停车场系统中的地感线圈的作用与原理介绍

时间:2019-05-14 20:31:11下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《停车场系统中的地感线圈的作用与原理介绍》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《停车场系统中的地感线圈的作用与原理介绍》。

第一篇:停车场系统中的地感线圈的作用与原理介绍

停车场系统中的地感线圈的作用与原理介绍!

停车场系统中检测器由一组环绕线圈与电流感应数字电路板组成,线圈埋于栏杆前后地下20cm处,只要路面上有车辆经过,线圈产生感应电流传送给电路板,再由电路板产生干结点信号给控制主机或电动栏道器,需要说明的是:栏杆前的检测器是输给主机工作状态的信号,栏杆后的检测器实际上是与电动栏杆连在一起,当车辆经过时起防砸作用。

地感线圈就是一个振荡电路,它的构成的是:在地面上先造出一个圆形的沟槽,直径大概1米,或是面积相当的矩形沟槽,再在这个沟槽中埋入两到三匝导线,这就 构成了一个埋于地表的电感线圈,这个线圈是一个振荡电路的一部分,由它和电容组成振荡电路,其原则是振荡稳定可靠,这个振荡信号通过变换送到单片机组成的 频率测量电路,单片机就可以测量这个振荡器的频率了。当有大的金属物如汽车经过时,由于空间介质发生变化引起了振荡频率的变化,这个变化就作为汽车经过“地感线圈”的证实信号,同时这个信号的开始和结束之间的时间间隔又可以用来测量汽车的移动速度。

车辆进过地感线圈会产生产生电感量传输给车辆检测器,车辆检测器就会发出2组继电器信 号,一组是进入地感线圈信号,一组是离开信号,每组多有长开和长闭两种信号。另外道闸一般有地感红外输入接口,正常情况车辆检测信号会接在地感红外接口 上,车辆来了道闸刷卡开闸,车过自动落闸,车来碰到地感线圈不会自动抬闸。但是要是供应商的产品没有地感红外接口或地感红外接口坏了或新的车辆检测器和地 感红外接口不匹配,他们把车辆检测器的两组信号接在道闸本身的开闸和关闸端口,这样也起到车过自动落闸车子在不会落闸保护车辆作用,唯一缺点就是车子压到 地感道闸会开闸;另外一种情况就是道闸控制板或刷卡主板有问题,主要看现场线怎么接的来判断。

地感线圈工作原理:

环形线圈、线圈引线馈线(L)加上车辆检测器的电容(C)构成了LC振荡电路,地感线圈检测器检测的就是该LC振荡电路的振荡频率。如果振荡频率相对于基 准频率发生了变化,地感检测器就判断为有车辆通过。因此保证振荡频率的改变只与车辆进入线圈有关就成为地感检测器检测成功与否的关键。振荡频率计算公式:f0=1/{2π(LC)1/2]Hz

由于电容C是固定的,可以发生改变的只有电感L。电感L的值与线圈圈数(也叫匝数)、线圈的面积、引线馈线的长度和线圈中的介质有关。当匝数、面积、引线 馈线的长度都一定的前提下,电感值只和介质有关,也即振荡频率和线圈内通过的金属物体有唯一的对应关系,这就是地感检测器检测车辆的工作原理。

工程实践上面说的电容并不是固定的。因为线圈除了电感之外,在线圈与线槽之间还寄生着电容。电容的大小与线槽密封材料的介电系数成正比。如果封装施工工艺不好,造成封装不完整,没有完全密封填满切槽,使水进入切槽,穿透线圈导体之间,电容量就会大大改变。线圈在阴雨天测速故障多也就是这个原因。

第二篇:电源系统中防雷原理与保护措施

电源系统中防雷原理与保护措施

雷电由高能的低频成份与极具渗透性的高频成份组成。其主要通过两种形式,一种是通过金属管线或地线直接传导雷电致损设备;一种是闪电通道及泄流通道的雷电电磁脉冲以各种耦合方式感应到金属管线或地线产生浪涌致损设备。绝大部分雷损由这种感应而引起。对于电子信息设备而言,危害主要来自于由雷电引起的雷电电磁脉冲的巨大耦合能量。

