第一篇:学期小结--C语言学习心得
学期小结——C语言学习心得
在刚开始学习C语言的一段时间里,我总觉得C语言难懂和不容易使用。现在总结起来主要是以下三个方面的原因!
(1)只注重写程序,而忽视了读程序
学习计算机语言最好的方法是什么?很多人都认为是掌握程序思路会写程序,其实这个想法不正确,因为你连这门语言的思路都没有懂,怎么会写出真确的程序呢,所以我总结的方法是先读后写,也就是先学会读程序,再练习写程序。
读程序是学习C语言入门最快,也是最好的方法。对于没有学过任何语言的计算机初学者,最好还是先阅读教程,学习完每一章,都要认真体会这一章的所有概念,不放过这一章所提到的所有例题,仔细研读程序,直到每一行都理解了,然后找几个编程题目,最好是和例题相似的或一样的,自己试图写出这段已经读懂的程序。如果写不出来,也不要着急,回过头来再继续研究例题,想想自己为什么写不出来,然后再去写这段程序,反反复复,直到你熟练掌握为止。这是传智的尹凡老师一再强调的。在学习C语言时应该把精力先放在最基本、最常用的内容上,千万不要钻牛角尖,在一些细节上死抠,有一些细节可以随着学习的深入和实践的丰富,会自然而然的掌握的。
(2)没能将理论学习和上机实践有效结合我们学习C语言,主要是掌握程序设计的一些基本方法和技巧。因此,在重视理论学习的同时,必须加强上机实验。只有在上机实践中我们才能正真学会如何编写程序和调试程序,体会到“优化”程序;也只有通过上机实践才能更好地掌握程序设计的理论知识;同样只有通过上机实践,我们才能真正体会C程序的运行过程!
然而在平时,我们恰恰就忽视了上机实验——没有明确的实验目标,实验兴趣不大。上机时一些学生无所事事或玩游戏,不但害了自己,还影响其他同学。
(3)缺少一定逻辑思维能力
C语言其实是很基础的汇编语言,除了一些必须要记忆的关键字、语法和库函数,其余的都是需要靠自己的逻辑思维通过这些关键字、语法和库函数来组织或构成一个完整的函数,所以C语言大多数的学习时间都是在锻炼我们的抽象逻辑思维能力。只有当你具有了抽象逻辑思维能力和弄清楚了关键字、语法和库函数的相关知识后,编写C语言就不是难事了。
通过C语言初步的学习后都很容易弄懂关键字、语法和库函数的相关知识,那么如何来有效的锻炼自己的抽象逻辑思维能力呢?我的学习体会是:通过学习后所掌握的知识使用上课老师所提到的案例或找一段简单的完整的案例,然后将案例读懂,也就是把它转换成我们日常所能接受的自然语言(在这里不妨把你所能理解的自然语言写下来)。
还需注意的就是自己实在无法理解的地方不妨指出来多多请教老师和懂的同学让他们用自然语言来描述一道,并且记录下来这样可以达到事半功倍的效果。
对一个计算机程序设计的初学者来说,C语言程序设计是一门基础课,学好它是为以后在学习其他高级言(如JAVA等)打下良好基础。上个学期我对《 C程序设计》这本书从陌生、好奇到有兴趣。第一次触C语言的感觉直到现在还记忆犹新,当初的我看到的就是一个个的程序,其中的代码密密麻麻都是那么的繁琐,也很难看懂学懂。如今我对C语言有了一定的了解,对其中的小程序能独立编程,对一些较为复杂的程序能够看懂,并且可以仿造经典程序,构思、编写出能够解决小问题的程序了,我对C语言充满了信心。我想这与传智的尹凡老师的精心指导和同班同学相互学习和鼓励是分不开的。
我觉得入门还是多看些书,多实践,养成良好的编程习惯,在实践的同时多思考问题,多看别人优秀的解题思路与方法,多看别人优秀的代码,尝试自己去实现或者说模仿着去实现,让别人对你的代码多提意见,探究别人的思维过程,增强自己的思维能力,拓展视野,经常看看自己以前写的东西,有空拿出来改良改良,我想每隔一段时间,都会有意想不到的收获。
第二篇:C语言学习心得
这个我从eehome贴过来的。写的非常的好。我们用学单片机不要停在演示的基础上。只能让单片机完成局部事。这样我们永远不会走出流水灯地狱!!
学习单片机也已经有几年了,藉此机会和大家聊一下我学习过程中的一些经历和想法吧。也感谢一线工人提供了这个机会。希望大家有什么好的想法和建议都直接跟帖说出来。毕竟只有交流才能够碰撞出火花来^_^。
。“卖弄”也好,“吹嘘”也罢,我只是想认真的写写我这一路走来历经的总总,把其中值得注意,以及经验的地方写出来,权当是我对自己的一个总结吧。而作为看官的你,如果看到了我的错误,还请一定指正,这样对我以及其它读者都有帮助,而至于你如果从中能够收获到些许,那便是我最大的欣慰了。姑妄言之,姑妄听之。如果有啥好的想法和建议一定要说出来。 几年前,和众多初学者一样,我接触到了单片机,立刻被其神奇的功能所吸引,从此不能自拔。很多个日夜就这样陪伴着它度过了。期间也遇到过非常多的问题,也一度被这些问题所困惑„„等到回过头来,看到自己曾经走过的路,唏嘘不已。经常混迹于论坛里,也看到了很多初学者发的求助帖子,看到他们走在自己曾走过的弯路上,忽然想到了自己的那段日子,心里竟然莫名的冲动,凡此总总,我总是尽自己所能去回帖。很多时候,都想写一点什么东西出来,希望对广大的初学者有一点点帮助。但总是不知从何处写起。今天借一线工人的台,唱一唱我的戏
一路学习过来的过程中,帮助最大之一无疑来自于网络了。很多时候,通过网络,我们都可以获取到所需要的学习资料。但是,随着我们学习的深入,我们会慢慢发现,网络提供的东西是有限度的,好像大部分的资料都差不多,或者说是适合大部分的初学者所需,而当我们想更进一步提高时,却发现能够获取到的资料越来越少,相信各位也会有同感,铺天盖地的单片机资料中大部分不是流水灯就是LED,液晶,而且也只是仅仅作功能性的演示。于是有些人选择了放弃,或者是转移到其他兴趣上面去了,而只有少部分人选择了继续摸索下去,结合市面上的书籍,然后在网络上锲而不舍的搜集资料,再从牛人的只言片语中去体会,不断动手实践,慢慢的,也摸索出来了自己的一条路子。当然这个过程必然是艰辛的,而他学会了之后也不会在网络上轻易分享自己的学习成果。如此恶性循环下去,也就不难理解为什么初级的学习资料满天飞,而深入一点的学习资料却很少的原因了。相较于其他领域,单片机技术的封锁更加容易。尽管已经问世了很多年了,有价值的资料还是相当的欠缺,大部分的资料都是止于入门阶段或者是简单的演示实验。但是在实际工程应用中却是另外一回事。有能力的高手无暇或者是不愿公开自己的学习经验。
很多时候,我也很困惑,看到国外爱好者毫不保留的在网络上发布自己的作品,我忽然感觉到一丝丝的悲哀。也许,我们真的该转变一下思路了,帮助别人,其实也是在帮助自己。啰啰嗦嗦的说了这么多,相信大家能够明白说的是什么意思。在接下来的一段日子里,我将会结合电子工程师之家举办的主题周活动写一点自己的想法。尽可能从实用的角度去讲述。希望能够帮助更多的初学者更上一层楼。而关于这个主题周的最大主题我想了这样的一个名字“从单片机初学者迈向单片机工程师”。名字挺大挺响亮,给我的压力也挺大的,但我会努力,争取使这样的一系列文章能够带给大家一点帮助,而不是看后大跌眼镜。这样的一系列文章主要的对象是初学者,以及想从初学者更进一步提高的读者。而至于老手,以及那些牛XX的人,希望能够给我们这些初学者更多的一些指点哈~@_@
我们首先来看第一章节
