第一篇:测控技术及仪器专业概论--课程报告20111010
测控技术与仪器概论课程报告
我所了解的测控技术与仪器专业
杨燕学号2009210380
(清华大学 精密仪器与机械学系,北京 100084)
摘要:本文介绍了遗传算法的基本原理,描述了它的实现步骤和基本性质;重点综述了遗传算法在数字图像处理中的主要应用。
关键词:遗传算法;图像处理;图像增强;图像恢复;图像分割;图像匹配引言
遗传算法(Genetic Algorithm,GA)是模拟自然界生物进化机制的一种算法,即遵循适者生存、优胜劣汰的法则,也就是寻优过程中有用的保留,无用的则去除。
在科学和生产实践图像处理是计算机视觉中的一个重要研究领域,在图像处理过程中,如扫描、特征提取、图像分割等不可避免地会存在一些误差,从而影响图像的效果。如何使。遗传算法的基本原理、实现步骤和基本性质[3-5]
2.1GA的基本原理
在自然进化中,每一物种越来越适应环境;物种的个体的基本特征被其后代所继承,但后代又不完全同于自己的父代;个体的性质是由染色体决定的,染色体是由基因有序排列组。
2.2GA的实现步骤
目前已有一些不同形式的GA,一般把Holland 1975年提出的GA称为标准GA(也称简单遗传算法,Simple GA,简称SGA),其主要步骤如下:。
2.3GA的基本性质
GA简单,鲁棒性好,具有自组织性、自适应性、自学习性和本质并行的突出特点。和其他优化搜索算法相比,GA具有以下独特的性质:
(1)GA是对参数编码进行操作,而非对参数本身,减少约束条件的限制,如连续性、可导性、单峰性等。
(2)GA是多点搜索,减少了陷于局部优解的风险。遗传算法在图像处理中的应用
3.1 基于遗传算法的图像增强
以改善图像的视觉效果或便于对图像进行其他处理[6]。图像增强技术主要有频域法、空域法。频域法是把原图像进行某种变换(如傅里叶变换,小波变换),在变换域中进行处理以达到增强的目的,空域法直接对原始图像进行处理,主要包括直接灰度变换、直方图均衡、平滑滤波等。
内部的疏密程度和沿着所有区域边界的强度;然后应用GA去搜索一个可用的区域分割,这个分割能够使分裂和融合过程所生成的区域的质量达到最佳。
3.2 基于遗传算法的图像匹配
在匹配精度性方面也取得了较好的效果,而且算法较稳定。结论
综上所述,GA作为一种具有自适应性、自学习性、鲁棒性好且并行效率高的随机化技术,非常适合在图像处理这样的巨量空间内搜索最优值。它已经在图像处理领域发挥了巨大。
测控技术与仪器概论课程报告
但是,随着理论研究的深入,可以肯定,GA以其特有的算法特点使其在图像处理问题中的应用会越来越广;同时,广泛的数学方法和强大的计算机模拟工具的出现,必将使GA研究取得长足的进展,使GA在图像处理中的作用更趋完善。
参考文献(References)
[1] Holland J H.Adaptation in natural & artificial systems[ M ].Ann Arbrr.MI : Univ.of Michigan
Press ,1975.[2] Rechenberg I.Cybernetic solution path of an experimental problem[ R ].Royal Aircraft Establishment , Lib.Translation 1122 ,Franborough, 1965.[3] 黄洪钟, 赵正佳, 姚新胜, 冯春.遗传算法原理、实现及其在机械工程中的应用研究与展望[J].机械设
计, 2000,(03).[4] 李华昌, 谢淑兰, 易忠胜.遗传算法的原理与应用[J].矿冶, 2005,(01).[5] 田莹, 苑玮琦.遗传算法在图像处理中的应用[J].中国图象图形学报,2007,(03).