雷电防护基本原理

雷电及其它强干扰对通信系统的致损及由此引起的后果是严重的,雷电防护将成为必需。雷电由高能的低频成份与极具渗透性的高频成份组成。其主要通过两种形式,一种是通过金属管线或地线直接传导雷电致损设备;一种是闪电通道及泄流通道的雷电电磁脉冲以各种耦合方式感应到金属管线或地线产生浪涌致损设备。绝大部分雷损由这种感应而引起。对于电子信息设备而言,危害主要来自于由雷电引起的雷电电磁脉冲的耦合能量,通过以下三个通道所产生的瞬态浪涌。金属管线通道,如自来水管、电源线、天馈线、信号线、航空障碍灯引线等产生的浪涌;地线通道,地电们反击;空间通道,电磁小组的辐射能量。

其中金属管线通道的浪涌和地线通道的地电位反击是电子信息系统致损的主要原因,它的最见的致损形式是在电力线上引起的雷损,所以需作为防扩的重点。由于雷电无孔不入地侵袭电子信息系统,雷电防护将是个系统工程。雷电防护的中心内容是泄放和均衡。

泄放是将雷电与雷电电磁脉冲的能量通过大地泄放,并且应符合层次性原则,即尽可能多、尽可能远地将多余能量在引入通信系统之前泄放入地;层次性就是按照所设立的防雷保护区分层次对雷电能量进行削弱。防雷保护区又称电磁兼容分区,是按人、物和信息系统对雷电及雷电电磁脉冲的感受强度不同把环境分成几个区域:

LPZOA区,本区内的各物体都可能遭到直接雷击,因此各特体都可能导走全部雷电流,本区内电磁场没有衰减。LPZOB区,本区内的各物体不可能遭到直接雷击,但本区电磁场没有衰减。LPZ1区,本区内的各物体不可能遭到直接雷击,流往各导体的电流比LPZOB区进一步减少,电磁场衰减和效果取决于整体的屏蔽措施。

后续的防雷区(LPZ2区等)如果需要进一步减小所导引的电流和电磁场,就应引入后续防雷区,应按照需要保护的系统所要求的环境区选择且续防雷区的要求条件。保护区序号越高,预期的干扰能量和干扰电压越低。在现代雷电防护技术中,防雷区的设置具有重要意义,它可以指导我们进行屏蔽、接地、等电们连接等技术措施的实施。

均衡就是保持系统各部分不产生足以致损的电位差,即系统所在环境及系统本身所有金属导电体的电位在瞬态现象时保持基本相等,这实质是基于均压等电位连接的。由可靠的接地系统、等电位连接用的金属导线和等电位连接器(防雷器)组成一个电位补偿系统,在瞬态现象存在的极短时间里,这个电位补偿系统可以迅速地在被保护系统所处区域内所有导电部件之间建立起一个等电位,这些导电部件也包括有源导线。通过这个完备的电位补偿系统,可以在极短时间内形成一个等电位区域,这个区域相对于远处可能存在数十千伏的电位差。重要的是在需要保护的系统所处区域内部,所有导电部件之间不存在显著的电位差

雷电防护系统由三部分组成,各部分都有其重要作用,不存在替代性。外部防护,由接闪器、引下线、接地体组成,可将绝大部分雷电能量直接导入地下泄放。过渡防护,由合理的屏蔽、接地、布线组成,可减少或阻塞通过各入侵通道引入的感应。内部防护,由均压等电位连接、过电压保护组成,可均衡系统电位,限制过电压幅值。

防雷器的作用及技术参数

防雷器又称等电位连接器、过电压保护器、浪涌抑制器、突波吸收器、防雷保安器等,用于电源线防护的防雷器称为电源防雷器。鉴于目前的雷电致损特点,雷电防护尤其在防雷整改中,基于防雷器防护方案是最简单、经济的雷电防护解决方案。防雷器的主要作用是瞬态现象时将其两端的电位保持一致或限制在一个范围内,转移有源导体上多余能量。

