等比数列练习题(合集五篇)

时间:2019-05-14 18:38:16下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《等比数列练习题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《等比数列练习题》。

第一篇:等比数列练习题

等 比 数 列

1.公差不为0的等差数列{an}中,a2,a3,a6依次成等比数列,则公比等于.2.等比数列为a,2a+2,3a+3,…,第四项为3.在等比数列an中,a9a10aa0,a19a20b,则a99a100等于a3a

4a2,a3,a

1aa

524.各项是正数的等比数列{an}公比q≠1,且成等差数列,4的值是.5.在各项都为正数的等比数列an中,首项a13,前三项和为21,则a3a4a5=6.已知数列{an}为等比数列,且an>0,a2a4+2a3a5+a4a6=25,那么a3+a5的值等于.7.设等比数列{an}中,每项均为正数,且a3·a8=81,则log3a1+log3a2+…+log3a10等于.8.等比数列{a n }中,已知a9 =-2,则此数列前17项之积为 9.等比数列{an}中,若S6=91,S2=7,则S4为.10.在等比数列{an}中,S4=1,S8=3,则a17+ a18+ a19+ a20的值等于.11.已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列,则

a1a3a9

a2a4a10的值为.12.若数列{an}满足:a11,an12an(nN),则a5;前8项的和S8

13.在等比数列中,a1+a2+a3+a4+a5=3,a6+a7+a8+a9+a10=9,则a11+a12+a13+a14+a1514.若等差数列

an、bn的前n项和分别为An、Bn,且满足An

Bn

4n25n5,则

a5a13b5b13的值

15.已知数列满足a1=1,an+1=2an+1(n∈N*)。(1)求证数列{an+1}是等比数列;

(2)求{an}的通项公式.

16.设二次方程anx2an1x10(nN)有两个实根和,且满6263.(1)求证:{an是等比数列;(2)当a1

237

时,求数列{an}的通项公式. 6

17.在等比数列an中,a11,公比q0,设bnlog2an,且b1b3b56,b1b3b50.(1)求证:数列bn是等差数列;(2)求数列bn的前n项和Sn及数列an的通项公式;

(3)试比较an与Sn的大小.22Sn118.已知数列an中,a1,当n2时,其前n项和Sn满足an,2Sn13

(1)求Sn的表达式;(2)求数列

an的通项公式;

219.数列an:满足a12,an1an求证Cn6an6(nN).(Ⅰ)设Cnlog5(an3),是等比数列;(Ⅱ)求数列an的通项公式;

20.在数列an中,a12,an14an3n1,nN*.(Ⅰ)证明数列ann是等比数列;(Ⅱ)求数列an的前n项和Sn;

21.设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S37,且

(1)求数列{an}的等差数列.(2)令bnlna3n1,n1a13,3a2,a34构成等差数列.,2,求数列{bn}的前n项和T.

22.设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1b11,a3b521,aa5b313(Ⅰ)求{an},{bn}的通项公式;(Ⅱ)求数列n的前n项和Sn.

bn

23.数列an的前n项和为Sn,a11,an12Sn(nN*).(Ⅰ)求数列an的通项an;(Ⅱ)求数列nan的前n项和Tn.

第二篇:等差等比数列综合练习题

等差数列等比数列综合练习题

一.选择题

1.已知an1an30,则数列an是()

A.递增数列 B.递减数列 C.常数列 D.摆动数列 2.等比数列{an}中,首项a18,公比q,那么它的前5项的和S5的值是()A.31333537

B.

C.