第二篇:测控技术与仪器专业概论课程论文
评分:
测控技术与仪器专业
概论课程论文
指导老师:
班级:
姓名:
学号:
测控技术与仪器专业概论课程论文
随着科学技术的发展,仪器仪表从只能进行简单的测量、观察开始,已成为测量、控制和实现自动化必不可少的技术工具。21世纪以来,一大批当代最新的技术成果,如纳
米级的精密机械研究成果、分子层次的现代化学研究成果、基因层次的生物学研究成果,以及高精密超性能特张功能材料研究成果和全球网络技术推广应用成果等相继问世,是仪
器仪表领域发生了根本性的变革,促进了高科技化、智能花的新型仪器仪表时代的来临。
1、测控技术与仪器的研究现状和发展概况方向
测控技术与仪器专业,是一门研究信息的获取和处理,以及对相关要素进行控制的理
论与技术。“测控技术与仪器”是指对信息进行采集、测量、存储、传输、处理和控制的手段与设备,包含测量技术、控制技术和实现这些技术的仪器仪表及系统。测控技术与仪
器专业涉及仪器学、电子学、光学、精密机械、计算机、信息与控制技术等多项技术,这
些技术涉及多个学科领域。
测控技术是一门应用性技术,广泛用于工业、农业、交通、航海、航空、军事、电
力和民用生活各个领域。随着生产技术的发展需要,测控技术从最初的控制单个及其、设
备,到控制整个过程,乃至系统,特别是在当今现代科技领域的尖端技术中,测控技术起
着至关重要的作用。
测控技术与仪器专业属于工程技术专业,是建立在精密机械、电子技术、光学、自动
控制和计算机技术的基础上,以工为主、多学科综合的专业,它主要研究各种精密测试和
控制技术的新原理、、新方法和新工艺。近年来,计算机技术在测控技术的应用研究中呈
现出越来越重要的地位。
测控技术是直接应用于生产生活的应用技术,它的应用涵盖了“农轻重、海陆空、吃
穿用”等社会生活各个领域。仪器仪表技术是国民经济的“倍增器”,科学研究的“先行
官”,军事上的“战斗力”以及法制法规中的“物化法官”。计算机化的测试与控制技术以
及智能化得精密测控仪器与系统是现代化工农业生产、科学技术研究、管理检测监控等领
域的重要标志和手段,发挥着越来越重要的作用。
当今世界已进入信息时代,测控技术、计算机技术和通信技术并称信息科学技术的三
大支柱,而测控技术是信息技术的源头,是信息流中的重要一环,为信息技术的发展发挥
着不可替代的作用。仪器仪表是多学科交叉的综合性、边缘性学科,以信息的获取为主要
任务,并综合有信息的传输、处理和控制等基础知识及应用,“仪器仪表是信息产业的重
要组成部分,是信息工业的源头。”
科学技术发展史实人类认识自然、改造自然的历史、也是人类文明史的重要组成部分。
科学技术的发展首先取决于测量技术的发展。近代自然科学是从真正意义上的测量开始的。许多杰出的科学家梦都是科学仪器的发明家和测量方法的创立者。测量技术的进步直
接带动着科学技术的进步。
2、广东测控技术与仪器面临的机遇
广东是改革开放的前沿,在各领域对测控技术有更多更关键的应用。制造业的产业化
发展,产品大批量生产的特点是循环作业和流水作业,要让这些自动起来,就要求加工生
产的灭个阶段自动检测工件的位置、尺寸、形状、姿态或性能等。为此,需要大量的测控
装置。另一方面,以石油为原料的化工工业兴起,就需要大量的测控仪表。自动化仪表开
始标准化生产,按需构成自动控制系统。同时,此期间还诞生了数控机床和机器人技术,测控技术与仪器在其中都有重要的应用。
随着科学技术的发展,仪器仪表从只能进行简单的测量、观察开始,已成为测量、控制和实现自动化必不可少的技术工具。为了满足各方面的需求,仪器仪表已从传统的应
用领域扩展到了生物医学、生态环境、生物工程等非传统应用领域。21世纪以来,一大批
当代最新的技术成果,如纳米级的精密机械研究成果、分子层次的现代化学研究成果、基
因层次的生物学研究成果,以及高精密超性能特张功能材料研究成果和全球网络技术推广
应用成果等相继问世,是仪器仪表领域发生了根本性的变革,促进了高科技化、智能花的新型仪器仪表时代的来临。
3、个人对测控专业的理解和就业意向