从这一章开始,我们开始迈入单片机的世界。在我们开始这一章具体的学习之前,有必要给大家先说明一下。在以后的系列文章中,我们将以51内核的单片机为载体,C语言为编程语言,开发环境为KEIL uv3。至于为什么选用C语言开发,好处不言而喻,开发速度快,效率高,代码可复用率高,结构清晰,尤其是在大型的程序中,而且随着编译器的不断升级,其编译后的代码大小与汇编语言的差距越来越小。而关于C语言和汇编之争,就像那个啥,每隔一段时间总会有人挑起这个话题,如果你感兴趣,可以到网上搜索相关的帖子自行阅读。不是说汇编不重要,在很多对时序要求非常高的场合,需要利用汇编语言和C语言混合编程才能够满足系统的需求。在我们学习掌握C语言的同时,也还需要利用闲余的时间去学习了解汇编语言。
1.从点亮LED(发光二极管)开始
在市面上众多的单片机学习资料中,最基础的实验无疑于点亮LED了,即控制单片机的I/O的电平的变化。
如同如下实例代码一般
void main(void){ LedInit();While(1){ LED = ON;DelayMs(500);LED = OFF;DelayMs(500);} }
程序很简单,从它的结构可以看出,LED先点亮500MS,然后熄灭500MS,如此循环下去,形成的效果就是LED以1HZ的频率进行闪烁。下面让我们分析上面的程序有没有什么问题。
看来看出,好像很正常的啊,能有什么问题呢?这个时候我们应该换一个思路去想了。试想,整个程序除了控制LED = ON ; LED = OFF; 这两条语句外,其余的时间,全消耗在了DelayMs(500)这两个函数上。而在实际应用系统中是没有哪个系统只闪烁一只LED就其它什么事情都不做了的。因此,在这里我们要想办法,把CPU解放出来,让它不要白白浪费500MS的延时等待时间。宁可让它一遍又一遍的扫描看有哪些任务需要执行,也不要让它停留在某个地方空转消耗CPU时间。
从上面我们可以总结出
(1)无论什么时候我们都要以实际应用的角度去考虑程序的编写。
(2)无论什么时候都不要让CPU白白浪费等待,尤其是延时(超过1MS)这样的地方。
下面让我们从另外一个角度来考虑如何点亮一颗LED。先看看我们的硬件结构是什么样子的。
我手上的单片机板子是电子工程师之家的开发的学习板。就以它的实际硬件连接图来分析吧。如下图所示
(原文件名:led.jpg)
引用图片
一般的LED的正常发光电流为10~20MA而低电流LED的工作电流在2mA以下(亮度与普通发光管相同)。在上图中我们可知,当Q1~Q8引脚上面的电平为低电平时,LED发光。通过LED的电流约为(VCC-Vd)/ RA2。其中Vd为LED导通后的压降,约为1.7V左右。这个导通压降根据LED颜色的不同,以及工作电流的大小的不同,会有一定的差别。下面一些参数是网上有人测出来的,供大家参考。红色的压降为1.82-1.88V,电流5-8mA,绿色的压降为1.75-1.82V,电流3-5mA,橙色的压降为1.7-1.8V,电流3-5mA 兰色的压降为3.1-3.3V,电流8-10mA,白色的压降为3-3.2V,电流10-15mA,(供电电压5V,LED直径为5mm)
74HC573真值表如下:
(原文件名:74hc573.jpg)
引用图片
通过这个真值表我们可以看出。当OutputEnable引脚接低电平的时候,并且LatchEnable引脚为高电平的时候,Q端电平与D端电平相同。结合我们的LED硬件连接图可以知道LED_CS端为高电平时候,P0口电平的变化即Q端的电平的变化,进而引起LED的亮灭变化。由于单片机的驱动能力有限,在此,74HC573的主要作用就是起一个输出驱动的作用。需要注意的是,通过74HC573的最大电流是有限制的,否则可能会烧坏74HC573这个芯片。
上面这个图是从74HC573的DATASHEET中截取出来的,从上可以看出,每个引脚允许通过的最大电流为35mA 整个芯片允许通过的最大电流为75mA。在我们设计相应的驱动电路时候,这些参数是相当重要的,而且是最容易被初学者所忽略的地方。同时在设计的时候,要留出一定量的余量出来,不能说单个引脚允许通过的电流为35mA,你就设计为35mA,这个时候你应该把设计的上限值定在20mA左右才能保证能够稳定的工作。
(设计相应驱动电路时候,应该仔细阅读芯片的数据手册,了解每个引脚的驱动能力,以及整个芯片的驱动能力)
了解了相应的硬件后,我们再来编写驱动程序。
首先定义LED的接口 #define LED P0 然后为亮灭常数定义一个宏,由硬件连接图可以,当P0输出为低电平时候LED亮,P0输出为高电平时,LED熄灭。
#define LED_ON()LED = 0x00 //所有LED亮 #define LED_OFF()LED = 0xff //所有LED熄灭
下面到了重点了,究竟该如何释放CPU,避免其做延时空等待这样的事情呢。很简单,我们为系统产生一个1MS的时标。假定LED需要亮500MS,熄灭500MS,那么我们可以对这个1MS的时标进行计数,当这个计数值达到500时候,清零该计数值,同时把LED的状态改变。unsigned int g_u16LedTimeCount = 0;//LED计数器
unsigned char g_u8LedState = 0;//LED状态标志, 0表示亮,1表示熄灭
void LedProcess(void){ if(0 == g_u8LedState)//如果LED的状态为亮,则点亮LED { LED_ON();} else //否则熄灭LED { LED_OFF();} }
void LedStateChange(void){ if(g_bSystemTime1Ms)//系统1MS时标到 { g_bSystemTime1Ms = 0;g_u16LedTimeCount++;//LED计数器加一
if(g_u16LedTimeCount >= 500)//计数达到500,即500MS到了,改变LED的状态。{ g_u16LedTimeCount = 0;g_u8LedState =!g_u8LedState;} } }
上面有一个变量没有提到,就是g_bSystemTime1Ms。这个变量可以定义为位变量或者是其它变量,在我们的定时器中断函数中对其置位,其它函数使用该变量后,应该对其复位(清0)。我们的主函数就可以写成如下形式(示意代码)void main(void){ while(1){ LedProcess();LedStateChange();} }
因为LED的亮或者灭依赖于LED状态变量(g_u8LedState)的改变,而状态变量的改变,又依赖于LED计数器的计数值(g_u16LedTimeCount,只有计数值达到一定后,状态变量才改变)所以,两个函数都没有堵塞CPU的地方。让我们来从头到尾分析一遍整个程序的流程。
程序首先执行LedProcess();函数
因为g_u8LedState 的初始值为0(见定义,对于全局变量,在定义的时候最好给其一个确定的值)所以LED被点亮,然后退出LedStateChange()函数,执行下一个函数LedStateChange()在函数LedStateChange()内部首先判断1MS的系统时标是否到了,如果没有到就直接退出函数,如果到了,就把时标清0以便下一个时标消息的到来,同时对LED计数器加一,然后再判断LED计数器是否到达我们预先想要的值500,如果没有,则退出函数,如果有,对计数器清0,以便下次重新计数,同时把LED状态变量取反,然后退出函数。