进入地下泄放,是实现均压等电位连接的重要组成部分。防雷器的一些主要技术参数:额定工作电压、额定工作电流,特批串并式电源防雷器的载流量。通流能力,防雷器转移雷电流的能力,以千安为单位,与波开开式有关。防雷器在功能上可分为可防直击雷的防雷器和防感应雷的防雷器。可防直击雷的防雷器通常用于可能被直击雷击中的线路保护,如LPZOA区与LPZ1区交界处的保护。用10/35μs电流波形测试与表示其通流能力。防感应雷的防雷器通常用于不可能被直击雷击中的线路保护,如LPZOB区与LPX1区、LPZ1区交界处的保护。用8/20μs电流波形测试与表示其通流能力响应时间,防雷器对瞬态现象起控制作用所需的时间,与波形性质有关。残压,防雷器对瞬态现象的电压限制能力,与雷电流幅值及波形性质有关。

防雷器的选用

基于防雷器的防护想要取得理想的效果,应注重“在合适的地方合理地装设合适的防雷器”。

进入建筑物的各种设施之间的雷电流分配情况如下:约有50%的雷电流经外部防雷装置泄放入地,另有50%的雷电流将在整个系统的金属物质内进行分配。这个*估模式用于估算在LPAOA区、LPZOB区和LPZ1区交界处作等电位连接的防雷器的通流能力和金属导线的规格。该处的雷电流为10/35μs电流波形。在各金属物质中雷电流的分配情况下:各部分雷电流幅值取决于各分配通道有的阻抗与感抗,分配通道是指可能被分配到雷电流的金属物质,如电力线、信号线、自来水管、金属构架等金属管级及其它接地,一般仅以各自的接地电阻值就可以大致估算。在不能确定的情况下,可以认为接是电阻相等,即各金属管线平均分配电流。

在电力线架空引入,并且电力线可能被直击雷击中时,进入建筑物内保护区的雷电流取决于外引线路、防雷器放电支路和用户侧线路的阻抗和感抗。如内外两端阻抗一致,则电力线被分配到一半的直击雷电流。在这种情况下必须采用具有防直击雷功能的防雷器。

后续的*估模式用于*估LPZ1区以后防护区交界处的雷电流分配情况。由于用户侧绝缘阻抗远远大于防雷器放电支路与外引线路的阻抗,进入后续防雷区的雷电流将减少,在数值上不需特别估算。一般要求用于后续防雷区的电源防雷器的通流能力在20kA(8/20μs)以下,不需采用大通流能力的防雷器。

后续防雷区防雷器的选择应考虑各级之间的能量分配和电压配合,在许多因素难以确定时,采用串并式电源防雷器是个好的选择。串并式是根据现代雷电防护中许多应用场合、保护范围层次区分等特点提出的概念(相对于传统的并式防雷器而言)。其实质是经能量配合和电压分配的多级放电器与滤波器技术的有效结合。串并式防雷有如下特点:应用广泛。不但可以按常规进行应用,也适合保护区难以区别的场所。感生退耦器件在瞬态过电压下的分压、延迟作用,以帮助实现能量配合。减缓瞬态干扰的上升速率,以实现低残压与长寿命以及极快的响应时间。

防雷器的其它参数选择取决于各个被保护物所在防雷区的级别,其工作电压以安装在引电路中所有部件的额定电压为准。串并式防雷器还需注意其额定电流。

影响电子线雷电流分配的其它因素:变压器端接地电阻降低将使电子线中分配电流增大。供电线缆的长度的增加将使电力线中分配电流减少,并使几要导线中有平衡的电流分配。过短的电缆长度和过低的中性线阻抗将使电流不平衡,从而引起差模干扰。供电线缆并接多用户将降低有效阻抗,导致分配电流增大,在连成网状的供电状态下,雷临时性流主要流入电力线,这是多数雷损发生在电力线处的原因。