我们可以看到现在在报纸杂志上经常出现测控技术这四个字眼,这是因为我们国家的航天事业正在欣欣向荣地阔步前进,报纸媒体大力地宣传着。当然,航天测控是离我们一般测控专业很遥远的,然而我们可以了解,现代社会正在奋力向智能化发展,智能化的前提就是机械的自动化。要使得机械得以自动化,就要依靠测控技术。测控技术包括两个主要方面:测量和控制。这两项是任何一个机械工作必须完成的。工作都可以看作是一项任务,任务信息的获得要依靠测量,任务的自动化完成要依靠控制。我认为,测控是一个国家技术竞争力的一个重要组成部分。哪个国家的测控技术先进,那么该国就拥有较强的竞争力!测控专业人才的大量需求是个必然,就在这几年必然会显现出来。
就业方向:毕业后可到技术学校、研究单位、生产企业、管理部门,从事相关领域的教学、科研、设计、生产、应用、经营、管理以及质量检测与技术监督等工作。
4、对测控专业的个人意见和建议
形成本专业的培养特色:本专业遵循“测控一体、光机电融合、计算机信息化特征”的专业定位,以机械学、电子学、光科学为基础,以计算机技术、检测技术、控制技术、光电技术以及仪器设计与运用为主要技术手段,强调学生坚实的多学科理论基础的获得,着重学生创新思维意识的造就,突出学生专业实践能力的培养,强化学生工程技术应用方面的训练。
5、结论
在我看来,测控技术与仪器专业,是一个传统,而又充满着发展前景的专业。说它传统,是因为它有着古老的起源,经历了数百年的发展,对社会发展起了重要的作用。作为一个传统的专业,它同时涉及到了许多学科,这使它仍然具有强大的生命力。随着现代测控技术、电子信息技术和计算机技术等的进一步发展,它迎来了一个创新发展的新机遇,必将在各领域产生更多更关键的应用。
参考文献:
1.《现代测控技术及应用》 吴国庆等 电子工业出版社 2007
2.《现代测控技术与系统》 韩九强等 清华大学出版社 2007
3.《测控技术与仪器专业导论》主编陈毅静 北京大学出版社 20104、郭亚春,《浅谈测控仪器与技术专业建设》,20105、韩九强,《现代测控技术与系统》,20066、徐宏飞,《测控专业概论》,20097、耿桂宏,8、刘君,9、王先培,10、侯媛彬,2006,2009,2010 《测控技术与仪器专业导论》,2010《测控技术与仪器专业导论》 《计算机测控技术》 《测控技术与仪器概论》
第三篇:测控技术与仪器专业——专业概论
专业概论课程论文
其实,选择测控技术与仪器这个专业时,我对它一无所知,我本来选择的是建筑设计,可是在阴差阳错之中我“被选择”了这个专业。周围的同学对此也是一知半解。想来,学院开设这个课程,着实是用心良苦,希望我们在学习专业课程之前,先对自己的专业有个概括的了解。
专业的具体现状: 根据相关资料了解到,测控技术与仪器专业是一门研究信息的获取和处理,以及对相关要素进行控制的理论与技术;是电子、光学、精密机械、计算机、信息与控制技术多学科互相渗透而形成的一门高新技术密集型综合学科。
测控技术与仪器的操作过程是将自动化系统上的信号加以采集、整理、处理、而后进行显示或者发出控制信号的过程。目前由计算机和工作站作为结点的网络也就相当于现代仪器的网络,因此计算机已成为现代测控系统的中坚。
以下几点是测控技术与仪器专业的技术研究状况(1)以自然基准溯源和传递,同时在不同量程实现国际比对。
(2)高精度。目前半导体工艺的典型线宽为0.25μm,并正向0.18μm过渡,如果定
位要求占线宽的1/3,那么就要求10nm量级的精度,而且晶片尺寸还在增大,达到300mm。这就意味着测量定位系统的精度要优于3×10的-8次方,相应的激光稳频精度应该是10的-9次方数量级。
(3)高速度。目前加工机械的速度已经提高到1m/sec以上。
(4)高灵敏,高分辨,小型化。如将光谱仪集成到一块电路板上。
(5)标准化。通讯接口过去常用GPIB,RS232,目前已逐步被高性能标准的USB、IEEE1394和VXI所代替。现在,技术领先者设法控制技术标准,参与标准制订是仪器开发的基础研究工作之一。
未来趋势
1.发展方向与学科前沿。
(1)配合数控设备的技术创新。数控设备的主要误差来源可分为几何误差和热误差。
对于重复出现的系统误差,可采用软件修正;对于随机误差较大的情况,要采用 1