由上面整个流程可以知道,CPU所做的事情,就是对一些计数器加一,然后根据条件改变状态,再根据这个状态来决定是否点亮LED。这些函数执行所花的时间都是相当短的,如果主程序中还有其它函数,则CPU会顺次往下执行下去。对于其它的函数(如果有的话)也要采取同样的措施,保证其不堵塞CPU,如果全部基于这种方法设计,那么对于不是非常庞大的系统,我们的系统依旧可以保证多个任务(多个函数)同时执行。系统的实时性得到了一定的保证,从宏观上看来,就是多个任务并发执行。
好了,这一章就到此为止,让我们总结一下,究竟有哪些需要注意的吧。
(1)无论什么时候我们都要以实际应用的角度去考虑程序的编写。
(2)无论什么时候都不要让CPU白白浪费等待,尤其是延时(超过1MS)这样的地方。(3)设计相应驱动电路时候,应该仔细阅读芯片的数据手册,了解每个引脚的驱动能力,以及整个芯片的驱动能力
(4)最重要的是,如何去释放CPU(参考本章的例子),这是写出合格程序的基础。
附完整程序代码(基于电子工程师之家的单片机开发板)
#include
sbit LED_SEG = P1^4;//数码管段选 sbit LED_DIG = P1^5;//数码管位选 sbit LED_CS11 = P1^6;//led控制位 sbit ir=P1^7;#define LED P0 //定义LED接口
bit g_bSystemTime1Ms = 0;// 1MS系统时标 unsigned int g_u16LedTimeCount = 0;//LED计数器
unsigned char g_u8LedState = 0;//LED状态标志, 0表示亮,1表示熄灭
#define LED_ON()LED = 0x00;//所有LED亮 #define LED_OFF()LED = 0xff;//所有LED熄灭
void Timer0Init(void){ TMOD &= 0xf0;TMOD |= 0x01;//定时器0工作方式1 TH0 = 0xfc;//定时器初始值 TL0 = 0x66;TR0 = 1;ET0 = 1;} void LedProcess(void){ if(0 == g_u8LedState)//如果LED的状态为亮,则点亮LED { LED_ON();} else //否则熄灭LED { LED_OFF();} }
void LedStateChange(void){ if(g_bSystemTime1Ms)//系统1MS时标到 { g_bSystemTime1Ms = 0;g_u16LedTimeCount++;//LED计数器加一
if(g_u16LedTimeCount >= 500)//计数达到500,即500MS到了,改变LED的状态。{ g_u16LedTimeCount = 0;g_u8LedState =!g_u8LedState;} } }
void main(void){ Timer0Init();EA = 1;LED_CS11 = 1;//74HC595输出允许
LED_SEG = 0;//数码管段选和位选禁止(因为它们和LED共用P0口)LED_DIG = 0;while(1){ LedProcess();LedStateChange();} }
void Time0Isr(void)interrupt 1 { TH0 = 0xfc;//定时器重新赋初值 TL0 = 0x66;g_bSystemTime1Ms = 1;//1MS时标标志位置位 }
“从单片机初学者迈向单片机工程师”
第三章----模块化编程初识
好的开始是成功的一半
通过上一章的学习,我想你已经掌握了如何在程序中释放CPU了。希望能够继续坚持下去。一个良好的开始是成功的一半。我们今天所做的一切都是为了在单片机编程上做的更好。
在谈论今天的主题之前,先说下我以前的一些经历。在刚开始接触到C语言程序的时候,由于学习内容所限,写的程序都不是很大,一般也就几百行而矣。所以所有的程序都完成在一个源文件里面。记得那时候大一参加学校里的一个电子设计大赛,调试了一个多星期,所有程序加起来大概将近1000行,长长的一个文件,从上浏览下来都要好半天。出了错误简单的语法错误还好定位,其它一些错误,往往找半天才找的到。那个时候开始知道了模块化编程这个东西,也尝试着开始把程序分模块编写。最开始是把相同功能的一些函数(譬如1602液晶的驱动)全部写在一个头文件(.h)文件里面,然后需要调用的地方包含进去,但是很快发现这种方法有其局限性,很容易犯重复包含的错误。
而且调用起来也很不方便。很快暑假的电子设计大赛来临了,学校对我们的单片机软件编程进行了一些培训。由于学校历年来参加国赛和省赛,因此积累了一定数量的驱动模块,那些日子,老师每天都会布置一定量的任务,让我们用这些模块组合起来,完成一定功能。而正是那些日子模块化编程的培训,使我对于模块化编程有了更进一步的认识。并且程序规范也开始慢慢注意起来。此后的日子,无论程序的大小,均采用模块化编程的方式去编写。很长一段时间以来,一直有单片机爱好者在QQ上和我一起交流。有时候,他们会发过来一些有问题的程序源文件,让我帮忙修改一下。同样是长长的一个文件,而且命名极不规范,从头看下来,着实是痛苦,说实话,还真不如我重新给他们写一个更快一些,此话到不假,因为手头积累了一定量的模块,在完成一个新的系统时候,只需要根据上层功能需求,在底层模块的支持下,可以很快方便的完成。而不需要从头到尾再一砖一瓦的重新编写。藉此,也可以看出模块化编程的一个好处,就是可重复利用率高。下面让我们揭开模块化神秘面纱,一窥其真面目。C语言源文件 *.c 提到C语言源文件,大家都不会陌生。因为我们平常写的程序代码几乎都在这个XX.C文件里面。编译器也是以此文件来进行编译并生成相应的目标文件。作为模块化编程的组成基础,我们所要实现的所有功能的源代码均在这个文件里。理想的模块化应该可以看成是一个黑盒子。即我们只关心模块提供的功能,而不管模块内部的实现细节。好比我们买了一部手机,我们只需要会用手机提供的功能即可,不需要知晓它是如何把短信发出去的,如何响应我们按键的输入,这些过程对我们用户而言,就是是一个黑盒子。
在大规模程序开发中,一个程序由很多个模块组成,很可能,这些模块的编写任务被分配到不同的人。而你在编写这个模块的时候很可能就需要利用到别人写好的模块的借口,这个时候我们关心的是,它的模块实现了什么样的接口,我该如何去调用,至于模块内部是如何组织的,对于我而言,无需过多关注。而追求接口的单一性,把不需要的细节尽可能对外部屏蔽起来,正是我们所需要注意的地方。C语言头文件 *.h 谈及到模块化编程,必然会涉及到多文件编译,也就是工程编译。在这样的一个系统中,往往会有多个C文件,而且每个C文件的作用不尽相同。在我们的C文件中,由于需要对外提供接口,因此必须有一些函数或者是变量提供给外部其它文件进行调用。假设我们有一个LCD.C文件,其提供最基本的LCD的驱动函数 LcdPutChar(char cNewValue);//在当前位置输出一个字符 而在我们的另外一个文件中需要调用此函数,那么我们该如何做呢?