D. 2222123.设Sn是等差数列{an}的前n项和,若S7=35,则a4=()A.8 B.7

C.6

D.5 4.等差数列{an}中,a13a8a15120,则2a9a10()A.24 B.22

C.20

D.-8 5.数列an的通项公式为an3n228n,则数列an各项中最小项是()A.b7a7,则b6b8()A.2

B.4

C.8

D.16 10.已知等差数列an中, an0,若m1且am1am1am20,S2m138,则m等于

A.38

B.20

C.10

D.9 11.已知sn是等差数列an(nN*)的前n项和,且s6s7s5,下列结论中不正确的是()A.d<0

B.s110

C.s120

D.s130 12.等差数列{an}中,a1,a2,a4恰好成等比数列,则

a4的值是()a1 A.1

B.2

C.3

D.4

二.填空题

13.已知{an}为等差数列,a15=8,a60=20,则a75=________ 14.在等比数列{an}中,a2a816,则a5=__________ 15.在等差数列{an}中,若a7=m,a14=n,则a21=__________ 16.若数列xn满足lgxn11lgxnnN,且x1x2x100100,则lgx101x102x200________ 17.等差数列{an}的前n项和为Sn,若a3+a17=10,则S19的值_________ 18.已知等比数列{an}中,a1+a2+a3=40,a4+a5+a6=20,则前9项之和等于_________

三.解答题

19.设三个数a,b,c成等差数列,其和为6,又a,b,c1成等比数列,求此三个数.20.已知数列an中,a11,an2an13,求此数列的通项公式.2ans5n3n,求它的前3项,并求它21.设等差数列的前n项和公式是n的通项公式.22.已知等比数列an的前n项和记为Sn,,S10=10,

S30=70,求S40

第三篇:等比数列的性质练习题

考点1等比数列的通项与前n项和

题型1已知等比数列的某些项,求某项

【例1】已知an为等比数列,a22,a6162,则a10题型2 已知前n项和Sn及其某项,求项数.【例2】⑴已知Sn为等比数列an前n项和,Sn93,an48,公比q2,则项数n⑵已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.题型3 求等比数列前n项和

【例3】等比数列1,2,4,8,中从第5项到第10项的和.【例4】已知Sn为等比数列an前n项和,an1332333n1,求Sn

【例5】已知Sn为等比数列an前n项和,an(2n1)3n,求Sn.【新题导练】

1.已知an为等比数列,a1a2a33,a6a7a86,求a11a12a13的值.an的前n项和,a23,a6243,Sn364,则n; 2.如果将20,50,100依次加上同一个常数后组成一个等比数列,则这个等比数列的公比为.3.已知Sn为等比数列

4.已知等比数列an中,a21,则其前3项的和S3的取值范围是

5.已知Sn为等比数列

an前n项和,an0,Sn80,S2n6560,前n项中的数值最大的项为54,求S100.考点2 证明数列是等比数列

【例6】已知数列nN.其中为实数,an和bn满足:a1,an12ann4,bn(1)n(an3n21),3

⑴ 对任意实数,证明数列an不是等比数列;

⑵ 试判断数列

bn是否为等比数列,并证明你的结论.1

【新题导练】

6.已知数列{an}的首项a1

22an1,an1,n1,2,3,….证明:数列{1}是等比数列;3an1an

考点3 等比数列的性质

【例7】已知Sn为等比数列

【新题导练】

7.已知等比数列an前n项和,Sn54,S2n60,则S3n.an中,an0,(2a4a2a6)a436,则a3a5.an的前n项和,已知ban2nb1Sn 考点4 等比数列与其它知识的综合 【例8】设Sn为数列

⑴证明:当b

⑵求

【新题导练】

8.设Sn为数列2时,ann2n1是等比数列; an的通项公式 an的前n项和,a1a,an1Sn3n,nN*.n⑴ 设bnSn3,求数列bn的通项公式;

⑵ 若an1

an(nN),求a的取值范围.

7.等差数列

8.已知数列an中,a410且a3,a6,a10成比数列,求数列an前20项的和S20. an的前n项和为Sn,Sn3(an1)nN; 1⑴求a1,a2的值;

⑵证明数列

an是等比数列,并求Sn.

第四篇:等差与等比数列综合专题练习题

1.数列{an}是等差数列,若

值时,n=()A.11a<-1,且它的前n项和Sn有最大值,那么当Sn取得最小正a10

anB.17C.19D.21 2.已知公差大于0的等差数列{

求数列{an}的通项公式an. }满足a2a4+a4a6+a6a2=1,a2,a4,a8依次成等比数列,3.已知△ABC中,三内角A、B、C的度数成等差数列,边a、b、c依次成等比数列.求证:△ABC是等边三角形.