实时修正方法。对于热误差,一般要通过温度测量进行修正。中国机床行业市场萎缩同时又大量进口国外设备的原因之一就是因为这方面的技术没有得到推广应用。为此,我国需要自主开发高速多通道激光干涉仪。
(2)运行和制造过程的监控和在线检测技术。综合运用图像、频谱、光谱、光纤以及
其它光与物质相互作用原理的传感器具有非接触、高灵敏度、高柔性、应用范围广的优点。在这个领域综合创新的天地十分广阔,如振动、粗糙度、污染物、含水量、加工尺寸及相互位置等。
(3)配合信息产业和生产科学的技术创新 为了在开放环境下求得生存空间,没有自
主创新技术是没有出路的。因此应该根据有专利权、有技术含量、有市场等原则选择一些项目予以支持。根据当前发展现状,信息、生命医学、环保、农业等领域需要的产品应给予优先支持。
2.优先领域
(1)纳米溯源技术和系统。
(2)介入安装和制造的坐标跟踪测量系统。应用范围:航空航天行业对此已经提出
迫切要求,这是今后坐标测量机发展的关键技术。新型并行机构机床的鉴定,飞机装配型架的鉴定,大型设备安装,用于生物芯片精密机器人校准等。
(3)非接触测头以及各种扫描探针显微镜。目前接触式测头已完全被国外所垄断,非接触测头还没有发展成熟,我们有参与竞争的机遇。
(4)计算机辅助测量理论。信号处理系统的标准化、模块化、兼容和集成。我国需要
根据已有基础,发展特长,有利于克服重复研究。
(5)新器件,新材料。新的突破点可能出现在新光源、新型高频探测器。目前干涉仪
实际上是起着混频器的作用,适应探测器的不足(如果探测器的响应果真能超过光频,干涉仪也就没有用了)。如果探测器的性能得到显著提高,对于通讯也是很大的突破。
(6)半导体激光器计量特性的研究和创新。半导体激光器用于计量需要解决很多问
题,但如果解决了诸多问题以后,半导体激光系统比气体激光系统更复杂,就不会有竞争力。有些问题在物理层面上也没有完全解决。例如半导体激光器如果能形成双频,无疑是一种十分重要的特性,如果既能扫频又有两个相近的频率扫描,就会成为一种新的无导轨测量工具。
我校测控专业的所处的现状和发展机遇
测控技术与仪器专业在广东只有我校和广东工业大学两所大学开设,两校该专业的就业历史均甚为辉煌。周围各省开设本专业的高校也不多,就业环境良好,但是开设本专业的学校有增多的趋势,就业压力增大。
从我校来看,我校测控专业的师资力量雄厚,实验器材设备齐全,研究成果颇丰,这是个好的环境。但是我校的学生在专业素质上相比起其他高校就有压力了,这是个严峻的问题。
从整个广东来看,社会对这个专业的需求甚大,但是要求高,要求学习能力极强。根据国家今年已经开始执行的“十二五”规划,要求促进产业结构优化升级研究和提高我国产业竞争力研究、提高自主创新能力的措施研究与建设人力资源强国的对策研究。这是个好机遇,广东省及全国大范围调整产业结构,产业结构的调整必然对技术的要求提出新的要求,同时,政府在政策方面一定会对技术创新提供支持与帮助。
个人就业意向
根据我的家庭情况和学习现状,想到外省与本专业相关的企业就业学习。
给学校的建议
学校要切实落实测控专业的培养目标,加强师资队伍的建设,优化培养方案和课程体系,目前我校测控专业的课程安排有着明显的缺陷与不合理性,加强测控专业的专业实践环节和工程训练,这方面我校还需要改善。
结束语
总之,既然选择了这个专业就要坚持走下去,除了坚持努力,别无选择。这门课程的性质决定了它给予我们的知识是蜻蜓点水。我们要以无限的好奇去探索这门课程背后更深奥的知识,这不仅仅是一门课程,是一项可以改变人类的技术。热切期盼广东石油化工学院的测控专业能给我们带来美好未来。
【参考文献】
1.刘美,廖晓文,黄瑞龙,田志波 《关于我校测控技术与仪器专业人才的培养和思考》[期刊论文]-世界华商经济年鉴•高校教育研究 2008,5
2.崔惠柳,潘盛辉 《以高新技术改造传统专业--测控技术与仪专业人才培养方案的研究》200
43.Mr.Louis Frenzel,《Synthetic Instrumentation No Longer A Test Case 》