头文件的作用正是在此。可以称其为一份接口描述文件。其文件内部不应该包含任何实质性的函数代码。我们可以把这个头文件理解成为一份说明书,说明的内容就是我们的模块对外提供的接口函数或者是接口变量。同时该文件也包含了一些很重要的宏定义以及一些结构体的信息,离开了这些信息,很可能就无法正常使用接口函数或者是接口变量。但是总的原则是:不该让外界知道的信息就不应该出现在头文件里,而外界调用模块内接口函数或者是接口变量所必须的信息就一定要出现在头文件里,否则,外界就无法正确的调用我们提供的接口功能。因而为了让外部函数或者文件调用我们提供的接口功能,就必须包含我们提供的这个接口描述文件----即头文件。同时,我们自身模块也需要包含这份模块头文件(因为其包含了模块源文件中所需要的宏定义或者是结构体),好比我们平常所用的文件都是一式三份一样,模块本身也需要包含这个头文件。
下面我们来定义这个头文件,一般来说,头文件的名字应该与源文件的名字保持一致,这样我们便可以清晰的知道哪个头文件是哪个源文件的描述。
于是便得到了LCD.C的头文件LCD.h 其内容如下。#ifndef _LCD_H_ #define _LCD_H_ extern LcdPutChar(char cNewValue);#endif
这与我们在源文件中定义函数时有点类似。不同的是,在其前面添加了extern 修饰符表明其是一个外部函数,可以被外部其它模块进行调用。#ifndef _LCD_H_ #define _LCD_H_ #endif
这个几条条件编译和宏定义是为了防止重复包含。假如有两个不同源文件需要调用LcdPutChar(char cNewValue)这个函数,他们分别都通过#include “Lcd.h”把这个头文件包含了进去。在第一个源文件进行编译时候,由于没有定义过 _LCD_H_ 因此 #ifndef _LCD_H_ 条件成立,于是定义_LCD_H_ 并将下面的声明包含进去。在第二个文件编译时候,由于第一个文件包含时候,已经将_LCD_H_定义过了。因此#ifndef _LCD_H_ 不成立,整个头文件内容就没有被包含。假设没有这样的条件编译语句,那么两个文件都包含了extern LcdPutChar(char cNewValue);就会引起重复包含的错误。
不得不说的typedef 很多朋友似乎了习惯程序中利用如下语句来对数据类型进行定义 #define uint unsigned int #define uchar unsigned char 然后在定义变量的时候 直接这样使用 uint g_nTimeCounter = 0;不可否认,这样确实很方便,而且对于移植起来也有一定的方便性。但是考虑下面这种情况你还会 这么认为吗?
#define PINT unsigned int * //定义unsigned int 指针类型 PINT g_npTimeCounter, g_npTimeState;那么你到底是定义了两个unsigned int 型的指针变量,还是一个指针变量,一个整形变量呢?而你的初衷又是什么呢,想定义两个unsigned int 型的指针变量吗?如果是这样,那么估计过不久就会到处抓狂找错误了。
庆幸的是C语言已经为我们考虑到了这一点。typedef 正是为此而生。为了给变量起一个别名我们可以用如下的语句
typedef unsigned int uint16;//给指向无符号整形变量起一个别名 uint16 typedef unsigned int * puint16;//给指向无符号整形变量指针起一个别名 puint16 在我们定义变量时候便可以这样定义了:
uint16 g_nTimeCounter = 0;//定义一个无符号的整形变量 puint16 g_npTimeCounter;//定义一个无符号的整形变量的指针
在我们使用51单片机的C语言编程的时候,整形变量的范围是16位,而在基于32的微处理下的整形变量是32位。倘若我们在8位单片机下编写的一些代码想要移植到32位的处理器上,那么很可能我们就需要在源文件中到处修改变量的类型定义。这是一件庞大的工作,为了考虑程序的可移植性,在一开始,我们就应该养成良好的习惯,用变量的别名进行定义。如在8位单片机的平台下,有如下一个变量定义 uint16 g_nTimeCounter = 0;如果移植32单片机的平台下,想要其的范围依旧为16位。
可以直接修改uint16 的定义,即
typedef unsigned short int uint16;这样就可以了,而不需要到源文件处处寻找并修改。
将常用的数据类型全部采用此种方法定义,形成一个头文件,便于我们以后编程直接调用。文件名 MacroAndConst.h 其内容如下:
#ifndef _MACRO_AND_CONST_H_ #define _MACRO_AND_CONST_H_
typedef unsigned int uint16;typedef unsigned int UINT;typedef unsigned int uint;typedef unsigned int UINT16;typedef unsigned int WORD;typedef unsigned int word;typedef int int16;typedef int INT16;typedef unsigned long uint32;
typedef unsigned long UINT32;typedef unsigned long DWORD;typedef unsigned long dword;typedef long int32;typedef long INT32;typedef signed char int8;typedef signed char INT8;typedef unsigned char byte;typedef unsigned char BYTE;typedef unsigned char uchar;typedef unsigned char UINT8;typedef unsigned char uint8;typedef unsigned char BOOL;#endif
至此,似乎我们对于源文件和头文件的分工以及模块化编程有那么一点概念了。那么让我们趁热打铁,将上一章的我们编写的LED闪烁函数进行模块划分并重新组织进行编译。
在上一章中我们主要完成的功能是P0口所驱动的LED以1Hz的频率闪烁。其中用到了定时器,以及LED驱动模块。因而我们可以简单的将整个工程分成三个模块,定时器模块,LED模块,以及主函数 对应的文件关系如下
main.c Timer.hTimer.c--Led.hLed.c--在开始重新编写我们的程序之前,先给大家讲一下如何在KEIL中建立工程模板吧,这个模板是我一直沿用至今。希望能够给大家一点启发。
下面的内容就主要以图片为主了。同时辅以少量文字说明。我们以芯片AT89S52为例。
(原文件名:1.jpg)
引用图片
(原文件名:2.jpg)
引用图片
(原文件名:3.jpg)
引用图片
(原文件名:4.jpg)
引用图片
(原文件名:5.jpg)
引用图片
(原文件名:6.jpg)
引用图片
(原文件名:7.jpg)
引用图片
(原文件名:8.jpg)
引用图片
(原文件名:9.jpg)
引用图片
(原文件名:10.jpg)
引用图片
(原文件名:11.jpg)
引用图片
(原文件名:12.jpg)
引用图片
(原文件名:13.jpg)
引用图片
(原文件名:14.jpg)
引用图片
(原文件名:15.jpg)
引用图片
(原文件名:16.jpg)
引用图片
(原文件名:17.jpg)
引用图片
(原文件名:18.jpg)
引用图片
(原文件名:19.jpg)
引用图片
(原文件名:20.jpg)
引用图片
(原文件名:21.jpg)
引用图片
(原文件名:22.jpg)
引用图片
OK,到此一个简单的工程模板就建立起来了,以后我们再新建源文件和头文件的时候,就可以直接保存到src文件目录下面了。
