km的GPS控制网,仅用两个外业组,10个作业员,7台GPS接收机,约20d的作业时间。若采用常规测量方法在相同人手的情况下,至少需要三个月的时间才能完成。
GPS测量用于隧道控制测量
在京珠国道主干线粤境高速公路翁城县境内有座靠椅山双洞直线型平行隧道,初测的左、右洞起讫桩号分别为ZK144+710~ZK147+730,YK144+730~YK147+740。其洞长分别为3020m和3010m。根据《公路隧道勘测规程》中对隧道类别划分标准,属公路特长隧道,洞外测量在贯 通面上对贯通误差影响值限值为±55mm。
靠椅山隧道地处亚热带地区,雨量充沛、荆剌丛生,沟深林密,野外作业条件十分艰苦,采用常规方法不仅费时费力,而且选点困难,砍伐工作量大。结合靠椅山地形特征,采用GPS测量,布设了如图2所示的GPS控制网。
靠椅山隧道控制网由14个点组成,网中最短边长为100.842m,最大边长为3597.4m,平均边长为1104.848m。
采用Wild 200 GPS接收机进行静态观测,观测时间为20~50min,采样率为10s,共观测了29条基线向量。
经过平差处理,网中最弱边相对精度为1/60106,最高相对精度达1/137万;最弱点位中误差为±0.83cm。在贯通面上贯通误差左、右线分别为±0.707cm和±0.693cm。
通过实施GPS测量可看出:GPS测量灵活、方便,能大大节省人力、物力、减少野外砍伐工作量,减少一些不必要的过渡点;具有极高的精度,它完全能达到《公路勘察规程》对隧道测量的要求;较红外仪导线测量,可提高效率4~5倍。
GPS用于特大桥控制测量
鄂黄长江公路大桥是连结长江两岸黄冈市和鄂州市的公路特大桥。为便于大桥设计和施工,采用GPS对首选方案Ⅲ、Ⅳ桥位进行Ⅲ等平面控制测量。布网设计方案为双大地四边形(如图3)。垂直于江面的长边约为1200m,平行于江面的短边约为500m。双大地四边形与两个国家Ⅱ等以上大地点联测。
经过平差处理,控制网精度为:最弱点位中误差1.93cm,最弱边长相对中误差1/113000,满足了Ⅲ等平面控制测量的精度要求。
GPS测量用于导线控制测量京深高速公路河北境高邑至邢台段地处华北平原,地势平坦,最大相对高差约20m,平均海拔约50m,境内村庄较多。植被多为小麦及田间行树。
公路及机耕道密集。
采用三台Wild 200 GPS接收机进行导线测量,作业方式采用点连接方式,三台接收机同时作业。作业完后,向前滚动(如图4)。
?Ⅰ、Ⅱ、Ⅲ分别表示观测的同步环。
在GPS观测之前,已作高精度红外导线测量(EDM)和水准测量。
通过实际测量可以看出:
l GPS观测时间为7.5min,与常规红外仪测量相比,时间缩短了约20min,效率为4倍;与全站仪测量相比,时间缩短约8min,效率为2倍。
l GPS导线测量可靠性好,平面精度和高程精度均能满足高速公路测设的要求。
GPS测量用于摄影测量外业控制点测量
摄影测量一般沿飞行航摄的航线,每隔一定间隔就要在野外实地测量一定数量的平面和高程控制点(如图5)。野外平高控制点的间隔n按地形类别及所测地形图的比例尺而定。如1∶2000地形图,摄影比例尺为1∶10000,间隔n一般为4~6个摄影基线。
常规的野外平高控制点的测量方法是先沿航摄方向布设导线,然后在此基础上采用支导线方法测定航测象控点。这种方法主要是导线方式测量。
由于航摄面积较广,对23cm×23cm象幅,1∶10000摄影比例尺,覆盖范围为2.3km宽,双航线覆盖范围更宽,在这广阔范围内进行导线测量,往往由于实地条件的限制,其作业是相当艰苦的,且工作量大,作业周期长。
在京珠国道主干线粤境高速公路汤塘至广州北二环段这60km路线的航测外业中,利用4台TrimbleSE4000接收机,将一台或两台GPS接收机固定于已知点上,其余GPS接收机游动于像控点进行像控点三维坐标测量。全线航测像控点测量仅用5d作业时间。
经过平差处理,像控点平面点位精度达到了优于0.10m的精度,最弱边相对中误差为1/43734。
由此可见,GPS测量作航测控制,不仅具有高精度,而且具有极大的灵活性。它改变了逐步控制的测量模式,其效率较常规方法提高5倍以上。
GPS测量用于密林、密灌地区路线控制测量
随着经济的发展,高等级公路开始向山区、重丘区岭区拓展。这些地区人烟稀少,植被茂盛。成片的密林、密灌地区,水平方向通视困难,有时实施常规测量方法几乎不可能。
在海南中线新建公路海口至屯昌段测设中,自石山至永发镇约20km,植被覆盖厚,多为有剌密灌、杂草地,人迹罕见,有多个火山口。这种地区红外仪导线测量几乎没有可能。为提高高等级公路测设质量,采用GPS沿路线每隔2km作一对GPS点,这一对GPS点应保证足够的水平通视距离。