4、郭亚春,《浅谈测控仪器与技术专业建设》,20105、韩九强,《现代测控技术与系统》,20066、徐宏飞,《测控专业概论》,20097、耿桂宏,《测控技术与仪器专业导论》,20068、刘君,《计算机测控技术》,20099、王先培,10、侯媛彬,2010 《测控技术与仪器专业导论》,2010 4《测控技术与仪器概论》
第四篇:测控技术与仪器专业概论
测控技术与仪器专业
摘要:简述仪器仪表与高新技术、网络信息技术的关系;简述MEMS技术与微型力学传感器;展望智能传感器与网络智能哈的应用;阐述计量科学与本专业的联系
关键词:仪器,高新技术,网络信息技术;MEMS技术,微型力学传感器;智能传感器,网络智能化;计量科学,量子单位制。
1.仪器与高新技术、网络信息技术的联系
仪器是认识物质世界的工具,它的主要作用在于测量和控制两方面。测量是为了确定量值,而控制是指在精准测量的基础上跟踪对象,传送信息,反馈状态并由此控制对象的动作。
著名科学家钱学森曾指出,“发展高新技术信息技术是关键,信息技术包括测量技术、计算机技术和通信技术。而测量技术是关键和基础。”科学是从测量开始的,而测控技术与仪器专业所代表的仪器科学与技术学科,在经济和科技发展中的作用是不可估量的。仪器仪表是工业生产的“倍增器”,科学研究的“先行官”,军事作战的“战斗力”,社会生活的“物化官”,这些无一不体现仪器仪表的在各个领域中的地位。
仪器科学与技术学科最显著的技术特征就是“精确”。所谓精确,即信息属性完整、量值准确。仪器技术主要研究信息转换、处理、控制、传输、储存、显示与应用等技术,并达到最终获取信息的目的。所以仪器科学是多学科理论为基础,多学科交叉的一门边缘科学。
所以,仪器科学对各种高新技术都相当敏感,并且集各种高新技术于一身的应用型技术。早期仪器多为机械机构,而后又逐渐引入光学技术,形成光、机一体结构。随着电子技术的发展,电子技术也逐渐成为仪器科学中的重要部分,于是仪器设计中又不断引进先进的光学、激光技术,使得仪器向光、机、电结合的方向发展。随着计算机技术的发展,仪器仪表更加智能化,同时尖端现代仪器还结合了生物技术、材料科学等。仪器也不再是单纯的采集数据的工具,它同时兼备信号传输、信号处理以及控制。随着计算机网络技术、软件技术、纳米技术的发展,测量控制与仪器技术有虚拟化、远程化和微型化的发展趋势。各种高新技术为仪器技术提供了新原理、新材料、新工艺,使仪器技术学科交叉性与边缘学科属性的特点越来愈鲜明。
为什么把仪器科学与技术定位成信息技术,而且是信息技术中的源头技术呢?信息获取是靠一起来实现的。一条完整的信息链的构成是“信息获取——信息处理——信息传输”,如果不能获取准确的信息,那么信息的各种处理如存储、传输等都失去了意义。因此,信息的准确获取是信息技术的基础。而仪器正起到了不可或缺的信息源的作用。
仪器仪表发展的核心在于提高测量控制的技术指标和功能。具体而言,包括:(1)技术指标不断提高(检测范围,测量精度,测量速度,环境适应度等);(2)测量单元的微型化、智能化;(3)测控范围的立体化、全球化,测量控制的系统化、网络化;(4)便携式、手持式以及适应各种不同的特殊需要的仪表的大量发展。
在以信息技术和网络思想来指导仪器仪表的设计与应用的情况下,传统仪器的结构在不断演
变并产生了新的突破。现在,仪器仪表本身的硬件和软件的界限已经模糊化了,仪器仪表设计的主要基础是它的软件,而不是传统仪器仪表的硬件,这就是所谓的“虚拟仪表”。可以说,这是一起领域内的一次革命!实际上,它是一种基于计算机的数字化测量测试的仪器,利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化的应用。而其最大的特点,就是用户能根据自己的应用需求,设计自己的仪器系统。另外,虚拟仪器能够与网络技术结合,将虚拟仪器实时测量的数据上传。
当然,虚拟仪器本身不完全脱离硬件。如采集的本身是以硬件作为基础。虚拟仪器只是更为强调于计算机的融合度。而且相比传统仪器,虚拟仪器在测量速度、测量精度上也有一定差距。
2.MEMS技术