下面我们开始编写各个模块文件。
首先编写Timer.c 这个文件主要内容就是定时器初始化,以及定时器中断服务函数。其内容如下。#include
bit g_bSystemTime1Ms = 0;// 1MS系统时标
void Timer0Init(void){ TMOD &= 0xf0;TMOD |= 0x01;//定时器0工作方式1 TH0 = 0xfc;//定时器初始值 TL0 = 0x66;TR0 = 1;ET0 = 1;}
void Time0Isr(void)interrupt 1 { TH0 = 0xfc;//定时器重新赋初值 TL0 = 0x66;g_bSystemTime1Ms = 1;//1MS时标标志位置位 }
由于在Led.c文件中需要调用我们的g_bSystemTime1Ms变量。同时主函数需要调用Timer0Init()初始化函数,所以应该对这个变量和函数在头文件里作外部声明。以方便其它函数调用。
Timer.h 内容如下。#ifndef _TIMER_H_ #define _TIMER_H_
extern void Timer0Init(void);extern bit g_bSystemTime1Ms;#endif
完成了定时器模块后,我们开始编写LED驱动模块。Led.c 内容如下:
#include
static uint16 g_u16LedTimeCount = 0;//LED计数器 static uint8 g_u8LedState = 0;//LED状态标志, 0表示亮,1表示熄灭
#define LED P0 //定义LED接口
#define LED_ON()LED = 0x00;//所有LED亮 #define LED_OFF()LED = 0xff;//所有LED熄灭
void LedProcess(void){ if(0 == g_u8LedState)//如果LED的状态为亮,则点亮LED { LED_ON();} else //否则熄灭LED { LED_OFF();} }
void LedStateChange(void){ if(g_bSystemTime1Ms)//系统1MS时标到 { g_bSystemTime1Ms = 0;g_u16LedTimeCount++;//LED计数器加一
if(g_u16LedTimeCount >= 500)//计数达到500,即500MS到了,改变LED的状态。{ g_u16LedTimeCount = 0;g_u8LedState =!g_u8LedState;} } }
这个模块对外的借口只有两个函数,因此在相应的Led.h 中需要作相应的声明。Led.h 内容: #ifndef _LED_H_ #define _LED_H_
extern void LedProcess(void);extern void LedStateChange(void);#endif
这两个模块完成后,我们将其C文件添加到工程中。然后开始编写主函数里的代码。如下所示:
#include
sbit LED_SEG = P1^4;//数码管段选 sbit LED_DIG = P1^5;//数码管位选 sbit LED_CS11 = P1^6;//led控制位
void main(void){ LED_CS11 = 1;//74HC595输出允许
LED_SEG = 0;//数码管段选和位选禁止(因为它们和LED共用P0口)LED_DIG = 0;Timer0Init();EA = 1;while(1){ LedProcess();LedStateChange();} }
整个工程截图如下:
至此,第三章到此结束。
一起来总结一下我们需要注意的地方吧
[color=#FF0000]1.C语言源文件(*.c)的作用是什么 2.C语言头文件(*.h)的作用是什么 3.typedef 的作用 4.工程模板如何组织
5.如何创建一个多模块(多文件)的工程
“从单片机初学者迈向单片机工程师”之KEY主题讨论
按键程序编写的基础
从这一章开始,我们步入按键程序设计的殿堂。在基于单片机为核心构成的应用系统中,用户输入是必不可少的一部分。输入可以分很多种情况,譬如有的系统支持PS2键盘的接口,有的系统输入是基于编码器,有的系统输入是基于串口或者USB或者其它输入通道等等。在各种输入途径中,更常见的是,基于单个按键或者由单个键盘按照一定排列构成的矩阵键盘(行列键盘)。我们这一篇章主要讨论的对象就是基于单个按键的程序设计,以及矩阵键盘的程序编写。◎按键检测的原理
常见的独立按键的外观如下,相信大家并不陌生,各种常见的开发板学习板上随处可以看到他们的身影。
(原文件名:1.jpg)
引用图片
总共有四个引脚,一般情况下,处于同一边的两个引脚内部是连接在一起的,如何分辨两个引脚是否处在同一边呢?可以将按键翻转过来,处于同一边的两个引脚,有一条突起的线将他们连接一起,以标示它们俩是相连的。如果无法观察得到,用数字万用表的二极管挡位检测一下即可。搞清楚这点非常重要,对于我们画PCB的时候的封装很有益。
它们和我们的单片机系统的I/O口连接一般如下:
(原文件名:2.jpg)
引用图片
对于单片机I/O内部有上拉电阻的微控制器而言,还可以省掉外部的那个上拉电阻。简单分析一下按键检测的原理。当按键没有按下的时候,单片机I/O通过上拉电阻R接到VCC,我们在程序中读取该I/O的电平的时候,其值为1(高电平);当按键S按下的时候,该I/O被短接到GND,在程序中读取该I/O的电平的时候,其值为0(低电平)。这样,按键的按下与否,就和与该按键相连的I/O的电平的变化相对应起来。结论:我们在程序中通过检测到该I/O口电平的变化与否,即可以知道按键是否被按下,从而做出相应的响应。一切看起来很美好,是这样的吗?
◎现实并非理想
在我们通过上面的按键检测原理得出上述的结论的时候,其实忽略了一个重要的问题,那就是现实中按键按下时候的电平变化状态。我们的结论是基于理想的情况得出来的,就如同下面这幅按键按下时候对应电平变化的波形图一样:
(原文件名:3.jpg)
引用图片
而实际中,由于按键的弹片接触的时候,并不是一接触就紧紧的闭合,它还存在一定的抖动,尽管这个时间非常的短暂,但是对于我们执行时间以us为计算单位的微控制器来说,它太漫长了。因而,实际的波形图应该如下面这幅示意图一样。
(原文件名:4.jpg)
引用图片
这样便存在这样一个问题。假设我们的系统有这样功能需求:在检测到按键按下的时候,将某个I/O的状态取反。由于这种抖动的存在,使得我们的微控制器误以为是多次按键的按下,从而将某个I/O的状态不断取反,这并不是我们想要的效果,假如该I/O控制着系统中某个重要的执行的部件,那结果更不是我们所期待的。于是乎有人便提出了软件消除抖动的思想,道理很简单:抖动的时间长度是一定的,只要我们避开这段抖动时期,检测稳定的时候的电平不久可以了吗?听起来确实不错,而且实际应用起来效果也还可以。于是,各种各样的书籍中,在提到按键检测的时候,总也不忘说道软件消抖。就像下面的伪代码所描述的一样。(假设按键按下时候,低电平有效)
If(0 == io_KeyEnter)//如果有键按下了 { Delayms(20);//先延时20ms避开抖动时期
If(0 == io_KeyEnter)//然后再检测,如果还是检测到有键按下 { return KeyValue;//是真的按下了,返回键值 } else { return KEY_NULL //是抖动,返回空的键值 } while(0 == io_KeyEnter);//等待按键释放 }
所以合理的分配好微控制的处理时间,是编写按键程序的基础。乍看上去,确实挺不错,实际中呢?在实际的系统中,一般是不允许这么样做的。为什么呢?首先,这里的Delayms(20), 让微控制器在这里白白等待了20 ms 的时间,啥也没干,考虑我在《学会释放CPU》一章中所提及的几点,这是不可取的。其次while(0 == io_KeyEnter);更是程序设计中的大忌(极少的特殊情况例外)。任何非极端情况下,都不要使用这样语句来堵塞微控制器的执行进程。原本是等待按键释放,结果CPU就一直死死的盯住该按键,其它事情都不管了,那其它事情不干了吗?你同意别人可不会同意