4.设无穷等差数列{an}的前n项和为Sn.是否存在实数k,使4Sn=(k+an)2对一切正整数n成立?若存在,求出k的值,并求相应数列的通项公式;若不存在,说明理由.

答:存在k=0,an=0或k=1,an=2n-1适合题意.

5.设数列{an}的前n项和为Sn,已知a1=1,Sn=nan﹣2n(n﹣1),(n∈N*)(Ⅰ)求证数列{an}为等差数列,并写出通项公式;(Ⅱ)是否存在自然数n,使得S1S22S3

3Sn

n400?

若存在,求出n的值;若不存在,说明理由;

6.已知等差数列{an}的前n项和为Sn,且S10=55,S20=210.(1)求数列{an}的通项公式;

a(2)设bnm、k(k>m≥2,m,k∈N*),使得b1、bm、bk成等比数列?若存在,an+1

求出所有符合条件的m、k的值;若不存在,请说明理由.

2a1+9d=11a1=1,解:(1)设等差数列{an}的公差为d,即,解得所以an=a1+(n-1)d2a1+19d=21d=1.**2=n(n∈N).(2)假设存在m、k(k>m≥2,m,k∈N),使得b1、bm、bk成等比数列,则bm=

an1mkm21kb1bk.因为bn=,所以b1=,bm=,bk=所以(=×.整理,22k+1an+1n+1m+1k+1m+1

2m2

得k=-m+2m+1

以下给出求m、k的方法:因为k>0,所以-m2+2m+1>0,解得1-2

已知二次函数y=f(x)的图象经过坐标原点,其导函数为f(x)=3x2-2x,.数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上

3m(1)求数列{an}的通项公式;(2)设bn=,Tn是数列{bn}的前n项和,求使得Tn<对所20anan+1

有n∈N*都成立的最小正整数m.17.已知点(1是函数f(x)=ax(a>0,且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)3

-c,数列{bn}的首项为c,且前n项和Sn满足Sn-Sn-1Sn+Sn+1(n≥2).(1)求数列{an}

11000和{bn}的通项公式;(2)若数列{前n项和为Tn,问Tn>n是多少? 2009bnbn+1

8.已知定义域为R的二次函数f(x)的最小值为0,且有f(1+x)=f(1-x),直线g(x)=4(x-1)的图象被f(x)的图象截得的弦长为4,数列{an}满足a1=2,(an+1-an)g(an)+f(an)=0

*(n∈N).(1)求函数f(x)的解析式;(2)求数列{an}的通项公式;(3)设bn=3f(an)-g(an+1),求数列{bn}的最值及相应的n.

第五篇:高三数学单元练习题:等比数列(Ⅲ)

高三数学单元练习题:等比数列(Ⅲ)

【说明】 本试卷满分100分,考试时间90分钟.一、选择题(每小题6分,共42分)1.不等式ax2+5x+c>0的解集为(,1132),那么a,c为()

A.a=6,c=1 B.a=-6,c=-1 C.a=1,c=6 D.a=-1,c=-6 答案:B 解析:由题意得,故13121132为方程ax2+5x+c=0的两根是a<0.=-511c,, a32a∴a=-6,c=-1.2.不等式|x-1|+|x-2|≤3的最小整数解是()

A.0 B.-1 C.1 D.2 答案:A 解析:将x=-1代入不等式知不成立,将x=0代入不等式成立,故选A.3.不等式|x+1|(2x-1)≥0的解集为()A.[12,+∞)B.(-∞,-1]∪[1212,+∞)C.{-1}∪[,+∞)D.[-1,12]

答案:C 解析:当|x+1|=0即x=-1时不等式成立,当|x+1|≠0时不等式等价于2x-1≥0,即x≥

12.4.设a>0,不等式|ax+b|

cba,故

bca=-2,cba=1即a∶b∶c=2∶1∶3.5.设U=R,A={x|mx+8mx+21>0},A.0≤m<2116A=,则m的取值范围是()

2116 B.m>或m=0

2116C.m≤0 D.m≤0或m>答案:A 解析:∵A=,∴A=R,即mx2+8mx+21>0恒成立.当m=0时,不等式恒成立.