那么,是什么直接决定了获取信息的质量,关系到整个测试系统精度?答案是传感器。传感器作为现代测试系统中的首要环节而占有重要地位;而在基础科学研究中,传感器具有突出地位,许多重大的科学发现往往都源于一种新的传感测试手段的发明。在某些极端技术领域,如超高温、超低温、超强磁场、超弱磁场等,要获取大量的感官无法获取的信息,没有相应的传感器是不可能的。军事领域中,传感器是决定武器的性能和实战能力的重要因素,如洲际导弹惯性制导用的加速计传感器,其精度可达万分之一,保证了高精度命中能力。
MEMS技术即微电子机械,又称微机电系统。它是在微电子技术的基础上发展起来的,但又区别于微电子技术。在21世纪,MEMS技术将对人类社会产生革命性的影响,是关系国民经济建设和国家安全保障的战略高科技。MEMS时美国建立在半导体技术基础上的称谓,而更强调系统概念的欧洲称之为为系统,在精密机械加工方面有传统优势的日本则称之为微机械。
MEMS是一种典型的多学科交叉的前沿性的高科技研究领域,它设计自然科学和工程技术的方方面面,如电子工程、机械工程、生物工程、物理科学、化学科学和材料科学等,可广泛地应用于航空、航天、军事、光通信、无线通信和生物医学等人类生产生活的诸多方面,被认为是面向21世纪的新兴技术乃至主导技术之一。
MEMS测试技术主要包括几何量、机械量、材料特性、力学特性、热学特性、电学特性、光学特性及声学特性等参数的测试。以上参数的测试又可分别归属到两大类,即通用特性测试技术和专用特性测试技术。MEMS通用特性测试技术主要指与微结构相关的测试,主要包括几何量(如几何尺寸及三维形貌)、机械量(如运动位移、运动速度和谐振频率)、材料特性(如硬度)及力学特性、温度场分布等方面的测试。MEMS专用特性测试技术根据MEMS力学传感器、光MEMS、射频MEMS等不同功能MEMS器件的要求,重点是力学特性、电学特性、光学特性及声学特性等综合参数的测试。
在前沿传感技术中,微电子机械系统对精密测试技术提出了新的要求,MEMS测试技术已经成为MEMS设计、仿真、制造以及质量控制和评价的关键环节之一。MEMS具有结构尺寸小和集成度高等特点,研制精度高、简单便捷和成本低的精密测试手段已经成为MEMS发展的迫切需要。
面向微结构的MEMS通用特性测试技术按照实现方式可分为接触式和非接触式,按照测试原理又可分为光学测试非光学测试。由于MEMS具有结构尺寸小、集成度高和运动频率高等特点,而非光学测试方法一般都要求在被测结构上附加相应的传感元件,这会影响微结构的完整性和机械特性,将导致不可预计的测量误差。而光学测试技术具有非接触、快速、高灵敏度、高精度和抗干扰能力强的有点,可实现大视场的测量,能够很好地满足MEMS测试的要求,因此光学测试技术在MEMS测试中处于主导地位。
对MEMS的机械运动参数(如位移、速度、振幅和频率等)进行精确的测试已经成为MEMS发展的迫切需求。目前采用的微机械量测试方法主要有电测法和光测法等。为机械的特征尺寸一般为毫米级乃至亚微米量级,远小于宏观机械,故微机械的动态特性很容易被测试过程所干扰。由于光学测试方法属于非接触测量,同时又具有分辨率好和精度高等特点,目前已经成为微机械量测试领域的研究热点。
3.简单介绍MEMS技术最早取得成功的领域——微型力学传感器
微型力学传感器是MEMS技术最早取得成功的领域。硅有良好的力学性能和力学传感特性,而且便于加工,是目前微型力学传感器的主要构成材料。微型力学传感器根据被测量,又可细分为压力传感器、应力传感器、力矩传感器、流量传感器和惯性(角速度和加速度)传感器等几类。以下简单介绍下微型压力传感器以及微型惯性传感器。
压阻式压力传感器。目前大多数商品化的压力传感器均有采用。
电容式压力传感器。它是根据电容器两块电极板之间距离的变化导致的电容值的变化来测量压力变化。
谐振式压力传感器。它是通过检测微机械谐振梁谐振频率的变化来实现压力的测量。
而至于未来的发展趋势,微型压力传感器在生物医疗中的应用是当前该领域的热点,其主要用于人体血管及脑内压力的监控,脉血压以及尿道、膀胱、子宫等内压力的测量,心室压力波形的检查研究和肠胃压力的短期监控等等[3]。