◎消除抖动有必要吗? 的确,软件上的消抖确实可以保证按键的有效检测。但是,这种消抖确实有必要吗?有人提出了这样的疑问。抖动是按键按下的过程中产生的,如果按键没有按下,抖动会产生吗?如果没有按键按下,抖动也会在I/O上出现,我会立刻把这个微控制器锤了,永远不用这样一款微控制器。所以抖动的出现即意味着按键已经按下,尽管这个电平还没有稳定。所以只要我们检测到按键按下,即可以返回键值,问题的关键是,在你执行完其它任务的时候,再次执行我们的按键任务的时候,抖动过程还没有结束,这样便有可能造成重复检测。所以,如何在返回键值后,避免重复检测,或者在按键一按下就执行功能函数,当功能函数的执行时间小于抖动时间时候,如何避免再次执行功能函数,就成为我们要考虑的问题了。这是一个仁者见仁,智者见智的问题,就留给大家去思考吧。所以消除抖动的目的是:防止按键一次按下,多次响应。
“从单片机初学者迈向单片机工程师”之KEY主题讨论
基于状态转移的独立按键程序设计)的那种,有一个小液晶屏,还有四个按键,功能是时钟,闹钟以及秒表。在调整时间的时候,短按+键每次调整值加一,长按的时候调整值连续增加。小的时候很好奇,这样的功能到底是如何实现的呢,今天就让我们来剖析它的原理吧。 本章所描述的按键程序要达到的目的:检测按键按下,短按,长按,释放。即通过按键的返回值我们可以获取到如下的信息:按键按下(短按),按键长按,按键连_发,按键释放。不知道大家还记得小时候玩过的电子钟没有,就是外形类似于CALL 机(CALL 机,好像是很古老的东西了 状态在生活中随处可见。譬如早上的时候,闹钟把你叫醒了,这个时候,你便处于清醒的状态,马上你就穿衣起床洗漱吃早餐,这一系列事情就是你在这个状态做的事情。做完这些后你会去等车或者开车去上班,这个时候你就处在上班途中的状态„..中午下班时间到了,你就处于中午下班的状态,诸如此类等等,在每一个状态我们都会做一些不同的事情,而总会有外界条件促使我们转换到另外一种状态,譬如闹钟叫醒我们了,下班时间到了等等。对于状态的定义出发点不同,考虑的方向不同,或者会有些许细节上面的差异,但是大的状态总是相同的。生活中的事物同样遵循同样的规律,譬如,用一个智能充电器给你的手机电池充电,刚开始,它是处于快速充电状态,随着电量的增加,电压的升高,当达到规定的电压时候,它会转换到恒压充电。总而言之,细心观察,你会发现生活中的总总都可以归结为一个个的状态,而状态的变换或者转移总是由某些条件引起同时伴随着一些动作的发生。我们的按键亦遵循同样的规律,下面让我们来简单的描绘一下它的状态流程转移图。
(原文件名:1.jpg)
引用图片
下面对上面的流程图进行简要的分析。首先按键程序进入初始状态S1,在这个状态下,检测按键是否按下,如果有按下,则进入按键消抖状态2,在下一次执行按键程序时候,直接由按键消抖状态进入按键按下状态3,在此状态下检测按键是否按下,如果没有按键按下,则返回初始状态S1,如果有则可以返回键值,同时进入长按状态S4,在长按状态下每次进入按键程序时候对按键时间计数,当计数值超过设定阈值时候,则表明长按事件发生,同时进入按键连_发状态S5。如果按键键值为空键,则返回按键释放状态S6,否则继续停留在本状态。在按键连_发状态下,如果按键键值为空键则返回按键释放状态S6,如果按键时间计数超过连_发阈值,则返回连_发按键值,清零时间计数后继续停留在本状态。
看了这么多,也许你已经有一个模糊的概念了,下面让我们趁热打铁,一起来动手编写按键驱动程序吧。
下面是我使用的硬件的连接图。
(原文件名:2.jpg)
引用图片
硬件连接很简单,四个独立按键分别接在P3^0------P3^3四个I/O上面。
因为51单片机I/O口内部结构的限制,在读取外部引脚状态的时候,需要向端口写1.在51单片机复位后,不需要进行此操作也可以进行读取外部引脚的操作。因此,在按键的端口没有复用的情况下,可以省略此步骤。而对于其它一些真正双向I/O口的单片机来说,将引脚设置成输入状态,是必不可少的一个步骤。下面的程序代码初始化引脚为输入。void KeyInit(void){ io_key_1 = 1;io_key_2 = 1;io_key_3 = 1;io_key_4 = 1;} 根据按键硬件连接定义按键键值
#define KEY_VALUE_1 0x0e #define KEY_VALUE_2 0x0d #define KEY_VALUE_3 0x0b #define KEY_VALUE_4 0x07 #define KEY_NULL 0x0f 下面我们来编写按键的硬件驱动程序。
根据第一章所描述的按键检测原理,我们可以很容易的得出如下的代码: static uint8 KeyScan(void){ if(io_key_1 == 0)return KEY_VALUE_1;if(io_key_2 == 0)return KEY_VALUE_2;if(io_key_3 == 0)return KEY_VALUE_3;if(io_key_4 == 0)return KEY_VALUE_4;return KEY_NULL;} 其中io_key_1等是我们按键端口的定义,如下所示: sbit io_key_1 = P3^0;sbit io_key_2 = P3^1;sbit io_key_3 = P3^2;sbit io_key_4 = P3^3;
KeyScan()作为底层按键的驱动程序,为上层按键扫描提供一个接口,这样我们编写的上层按键扫描函数可以几乎不用修改就可以拿到我们的其它程序中去使用,使得程序复用性大大提高。同时,通过有意识的将与底层硬件连接紧密的程序和与硬件无关的代码分开写,使得程序结构层次清晰,可移植性也更好。对于单片机类的程序而言,能够做到函数级别的代码重用已经足够了。在编写我们的上层按键扫描函数之前,需要先完成一些宏定义。//定义长按键的TICK数,以及连_发间隔的TICK数 #define KEY_LONG_PERIOD 100 #define KEY_CONTINUE_PERIOD 25
//定义按键返回值状态(按下,长按,连_发,释放)#define KEY_DOWN 0x80 #define KEY_LONG 0x40 #define KEY_CONTINUE 0x20 #define KEY_UP 0x10
//定义按键状态
#define KEY_STATE_INIT 0 #define KEY_STATE_WOBBLE 1 #define KEY_STATE_PRESS 2 #define KEY_STATE_LONG 3 #define KEY_STATE_CONTINUE 4 #define KEY_STATE_RELEASE 5
接着我们开始编写完整的上层按键扫描函数,按键的短按,长按,连按,释放等等状态的判断均是在此函数中完成。对照状态流程转移图,然后再看下面的函数代码,可以更容易的去理解函数的执行流程。完整的函数代码如下: void GetKey(uint8 *pKeyValue){ static uint8 s_u8KeyState = KEY_STATE_INIT;static uint8 s_u8KeyTimeCount = 0;static uint8 s_u8LastKey = KEY_NULL;//保存按键释放时候的键值 uint8 KeyTemp = KEY_NULL;
KeyTemp = KeyScan();//获取键值
switch(s_u8KeyState){ case KEY_STATE_INIT : { if(KEY_NULL!=(KeyTemp)){ s_u8KeyState = KEY_STATE_WOBBLE;} } break;