利用这2km一对的GPS通视点,就可在此基础上前后各支出不超过1km进行放线测设工作,既保证了测设工作的质量,又大大减少了作业的劳动强度,加快了测设周期。
在海南中线的20km密林密灌测设中,作了11对GPS通视点。采用TrimbleSE4000单频接收机在每个测站上观测30min,数据采样率为15s,作业方法是两台接收机处于固定点上,其余接收机游动于密林密灌区的埋设的通视点上。
经过平差处理,这22个GPS点的最弱点位精度为4.95cm,平均点位精度为2.85cm,平均边长相对中误差为1/486993。
GPS应用展望
从GPS测量中,可以看出GPS具有很大的发展前景:
首先,GPS作业有着极高的精度。它的作业不受距离限制,非常适合于国家大地点破坏严重地区、地形条件困难地区、局部重点工程地区等。
其次,GPS测量可以大大提高工作及成果质量。它不受人为因素的影响。整个作业过程全由微电子技术、计算机技术控制,自动记录、自动数据预处理、自动平差计算。
第三,GPSRTK技术将彻底改变公路测量模式。RTK能实时地得出所在位置的空间三维坐标。这种技术非常适合路线、桥、隧勘察。它可以直接进行实地实时放样、中桩测量、点位测量等。
第四,GPS测量可以极大地降低劳动作业强度,减少野外砍伐工作量,提高作业效率。一般GPS测量作业效率为常规测量方法的3倍以上。
第五,GPS高精度高程测量同高精度的平面测量一样,是GPS测量应用的重要领域。特别是在当前高等级公路逐渐向山岭重丘区发展的形势下,往往由于这些地区地形条件的限制,实施常规的几何水准测量有困难,GPS高程测量无疑是一种有效的手段。
第五篇:GPS在工程测量中的应用1
GPS在工程测量中的应用
摘 要:简述了全球定位系统(GPS)的基本结构和测量原理,总结了GPS用于工程测量所具有的特点,介绍了GPS在工程测量中的应用实例。
关键词:GPS;工程测量;应用实例全球定位系统(Global Positioning System,简称GPS)是美国从20世纪70年代开始研制的用于军事部门的新一代卫星导航与定位系统,历时20年,耗资200多亿美元,分三阶段研制,陆续投入使用,并于1994年全面建成。GPS是以卫星为基础的无线电卫星导航定位系统,它具有全能性、全球性、全天候、连续性和实时性的精密三维导航与定位功能,而且具有良好的抗干扰性和保密性。因此,GPS技术率先在大地测量、工程测量、航空摄影测量、海洋测量、城市测量等测绘领域得到了应用[1],并在军事、交通、通信、资源、管理等领域展开了研究并得到广泛应用。本文介绍GPS在山区工程测量中的应用,并提出几点体会。1 GPS简介1.1 GPS构成GPS主要由空间卫星星座、地面监控站及用户设备三部分构成。(1)GPS空间卫星星座由21颗工作卫星和3颗在轨备用卫星组成。24颗卫星均匀分布在6个轨道平面内,轨道平面的倾角为55°,卫星的平均高度为20 200 km,运行周期为11 h 58 min。卫星用L波段的两个无线电载波向广大用户连续不断地发送导航定位信号,导航定位信号中含有卫星的位置信息,使卫星成为一个动态的已知点。在地球的任何地点、任何时刻,在高度角15°以上,平均可同时观测到6颗卫星,最多可达到9颗。(2)GPS地面监控站主要由分布在全球的一个主控站、三个注入站和五个监测站组成。主控站根据各监 测站对GPS卫星的观测数据,计算各卫星的轨道参数、钟差参数等,并将这些数据编制成导航电文,传送到注入站,再由注入站将主控站发来的导航电文注入到相应卫星的存储器中。(3)GPS用户设备由GPS接收机、数据处理软件及其终端设备(如计算机)等组成。GPS接收机可捕获到按一定卫星高度截止角所选择的待测卫星的信号,跟踪卫星的运行,并对信号进行交换、放大和处理,再通过计算机和相应软件,经基线解算、网平差,求出GPS接收机中心(测站点)的三维坐标。
1.2 GPS定位原理GPS定位是根据测量中的距离交会定点原理实现的[2]。如图1所示,在待 测点Q设置GPS接收机,在某一时刻tk同时接收到3颗(或3颗以上)卫星S1、S2、S3所发出的信号。通过数据处理和计算,可求得该时刻接收机天线中心(测站点)至卫星的距离ρ
1、ρ