防雷器的安装

电源线应实现多级防护,多级防护是以各防雷区为层次,对雷电能量的逐级减弱(能量分配),使各级限制电压相互配合,最终使过电压值限制在设备绝缘强度之内(电压配合)。在下列情况下,多级防护成为必须:某一级防雷器失效或防雷器某一路失效。防雷器的残压不配合设备绝缘强度,线缆在建筑物内长度较长时。

几乎所有情况下的线缆防护,至少应分成两级以上,同一级防雷器还可能包含多级保护(如串并式防雷器)。为了达到有效的保护,可在各防雷区界面处设置相应的防雷器,防雷器可针对单个电子设备,或一个装有多个电子设备的空间,所有穿过通常具有空间屏蔽的防雷区的导线,在穿过防雷区界面同时接有防雷器。另外,防雷器的保护范围是有限的,一般防雷器与设备线路距离超过10m以后将使防护效果劣化,这是因为防雷器和需要保护的设备之间的电缆上有反射造成的振荡电压,其幅值与线路长度、负载阻抗成正比。

在使用电源防雷器的多级防护中,如果不注意能量分配,则可能引入更多的雷电能量进入保护区域。这要求防雷器应根据前述*估模式选择。一般防雷器都有通过雷电流越大,残压越高的特点,通过能量分配后未级防雷器流过的雷电流极小,有利于电压限制。注意,不考虑电压配合而仅仅选择低响应电压的防雷器作末级保护是危险的。

实现能量分配与电压配合的要点在于利用两级防雷器之间线缆本身的感抗。线缆本身的感抗有一定的阻碍埋电流及分压作用,使雷电流更多地被分配到前级泄放。一般要求两级防雷器之间线缆长度在15m左右,适??缆之内的情况。线缆上分支线路的长度对线缆要求长度有影响,当保护地线与被保护线缆有一定距离(>1m),这时要求线缆长度大于5m即可。在一些不适合采用线缆本身作退耦的地方,可利用专门的退耦器件,这时无距离要求。

退耦器件是实现能量分配与电压配合的重要措施,以下几种材料可作为退耦器件:线缆、电感和电阻。

串并式电源防雷器为退耦器件的防雷器组合形式,适合于各种场合的应用。

在某些极端情况下,装上防雷器反而会增加设备损坏的可能,必须杜绝;这类情况发生。防雷器保护几条线,其中一条线上的防雷器失效或响应速度过慢。这可能使共模干扰转化为差模干扰而损坏设备。这要求必须实施多级防护及注意防雷器的维护。不考虑防雷保护区、能量配合及电压分配而随便安装防雷器,比如仅仅在设备前端装设一只防雷器,由于没有前级保护,强大的雷电流将被吸引到设备前端,致使防雷器残压超过设备绝缘强度。这要求防雷器必须按层次性原则安装。

在另外的一些情况下,错误的安装将使设备得不到有效保护。过长的防雷器连接线、防雷器工作时,连接线上由感抗引起的电压将极高,加在设备上的仍会危险电压,这个问题在末级防雷器的应用中更加明显。解决这个问题的方法是采用短的连接线,也要以采用两要以上分开的连接线以分担磁场强度,减少压降,单线加粗连接线是没有什么效果的。必要时可通过改变被保护线的布线,使其靠近等电位连接排(接地点)以减少连接线长度。

防雷器输出线和输入线、接地线靠近、并排敷设。这种情况对串并式防雷器的影响比较严重。当串并式电源防雷器的输出线(已保护的线)和输入线(未保护线)、地线靠近敷设,会使输出线内感应出瞬态浪涌,虽然其强度较原来小,但仍可能是危险的。解决这个问题的方法是将输入线、地线与输出线分开敷设或垂直敷设,尽量减少并行敷设的长度,拉开敷设的距离。

防雷器接地线没有与被保护设备的保护地相连,即采取单独的防雷接地。这将使被保护线与设备保护地之间在瞬态时存在危险电压,解决这个问题的方法是防雷器的接地应与设备保护地相连。