微型惯性传感器,包括微加速度计和微陀螺,是利用物体的惯性性质来测量物体运动情况的一类传感器。这类传感器在进行轮船、飞机、航天器和武器的导航、制导、姿态控制和惯性测量上应用性很强。与卫星导航不同,惯性传感器导航不受外界条件的影响,完全通过记录自身运动情况来完成定位,而卫星导航又常常受到地理环境或人为因素的破坏、干扰导致不能正常运行。只要确定初始的位置、速度、姿态,理论上就可以记录当前的运动状态以及位置。但实际上,能够满足惯性级性能要求的微机械惯性传感器还很不成熟。除了在器件的结构、材料等方面继续努力以外,对于测试电路和封装技术等主要制约因素的深入研究也很有必要。
4.智能传感器与网络智能化
把敏感技术和信息处理技术结合起来,就是所谓智能传感器。智能传感器的概念最初是NASA在开发宇宙飞船的过程中形成的。宇宙飞船在太空飞行时,要安装大量的传感器进行科学实验,而处理如此多的有传感器所获取的信息,需要一台大型的计算机,二者在飞船上
是无法做到的,于是提出了分散处理的设想,从而产生出智能传感器。微处理器的出现使得智能传感器的设想得以实现。一般来说,智能传感器具有如下几个特点:1.能够进行自动补偿 2.具有自检、自诊断和自校准功能 3.具有复合敏感功能 4.具有判断、决策能力 5.具有数据存储、记忆与信息处理功能 6.具有双向通信和标准化数字输出的功能。如此,不仅有多项功能来保证高精度,而且传感器不再只是个数据源,更扮演了整个信息链中其他环节的部分角色,优化了效率。
智能传感器是传感器今后一个重要的发展方向。随着硅微细加工技术的发展,新一代智能传感器功能将会更加丰富,体积更加微型化;它将利用人工神经网络、人工智能、信息处理技术等,使传感器具有更高级的智能化水平。
早在上世纪80年代,人们就开始探索将神经网络应用到智能传感器上。人工神经网络使智能传感器具有更多的潜能,对于传感器应用而言,提高其测量精度,特别是在不清楚传感器的数学模型或其传递函数的情况下,就更具有重要意义。目前,神经网络主要用于智能传感器的多传感器融合、数据处理、目标识别和故障诊断等方面。
网络化智能传感器是目前国内外竞相研究的传感器前沿技术之一。网络化智能传感器融合了通信技术和计算机技术,其实质是在智能传感器的基础上实现网络化和信息化,是传感器具备自检、自校、自诊断和网络通信功能,从而实现信息的采集、传输和处理。网络化智能传感器是以嵌入式微处理器为核心,集成了传感单元、信号处理单元和网络接口单元的新一代传感器。
应用网络接口技术是传感器能方便地接入网络,为系统的扩充和维护提供了极大的方便。网络化智能传感器时传感器由单一功能、单一检测向多功能和多点检测发展,从孤立元件向系统化、网络化发展,从就地测量向远距离实时在线检测发展成为了可能。
而网络化智能传感器的关键技术是网络接口。网络化智能传感器必须符合某种网络协议,是测控数据能直接入网。随着电子和信息技术的高速发展,通过软件或硬件方式将通信协议嵌入到智能化传感器已经成为可能。
5.计量科学与本专业的联系
计量科学与制造自动化与测控技术专业紧密相关,更是自然科学的基础和前沿。计量是保证仪器仪表质量,研究测试方法和规范国民经济和社会发展各领域量的度量,是直接体现测量控制与仪器仪表作用的科学。
毫无例外,每一项科技发明、每一项技术创新从论证、实验、鉴定乃至推广,验证其科学与成功的每一环节都必然需要计量测试数据,是自然科学的发展中不可缺少的手段。例如,美籍华人吴健雄博士就是通过精密测量,用实验方法在美国国家标准技术研究院的实验室里验证了世界著名物理学家诺贝尔奖获得者李政道和杨振宁所提出的弱相互作用下的宇称不守恒理论。
而在现代化生产过程中,产品质量是企业的一大根本。没有精确的计量仪器和测量方法,就难以保证产品的质量和效益。原材料、元器件进场的监测和分析,生产加工的质量监控,到成品的检验,以及物料和能源的消耗情况都需要计量提供准确的数据。所以质量的管理与
效益的提高,必须建立在计量科学技术的基础上。
我们可以从几个侧面大致了解当今计量测试技术的发展情况。
激光铯原子喷泉钟350万年不差一秒。铯原子时间频率基准复现的原子秒,其准确度比其他计量单位提高了10^6倍。这样的准确度并非没有意义。相反,比如像导弹上面安装了精密传感装置,以接受装有GPS的卫星发来的信号,但要使导弹命中率高,关键有精确的计时装置。亿分之一秒的误差就可能导致导弹3米的误差!