2、ρ3。根据卫星星历可查到该时刻3颗卫星的三维坐标(Xj,Yj,Zj),j=1,2,3,从而由下式解算出Q点的三维坐标(X,Y,Z):1.3 GPS测量的特点相对于常规测量来说,GPS测量主要有以下特点:①测量精度高。GPS观测的精度明显高于一般常规测量,在小于50 km的基线上,其相对定位精度可达1×10-6,在大于1 000 km的基线上可达1×10-8。②测站间无需通视。GPS测量不需要测站间相互通视,可根据实际需要确定点位,使得选点工作更加灵活方便。③观测时间短。随着GPS测量技术的不断完善,软件的不断更新,在进行GPS测量时,静态相对定位每站仅需20 min左右,动态相对定位仅需几秒钟。④仪器操作简便。目前GPS接收机自动化程度越来越高,操作智能化,观测人员只需对中、整平、量取天线高及开机后设定参数,接收机即可进行自动观测和记录。⑤全天候作业。GPS卫星数目多,且分布均匀,可保证在任何时间、任何地点连续进行观测,一般不受天气状况的影响。⑥提供三维坐标。GPS测量可同时精确测定测站点的三维坐标,其高程精度已可满足四等水准测量的要求。2 应用实例2.1 工程概
况本文涉及的工程由某集团公司投资建造,是一个集休闲、娱乐、旅游、渡假等功能于一体的综合项目。工程位于城郊,占地66.7 hm2多,属两山夹一沟地形,山地面积约占三分之二。最高处约90 m。山上树木茂盛,地形复杂,通视困难,行走不便。为了该工程的设计和施工,需建立首级控制网。考虑到工程复杂,工期较紧,测区通视困难,地形起伏大等因素,决定采用GPS测量。2.2 GPS测量的技术设计(1)设计依据 GPS测量的技术设计主要依据1999年建设部发布的行业标准《城市测量规范》、1997年建设部发布的行业标准《全球定位系统城市测量技术规程》[3]及工程测量合同有关要求制定的。(2)设计精度 根据工程需要和测区情况,选择城市或工程二级GPS网作为测区首级控制网。要求平均边长小于1 km,最弱边相对中误差小于1/10 000,GPS接收机标称精度的固定误差a≤15 mm,比例误差系 数b≤20×10-6。(3)设计基准和网形 如图2所示,控制网共12个点,其中联测已知平面控制点2个(I12,I13),高程控制点5个(I12,I13,105,109,110,其高程由四等水准测得)。采用3台GPS接收机观测,网形布设成边连式。(4)观测计划 根据GPS卫星的可见预报图和几何图形强度(空间位置因子PDOP),选择最佳观测时段(卫星多于4颗,且分布均匀,PDOP值小于6),并编排作业调度表。
2.3 GPS测量的外业实施(1)选点 GPS测量测站点之间不要求一定通视,图形结构也比较灵活,因此,点位选择比较方便。但考虑GPS测量的特殊性,并顾及后续测量,选点时应着重考虑:①每点最好与某一点通视,以便后续测量工作的使用;②点周围高度角15°以上不要有障碍物,以免信号被遮挡或吸收;③点位要远离大功率无线电发射源、高压电线等,以免电磁场对信号的干扰;④点位应选在视野开阔、交通方便、有利扩展、易于保存的地方,以便观测和日后使用;⑤选点结束后,按要求埋设标石,并填写点之记。(2)观测 根据GPS作业调度表的安排进行观测,采取静态相对定位,卫星高度角15°,时段长度45min,采样间隔10 s。在3个点上同时安置3台接收机天线(对中、整平、定向),量取天线高,测量气象数据,开机观察,当各项指标达到要求时,按接收机的提示输入相关数据,则接收机自动记录,观测者填写测量手簿。2.4 GPS测量的数据处理GPS网数据处理分为基线解算和网平差两个阶段,采用随机软件完成。经基线解算、质量检核、外业重测和网平差后,得到GPS控制点的三维坐标(见表1),其各项精度指标符合技术设计要求。3 结束语通过GPS在测量中的应用,得到如下体会。(1)GPS控制网选点灵活,布网方便,基本不受通视、网形的限制,特别是在地形复杂、通视困难的测区,更显其优越性。但由于测区条件较差,边长较短(平均边长不到300 m),基线相对精度较低,个别边长相对精度大于1/10 000。因此,当精度要求较高时,应避免短边,无法避免时,要谨慎观测。(2)GPS接收机观测基本实现了自动化、智能化,且观测时间在不断减少,大大降低了作业强度,观测质量主要受观测时卫星的空间分布和卫星信号的质量影响。但由于各别点的选定受地形条件限制,造成树木遮挡,影响对卫星的观测及信号的质量,经重测后通过。因此,应严格按有关要求选点,择最佳时段观测,并注意手机、步话机等设备的使用。
(3)GPS测量的数据传输和处理采用随机软件完成,只要保证接收卫星信号的质量和已知数据的数量、精度,即可方便地求出符合精度要求的控制点三维坐标。但由于联测已知高程点较少(仅联测5个),致使的控制点高程精度较低。因此,要保证控制点高程的精度,必须联测足够的已知高程点。