本文转自1.80英雄合击:http://www.xiexiebang.com

第三篇:Matlab在《现代通信原理与系统》实验中的应用

Matlab在《现代通信原理与系统》实验中的应用

摘要:为了提高研究生教学质量,提高学生学习兴趣和学习热情,使学生更加透彻地理解所学知识,拓展学生向研究性发展的外延培养,训练学生创新能力的培养,开发了《现代通信原理与系统》课程相关的仿真演示实验。教学实践中,通过Matlab仿真实验演示,有效地激发了学生学习的主动性和积极性,增强了学生的感性认识,提高了?n程教学效果,提高了人才培养质量。

关键词:通信原理;Matlab;实验教学;系统仿真

中图分类号:TN911 文献标志码:A 文章编号:1674-9324(2018)25-0267-03

一、引言

《现代通信原理与系统》课程是光纤通信、移动通信、卫星通信等等课程的重要基础,该门课程数学知识复杂,理论性内容较多,部分涉及非线性电子线路,比较抽象,缺乏直观性,学生难以想象,不好理解,相关实验也是验证性实验,学生对实验的感受不深,对设备的运行原理、运行情况了解不深,这对培养学生综合思维能力、创新能力没有起到任何作用。为了提高学生学习兴趣和学习热情,使学生更加透彻地理解所学知识,拓展学生向研究性发展的外延培养,训练学生创新能力的培养,笔者通过该门课程典型实验仿真,动态演示,在课堂上形象生动展现波形,帮助学生深入了解课程内容,提高学习效率。

二、模拟调制实验仿真

让载波的某个参量随模拟调制信号的变化而变化的方式叫作模拟调制,模拟调制有线性模拟调制与非线性模拟调制。通过线性模拟调制与非线性模拟调制,利用Matlab仿真,加深学生对于调制、解调概念的理解,掌握线性调制与非线性调制的区别。通俗地讲,线性模拟调制就是将调制信号“放”到了载波的振幅参量上,在频域发生频谱的搬移,经过解调,将调制信号从载波的振幅参量上“取”出来,恢复成原始的调制信号。这样做的目的有三:第一方面,把低频信号变换成利于无线发送或在信道中传输的高频信号;第二方面,使得多路信号在一个信道中同时传输,实现信道多路复用;第三方面,可以改善传输系统的性能。基于这样的优势,信号传输的过程中可以采用模拟线性调制,但是我们日常观察到的波形或者学生脑子里想象的基本都是信号的幅值随时间的变化,都是时域里的波形,而调制、解调所说的对于信号的“放”和“取”,发生了频谱搬移,从时域到频域,再从频域到时域,学生很难理解如何实现频谱搬移以及频域的图形是什么样子。通过实验仿真,动态演示,学生实实在在看到了载波、调制信号、已调信号以及解调信号的时域波形和频域的频谱,便于理解学习内容。线性调制各波形如图1所示。

由图1仿真图形学生很容易理解:模拟线性调制,已调信号的频谱与调制信号的频谱在形状上没有变化,只在幅值上差一个倍数,信号在时域是重叠的,在频域是不重叠的,通过解调,可以很容易在频域把所需要的信号分离出来,从而实现信道多路复用,提高传输效率。

三、脉冲编码调制实验仿真

现实生活中,人类感觉器官可以接受的信息,如语言、图像等大多数都是以模拟形式出现的,也就是说信源与信宿处理的都是模拟信号,但在数字通信系统中,信道传输的却是数字信号。为了解决这样的问题,需要经过抽样(模拟信号离散化)、量化(离散信号数字化)和编码(数字信号二值化)三个处理步骤,将模拟信号转换为数字信号,这种通信方式,称之为脉冲编码调制。脉冲编码调制抗干扰能力强,在数字程控电话机交换系统、光纤通信、数字微波通信、卫星通信等方面得到了较为广泛的应用。虽然数字程控电话机交换系统、光纤通信等等与我们的生活息息相关,但是具体的原理不好理解,通过仿真实验,学生切实看到了模拟信号被取样,变成离散信号,见图2,并且掌握了模拟信号离散化的原理;再经过量化,将原来任意取值的离散信号经四舍五入变成了有限个值,也就是没有在实线上的点经过四舍五入变成了实线上有限的点,理解了量化的概念,见图3;再经过编码成为用0和1表示的信号,见图4。