又如中国计量科学研究院在03年建成了量子化霍尔电阻标准装置,并使我国的量子化霍尔电阻标准准确度比国外最好的同类装置高出近10倍,误差仅为百亿分之一。这一重大成果,不仅突破了国外技术封锁,还为课题提供了核心器件,并具有我国自主知识产权。
当代计量学正处于经典物理学与量子物理学的交界处。21世纪的计量学是利用原子与原子间的物理特性及其新型量子效应和基本物理常数,建立的新型量子单位制。
例如,利用量子跃迁现象来复现计量单位,就可以从原理上消除各种宏观参数不稳定产生的影响,所复现的计量单位不再会发生缓慢飘移,计量基准的稳定性和准确度可以达到空前的高度。更重要的是,量子跃迁现象可以在任何时间、任何地点用原理相同的装置重复产生,不像实物基准是特定的物体,一旦由于事故而损毁,就不可能再准确复制。如第一个使用量子计量基准的长度单位,其原理是利用86Kr原子在两个特定能级之间发生量子跃迁时所发射的光波波长作为长度基准,准确度达到10^(-9)量级。又如秒的新定义为“铯-133原子基态的两个超精细能级之间月前所对应的辐射的9192631770个周期的持续时间”
小结:制造自动化与测控技术是一门应用性较强的学科。它与时俱进,同许多最新高新技术都有密切联系;并且其学科交叉性很强。测量是自然科学的基础,所以要想适应科技发展的需要,有所突破,必须对多个领域均有所涉猎。并且,一定要树立“仪器科学技术是信息技术”的观念,因为只有这样的仪器仪表科学技术才是高度发展、顺应时代的。
第五篇:测控技术与仪器课程
相关课程信息
主干学科:光学工程、仪器科学与技术。
主要课程:精密机械与仪器设计、精密机械制造工程、模拟电子技术基础、数字电子技术基础,微型计算机原理与应用、控制工程基础、信号分析与处理、精密测控与系统等。
测控技术与仪器专业是信息科学技术的源头,是光学、精密机械、电子、计算机与信息技术多学科互相渗透而形成的一门高新技术密集型综合学科。她的专业面广,小到制造车间的检测,大到卫星火箭发射的监控。本专业最令人感兴趣的方向恐怕要数光盘生产了,很多同学认为这属于制造业,实际上由于对精度的严格要求,使她归于测控技术与仪器专业。
培养目标及学习内容
本专业培养具备精密仪器设计制造以及测量与控制方面基础知识与应用能力,能在国民经济各部门从事测量与控制领域内有关技术、仪器与系统的设计制造、科技开发、应用研究、运行管理等方面的高级工程技术人才。
本专业学生主要学习精密仪器的光学、机械与电子学基础理论,测量与控制理论和有关测控仪器的设计方法,受到现代测控技术和仪器应用的训练,具有本专业测控技术及仪器系统的应用及设计开发能力。
具体说,毕业生应获得以下几方面的知识和能力:
1.具有较扎实的自然科学基础,较好的人文、艺术和社会科学基础及正确运用本国语言、文字的表达能力;
2.较系统地掌握本专业领域宽广的技术理论基础知识,主要包括机械学、电子学、光学、测量与控制、市场经济及企业管理等基础知识;
3.掌握光、机、电、计算机相结合的当代测控技术和实验研究能力,具有本专业测控技术、仪器与系统的设计、开发能力;
4.具有较强的外语应用能力;
5.具有较强的自学能力、创新意识和较高的综合素质。