case KEY_STATE_WOBBLE : //消抖 { s_u8KeyState = KEY_STATE_PRESS;} break;
case KEY_STATE_PRESS : { if(KEY_NULL!=(KeyTemp)){ s_u8LastKey = KeyTemp;//保存键值,以便在释放按键状态返回键值 KeyTemp |= KEY_DOWN;//按键按下 s_u8KeyState = KEY_STATE_LONG;} else { s_u8KeyState = KEY_STATE_INIT;} } break;
case KEY_STATE_LONG : { if(KEY_NULL!=(KeyTemp)){ if(++s_u8KeyTimeCount > KEY_LONG_PERIOD){ s_u8KeyTimeCount = 0;KeyTemp |= KEY_LONG;//长按键事件发生 s_u8KeyState = KEY_STATE_CONTINUE;} } else { s_u8KeyState = KEY_STATE_RELEASE;} } break;
case KEY_STATE_CONTINUE : { if(KEY_NULL!=(KeyTemp)){ if(++s_u8KeyTimeCount > KEY_CONTINUE_PERIOD){ s_u8KeyTimeCount = 0;KeyTemp |= KEY_CONTINUE;} } else { s_u8KeyState = KEY_STATE_RELEASE;} } break;
case KEY_STATE_RELEASE : { s_u8LastKey |= KEY_UP;KeyTemp = s_u8LastKey;s_u8KeyState = KEY_STATE_INIT;} break;
default : break;} *pKeyValue = KeyTemp;//返回键值 } 关于这个函数内部的细节我并不打算花过多笔墨去讲解。对照着按键状态流程转移图,然后去看程序代码,你会发现其实思路非常清晰。最能让人理解透彻的,莫非就是将整个程序自己看懂,然后想象为什么这个地方要这样写,抱着思考的态度去阅读程序,你会发现自己的程序水平会慢慢的提高。所以我更希望的是你能够认认真真的看完,然后思考。也许你会收获更多。
不管怎么样,这样的一个程序已经完成了本章开始时候要求的功能:按下,长按,连按,释放。事实上,如果掌握了这种基于状态转移的思想,你会发现要求实现其它按键功能,譬如,多键按下,功能键等等,亦相当简单,在下一章,我们就去实现它。
在主程序中我编写了这样的一段代码,来演示我实现的按键功能。void main(void){ uint8 KeyValue = KEY_NULL;uint8 temp = 0;LED_CS11 = 1;//流水灯输出允许 LED_SEG = 0;LED_DIG = 0;Timer0Init();KeyInit();EA = 1;while(1){ Timer0MainLoop();KeyMainLoop(&KeyValue);
if(KeyValue ==(KEY_VALUE_1 | KEY_DOWN))P0 = ~1;if(KeyValue ==(KEY_VALUE_1 | KEY_LONG))P0 = ~2;if(KeyValue ==(KEY_VALUE_1 | KEY_CONTINUE)){ P0 ^= 0xf0;} if(KeyValue ==(KEY_VALUE_1 | KEY_UP))P0 = 0xa5;} } 按住第一个键,可以清晰的看到P0口所接的LED的状态的变化。当按键按下时候,第一个LED灯亮,等待2 S后第二个LED亮,第一个熄灭,表示长按事件发生。再过500 ms 第5~8个LED闪烁,表示连按事件发生。当释放按键时候,P0口所接的LED的状态为: 灭亮灭亮亮灭亮灭,这也正是P0 = 0xa5这条语句的功能。
第三篇:C语言学习心得
C语言学习心得体会
在科技高度发展的今天,计算机在人们生活、学习和工作中的作用越来越突出。我们都知道C语言是一种计算机语言,而作为计算机专业的我们学习它,就更有助于我们更好的了解计算机,与计算机进行交流,因此,C语言的学习对我们尤其重要。
说实话这个学期刚开始学C语言的时候,很感觉迷茫,对里面的好多东西很陌生,在操作运用的时候感到很棘手,毕竟,万事开头难嘛。在此之前从没有接触过C语言,有点摸不着头脑。可是在上机过后,我觉得编程是很有趣的一件事,哪怕你编出的只是一个很简单的程序都会让你很有成就感。我知道要学好C语言不容易,可是我决定完成这件不容易的事。
在课堂上老师从最基本的跟我们讲起,要学好C语言就必须要先懂得最基本的语法知识,看课本是必需的。我觉得看不懂也没关系,尽力去理解就好了,在对知识有了一个大致的了解过后,就要上机实践。学习C语言一定要动手,只看不做,眼高手低是不行的。
最开始我们打书上的例题,熟悉程序,慢慢的开始试着编程。老师说过在编程时要理清自己的思路,然后再转换成C语言中的语言,这个时候就更要动手了,只有通过上机操作才能验证自己程序的正确性。执行程序,不要害怕错误,其实,我觉得错误是好的,知道了自己所学知识的不足,并根据提示改正程序中发生的错误,一种成就感油然而生,觉得自己的付出都是值得的。
我觉得良好的编程习惯是学好C语言的重要因素,只有勤动手,多动脑才能学好C语言,光说不练是不行的。在学习的时候,不会的一定要问明白,可以求助于老师,同学,不要自己一个人钻牛角尖,既浪费时间又学不到东西。
上课的时候也一定要认真听,老师讲的肯定是最重要的,错过了就是一大笔损失,认真听讲才可以提高学习效率嘛。另外我觉得在编程之前,要把自己的想法写在纸上,如果是简单一点的程序不需要这样,如果程序比较复杂,就写下来,这样可以让思路更加清晰。输入程序时一定要认真,不要把“,”与“;”混淆,用scanf的时候不要忘记“&”,用“switch”要记得“break”,用if,while的时候注意不要加“;”,“{}”“()”一定要配对,不要多也不要少一半,“=”与“==”的区别要清楚,要勤查优先级,要记住一些基本的,例如两个值之间的调换怎么写等等。
学习C语言需要的是坚持下去的毅力和认真对待每次错误的耐心,还有孜孜不倦的努力。拥有一个良好的心态,相信自己,你就会发现学好C语言不再困难!
第四篇:c语言学习心得
导语:c语言是一个有序的学习,学了最基本的替换,然后扩展到循环,嵌套,条理很清楚,不是一个零散的知识,实际上所有的课程都如此,不过通过实训我也知道了自己的不足,存在的很多问题。
c语言学习心得
首先我要告诉大家的是:第一,学习无捷径!对于学习编程而言,你现在的付出将来都是有回报的。但是,学习C语言也需要方法。
我遇到过很多学习C语言的人,包括我以前的同学,很多人都是学到一半就放弃了。那么为什么那么多人学习C语言都半途而废呢?原因就是他们找不到正确的学习方法!在学习的过程中四处碰壁,兴趣和自信心逐渐被消耗殆尽。对他们来说学习C语言是一件很痛苦的事!
事实上学习编程是一件很好玩、很有趣、很有意思也很有前途的事情!那么学习C语言有什么好的方法呢?根据我自己多年的总结,以及很多编程前辈的经验,主要有以下几个方面:
1)分清主次
学习C语言最忌讳的就是不分主次,这是绝大多数学习C语言的同学都会犯的错误!我们刚开始学习的时候只需要将那些最重要的、最核心的学会就已经很好了!先将最精髓的东西提炼出来,再将整个C语言学一遍,从全局上把握C语言。对于那些次要的,有需要再学,没有需要也可以不学。
2)一定要多上机,多“敲”代码
编程是一门实践性的学科,绝对不是理论。如果不动手“敲”代码的话,永远都学不会编程。很多问题只有在“敲代码”的时候才能发现,才会有更加深刻的体会、领悟和理解。而不是靠死记硬背书中的注意点,那样真的很痛苦。我在学习编程的时候从来都不会刻意记忆什么注意点,这些知识点都是在不停“敲代码”的过程中,自然而然地融入我的身体中的。你们一定要记住一句话:“程序是写出来的,不是看书看出来的!”