通过实验仿真,学生真正理解了:抽样的作用是“模拟信号离散化”,量化的作用是“离散信号数字化”,编码的作用是“数字信号二值化”。

四、升余弦滚降系统性能仿真

数字通信系统中,基带信号的频谱较宽,容易产生码间串扰,信号通过这样的信道,不可避免地产生畸变。因此,在信道带宽有限的条件下,为了降低误码率需要对基带信号进行脉冲成形处理,改善平铺特性,产生适合信道传输的波形。升余弦滚降系统的传输特性表达式:

其中,α为滚降系数,Ts为码元间隔。由图5可以看出,滚降特性所形成的波形在采样点上均为零,从而抑制了码间串扰,并且“拖尾”现象随着α的增大而振荡幅度减小、衰减速度加快。

为了对数字通信系统性能有一个直观的了解,利用眼图法能够方便地估计系统性能。所谓眼图是一种定性分析系统特性的方法。将待测的基带信号加到示波器的输入端,同时把位定时信号作为扫描同步信号,使其与接收码元同步,观察示波器上显示的图形,由于在传播二进制代码时,很像人的眼睛,称之为眼图法。图6为升余弦滚降系统信号传输过程中观察到的眼图。改变噪声的功率谱密度,“眼睛”的张开角度发生变化,从而反映噪声对系统性能的影响,使教学内容更加直观生动有趣。

五、结束语

仿真软件在《现代通信原理与系统》课程实验教学中的应用,不但将课程中较难理解的内容形象生动地展示出来,使学生对理论知识的理解更加透彻,提高了学生学习的兴趣和效率,从而提高了教学质量和效果,而且从根本上提高了学生分析问题和解决实际问题的能力,培养了学生的创新能力,是课程教学改革中有益的探索。

参考文献:

[1]李芳,李征,等.“现代通信原理与系统”课程建设与教学实践[J].现代电子技术,2012,35(4):135-136.[2]张鸣,李白萍.Matlab仿真在通信原理课程中的应用[J].实验技术与管理,2012,29(11):87-89.[3]夏江涛,孙冬娇.Matlab在现代通信原理课程中的应用[J].实验技术与管理,2014,31(1):110-113.[4]肖珂,张月清.Matlab在《通信原理》课程实验中的应用[J].河北农业大学学报:农林教育版,2009,11(2):243-246.[5]张卫钢.通信原理与通信系统[M].第3版.西安:西安电子科技大学出版社,2012.

第四篇:华南厦门电工培训学校介绍:电压互感器在电力系统中的作用与用途

电压互感器在电力系统中的作用与用途

标签:厦门电工培训,厦门电工培训班,厦门电工培训学校

电压互感器是电力系统中一种不可缺少的电力设备仪器。

精密电压互感器是电测试验室中用来扩大量限,测量电压、功率和电能的一种仪器。

电压互感器和变压器很相象,都是用来变换线路上的电压。但是变压器变换电压的目的是为了输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故

障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。线路上为什么需要变换电压呢?这是因为根据发电、输电和用电的不同情况线路上的电压大小不一,而且相差悬殊,有的是低压220V和380V,有的是高压几万伏甚至几十万伏。要直接测量这些低压和高压电压,就需要根据线路电压的大小,制作相应的低压和高压的电压表和其他仪表和继电器。这样不仅会给仪表制作带来很大的困难,而且更主要的是,要直接制作高压仪表,直接在高压线路上测量电压。那是不可能的,而且也是绝对不允许的。

华南厦门电工培训学校与您一同分享电工知识。

下载停车场系统中的地感线圈的作用与原理介绍word格式文档
下载停车场系统中的地感线圈的作用与原理介绍.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