是_____________________.答案:(-∞,1]

解析:由|x-4|+|3-x|≥|x-4+3-x|=1,故原不等式解集为空集,a的取值范围是(-∞,1].三、解答题(11—13题每小题10分,14题13分,共43分)11.(2010福建厦门一中模拟,17)解不等式:|x2-3x-4|

解①得-13,故原不等式的解集为{x|3

(2)若x的范围构成的集合是空集,求a的取值范围.解析:|x-1|≤2-1≤x≤3.|x-a|≤2-2+a≤x≤a+2.(1)当a<0时,a+2<3,-2+a<-1.①当a+2≥-1,即a≥-3时,x的取值范围为[a+2,3];②当a+2<-1,即a<-3时,x的取值范围为.(2)由题意得 a+2<-1或-2+a>3.故所求a的取值范围为a<-3或a>5.13.已知全集U=R,A={x|x2-2x-8<0},B={x||x+3|>2},C={x|x2-4ax+3a2<0}.(1)C(A∩B),求a的取值范围;(2)C(A)∩(B),求a的取值范围.解析:A={x|-2-1或x<-5}.∴A∩B={x|-10时,C={x|a

a0,a0,a=0或3a1,或a1,a43a4.∴a∈[-,(2)(1433].B)={x|-5≤x≤-2}.a0,B),则3a5,a2.A)∩(若C(A)∩(

下载等比数列练习题(合集五篇)word格式文档
下载等比数列练习题(合集五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高三数学单元练习题:等比数列(Ⅱ)(精选5篇)

    高三数学单元练习题:等比数列(Ⅱ) 【说明】 本试卷满分100分,考试时间90分钟. 一、选择题(每小题6分,共42分) 1.等差数列{an}前四项和为40,末四项和为72,所有项和为140,则该数列共有( )......

    一轮复习等差等比数列证明练习题

    Fpg 1.已知数列an是首项为a1,公比q141の等比数列,bn23log1an 44(nN*),数列cn满足cnanbn. (1)求证:bn是等差数列; 2ana2,aa6a6(nN), n1nn2.数列满足1设cnlog5(an3). (Ⅰ)求证:cn是等比数列; *......

    一轮复习等差等比数列证明练习题

    本卷由系统自动生成,请仔细校对后使用,答案仅供参考。 1.已知数列an是首项为a1,公比q141的等比数列,bn23log1an 44(nN*),数列cn满足cnanbn. (1)求证:bn是等差数列; 2ana2,aa6a6(nN), n1n......

    高二数学必修5 等比数列练习题(写写帮整理)

    班级 _________ 姓名 _______________ 1、在等比数列{an}中,公比q=2,且a1a2a3a30230,则a3a6a9a30等于 A、2B、2C、2D、2 2、每次用相同体积的清水洗一件衣物,且每次能洗去污垢......

    等比数列题

    等比数列 【做一做1】 等比数列3,6,12,24的公比q=__________. 2.通项公式 等比数列{an}的首项为a1,公比为q,则通项公式为an=______(a1≠0,q≠0). 【做一做2】 等比数列{an}中,a1=2,q=3,......

    等比数列第一节

    课题:等比数列及其前N项和 学习目标:掌握等比数列的定义,通项公式和前n项和的公式,并能利用这些知识解决有关 问题,培养学生的化归能力 重点、难点: 对等比数列的判断,通项公式和前......

    2.3 等比数列(范文模版)

    怀仁十一中高中部数学学案导学(三十三——1)2.3 等比数列主备人袁永红教学目的:1.掌握等比数列的定义.2.理解等比数列的通项公式及推导教学重点:教学难点:学习关键:自学指导1.等比......

    等比数列复习题

    等比数列[重点]等比数列的概念,等比数列的通项公式,等比数列的前n项和公式。 1.定义:数列{an}若满足an1=q(q0,q为常数)称为等比数列。q为公比。 an2.通项公式:an=a1qn-1(a10、q0)......