3)要“敲代码”,必学盲打
盲打是学习编程最基本的技能。就算你C语言学得很好,达到了“思想在键盘上飞舞”的境界,但是如果你不会盲打,那你想“飞”也“飞”不起来!所以,不会盲打会非常影响你的学习效率。
4)要学会记笔记
编程需要不断地积累。我们一定要学会模仿别人优秀的代码、优秀的算法,然后将它记下来。一定要站在巨人的肩膀上学习。但是我们的记忆能力是有限的,时间长了难免会遗忘,所以一定要学会记笔记。一有心得、体会、感悟就写下来,这些都是很珍贵的。
我们在记笔记的时候,如果眼前没有计算机则可以先写在纸上,但事后一定要将它整理成电子版。整理成电子版看起来会很方便、舒适,还可以随意地增添和删改,保存时间也长。
c语言学习心得
说到我学习C语言时,真是用千言万语呀!抄程序是最笨的方法但我认为它是进步最快的方法,抄程序是积累经验的时候,而做项目才是真正把所学为所用的时候,可以说只有你做一个 大点的项目出来才能真正是说明你学到了东西,你会用所学的东西,要不然就算你学的再多,不会用也没用。
做学问特别是计算机一定要做的精准,比如说一个语句一个关键 字,你一定要把它几乎所有的用方法都能清楚明白,一句话要学精了,语法掌握住了,接下来就是写程序了,其实抄程序并不是说一直没有目的去抄,你会发现当你抄一段时间以后就不用再抄 了,因为大部分都是一样的你一看就知道怎么写了,当你一看到程序就知道它什么功能,那里有错的时候,那你的成绩可是进步不小啊,这并不需要太多的时间,只 要你用心一个月足够了。
跟大家说几点经验:
1.在学习的时候一定要注意这几点,不会的一定要问明白,不管谁能让他教会你知识就是你的了,要学会让知识为我所用。在看书的时候一定要做好标记,特别是不懂的地方一定要标明是什么意思。
2.在学习语言的时候一定要记住动手,不要只说不做,这样会行成眼高手低,不管什么样的程序都要亲手做过才能说会了,不要整天说我不会学不会,其实 是你不想学,只是你下决心抄一个月程序,我保证我能有大的进步,其实当你抄到一周到两周的时候你就会特想抄,因为你会发现程序你能看懂了,能帮别人调程序 了,有一种成就感呀!它会让你更加努力的去学习。
3.再一点是我建议大家在上课的时候少看课本,课本要在下课的时候看特别是上课前一定要先看看课本,上课的时候呢就不要看了,不要老师讲到那个问题 了你马上在书上找,这样不好,会影响你的注意力,其实还真不如注意听老师讲呢?因为你要是一边听一边看课本,你是看到了书上的答案但是老师的思路你没有听 到,而要是你不看的话,你听明白了思路,一定是想迫切的看到结果,这个时候看课本才是记的最死的时候,学习要的是就是个效率吗?
4.提醒大家学习要讲效率,我发现有很多同学天天学习,每天最早到教室,走的又最晚,别人玩他在学,别人学他也学,可是别的一天30%的学习时间却 比他们一天50%以上的学习时间的效率要高上不仅仅是几倍的问题,所以我要说的是不要对别人说你天天在学习,要说你天天在进步,学习不是要你学习了多久 是,是要你学了多少东西的,你学一小时还没有别人学一分钟的效率高,难道自己不是浪费时间吗?不想学的时候就不要学,出去玩一会儿再来学说不定会有更好的 效果。希望这些经验能跟大家分享一下,最后还是要跟大家强调一点,抄程序是学好C语言的最好最快的方法。
第五篇:C语言小结
本人也是刚学C不久算是老菜鸟。把我遇到的问题写出来,希望对初学者有点帮助。
一、分号,大括号
分号。分号是表达式结束的标志,一般表达式后面都要有。写“;”的时候一定要注意:是否要结束前面的语句。注意:if,switch,for,while语句,数据类型定义,函数定义。
if(a>b)/*if语句,没有分号*/ {...}
while(i+=10,i!=100);/*while语句循环体为空,依靠逗号语句实现循环*/
struct a /*结构体数据定义,没有分号*/
{...}b;/*结构体变量,要有分号*/
int sum(...)/*函数定义,没有分号*/ {....}
大括号。大括号是一个语句段的标志。写大括号时最好一次写一对,然后把光标移到大括号里写。避免遗漏。
二、运算符号
“=”与“==”
“=”用于赋值,注意“=”左边必须是变量,右边可以是常量也可以是变量。“==”用于判断两个量的大小,左右两边可以是常量也可以是变量(尽量把常量写在左边,这样“==”误写成“=”时编译器就会报错)。运算表达式有它本身的值。“=”语句值为“=”右边的量的大小;“==”语句值为判断结果,无外乎两种,0(表示“==”两边不等)1(“==”两边相等)。
(i=1)==(3==4);/*i值为1,整个表达式值为0*/
“,”
逗号语句是从左到右计算,整个逗号语句的值为最后一个语句的值 i=(j=2,j+8,j++);
/*先计算j=2,值为2,j+8不是运算表达式,跳过,计算j++得到整个括号内的值3*/ “/”
“/”两边都是整型变量的时候结果也是整型,而且结果遵循向0靠拢的原则。
运算符的优先级及结合方向
不多说了,表格一定要背牢。
三、变量
命名
不要吝惜,能说明白性质尽量在变量的名字上说明。避免老是使用一个字母,或者难以理解的变量名。对于较长的变量命名可以使用宏定义、类型定义。
#deine UP 0x4800
/*键码的宏定义*/
typedef struct
{....}MEM;
/*结构体变量的类型定义*/
类型
注意变量的使用范围。当不确定变量的范围的时候尽量选用值域宽的类型。双目运算符两边的变量一般类型要一致。不一致的时候需要使用类型转换。上回说的是一些小问题,真正编东西,学东西还有许多要注意的地方。
由于本人也是刚学不久,水平有限,说错的地方望大家原谅。谢谢!
一、多看代码
在有一定基础以后一定要多看别人的代码。注意代码中的算法和数据结构。毕竟学C之后的关口就是算法和数据结构。提到数据结构,指针是其中重要的一环,绝大多数的数据结构是建立在指针之上的,如链表、队列、树、图等等,所以只有学好指针才能真正学好C。别的方面也要关注一下,诸如变量的命名、库函数的用法等等。有些库函数是经常用到的。对于这些函数的用法就要牢牢记住。
二、要自己动手
编程序是个实干的活,光说不练不行。刚开始学的时候可以多练习书上的习题。对于自己不明白的地方,自己编个小程序实验一下是最好的方法,能给自己留下深刻的印象。自己动手的过程中要不断纠正自己不好的编程习惯和认识错误。有一定的基础以后可以尝试编一点小游戏,文曲星之类的电子词典上小游戏很多,照着编作为练习。基础很扎实的时候,可以编一些关于数据结构方面的东西,诸如最经典的学生管理系统。之后.....学汇编、硬件知识。
三、选择一个好的编译器
本人前段时间就遭受了一个编译器的折磨。这个编译器带了个自运行程序,自动修改IE主页。叫什么名字就不说了。言归正传,英文版Turbo C v2.0没话说,最经典的C编译器(下载地址:http://),其次推荐一个win-tc 1.91,支持windows下的编译器。(下载地址:http://)
四、关于养成良好的编程习惯
基本上每本C教材上都要提到。作为新手这条一定要时时遵守。记的一位网友发过评论:高手写一堆乱七八糟的代码就是艺术,新手写一堆乱七八糟的代码就是垃圾。就象古代贤人写错字叫通假字,小学生写错字叫错别字,一个道理。具体方面:
1、在比较复杂的代码后面要有注释。如果光溜溜一堆代码,别人就不可能看懂你的代码,而且也不利于查找错误。除非你一直编东西给自己看。能在代码里说明白的就一定要在代码里体现。比如变量名、函数名,在命名的时候尽量说明是干什么用的。
2、注意语句的嵌套不能过长,一般来说,一段代码里Tab要少于8个。简单说就是语句最多8个嵌套。对于新手来说,这个标准还要下降。有一个好习惯是,把主函数尽量写简短。经常看到别人的代码是主函数只有几行,几个函数调用,而定义全在主函数外部。这样一是减少了主函数内部的嵌套,二是比较精简,容易读懂。
3、注意语句的选择。并不是分支语句就用if循环就用while、for。在适当的情况下switch和do while语句也是要用的。在某些时候,switch语句比if语句更加精练明了,而do while比while少一个循环。