第一篇:高中生物必修一第一课知识点总结【精】[小编推荐]
第一章 走进细胞
一.生命活动离不开细胞
1.各类生物的生命活动
{1}病毒 举例:SARS病毒.HIV病毒等
结构:不具有细胞结构
生命活动的完成:依赖活细胞才能生活
{2}单细胞生物 举例:草履虫.细菌等
生命活动的完成:依赖单个细胞完成各项生命活动
{3}多细胞生物 举例:大多数动植物
生命活动的完成:依赖各种分化的细胞密切合作共同完成一系列复杂的生命活动
二.生命系统的结构层次
1.几个概念
{1}系统:只彼此间相互作用.相互依赖的组分有规律的结合而形成的整体
{2}种群:在一定区域内,同种生物的所有个体的总称。
{3}群落;在一定区域内所有的种群组成一个群落。
{4}生态系统;生物群落和他的无机环境相互作用形成生态系统。
注:1:病毒不能独立进行生命活动,培养是不能用一般的培养基,而改用活细胞进行培养。2:病毒属于生物,但不属于生命系统。
3:一个单细胞生物即对应细胞层次,有对应个体层次,不能有遗漏。
第二篇:高中生物必修一知识点总结
必修一
第一章
走近细胞
第一节
从生物圈到细胞
病毒是无细胞结构的生物,寄生在活细胞中,利用细胞里的物质结构基础生活,繁殖。细胞是生物体结构和功能的基本单位。a.生命活动离不开细胞
生物圈中存在着众多的单细胞生物,单个细胞就能完成各种生命活动。许多植物和动物是多细胞生物,他们依赖各种分化的细胞密切合作,共同完成一系列复杂的生命活动。Eg:以细胞代谢为基础的生物与环境之间物质和能量的交换;以细胞增殖、分化为基础的生长发育;以细胞内基因的传递和变化为基础的遗传与变异。b.生命系统的结构层次
生命系统:能独立完成生命活动的整体。
系统:指彼此间相互作用、相互依赖的组分有规律地结合而形成的整体。细胞→组织→器官→系统→个体→种群/群落
PS:单细胞生物无组织、器官、系统,单细胞生物是个体;植物没有系统。生态系统包括所有生物和无机生物。生物圈是最大的生态系统。细胞是最基本的生物系统。
第二节 细胞的多样性和统一性
细胞的统一性:动植物细胞基本相似结构,都具有细胞膜、细胞质、细胞核(哺乳动物、成熟的红细胞没有细胞核)。使用高倍显微镜: ① 转动反光镜使视野明亮。(对光)② 在低倍镜下观察清楚后,把放大观察的物象移至视野中央。③ 转动转换器,换成高倍物镜。(视野变暗:调遮光器使光圈变大或把反光镜换成凹面镜)④ 观察并用细准焦螺旋调焦。a.原核细胞和真核细胞
科学家根据细胞内有无核膜为界限的细胞核,把细胞分为真核细胞和原核细胞两大类。原核生物:细菌(球、杆、螺旋、弧菌、乳酸菌)、衣原体、蓝藻、支原体(没有细胞壁,最小的细胞生物)、放线菌
真核生物:植物、动物、真菌(蘑菇、酵母菌、霉菌、大型真菌)病毒非真非原。
蓝藻:发菜、颤藻、念珠藻、蓝球藻
蓝藻没有成型的细胞核,有拟核——环状DNA分子。蓝藻细胞质:蓝藻素和叶绿素(物质基础),能进行光合作用(自养生物);核糖体 细菌中的绝大多数种类是营腐生或寄生生活的异氧生物。原核细胞具有与真核细胞相似的细胞膜和细胞质,没有有核膜包被的细胞核,也没有染色体,但有一个环状的DNA分子,位于细胞内特定的区域,这个区域叫拟核。b.细胞学说的建立过程
对动植物细胞的研究而揭示细胞的统一性和生物体结构统一性。建立者:施莱登(德国),施旺(德国)
其中3.新细胞可以从老细胞中产生应改为细胞通过分裂产生新细胞。第二章 组成细胞的分子
第一节 细胞中的元素和化合物
生物体总是和外界环境进行着物质交换,归根结底是有选择的从无机自然界获取各种物质来组成自身。
生物与非生物界具有统一性(元素种类)和差异性(元素含量)。a.组成细胞的元素(常见20多种)种类:大量元素:C H O N P S K Ca Mg
微量元素:Fe Mn Cu Zn B Mo
含量最多的4种(基本元素):C H O N C是构成细胞的最基本的元素 b.组成细胞的化合物 无机化合物:水,无机盐
有机化合物:糖类,脂质,蛋白质,核酸(可以提供能量)
实验:检测生物组织中的糖类、脂质和蛋白质
实验原理:某些化学试剂能够使生物组织中的有关有机化合物产生特定的颜色反应。
糖类中的还原糖(如葡萄糖、果糖、麦芽糖)与斐林试剂发生作用,生成砖红色沉淀。脂肪可以被苏丹红Ⅲ染成橘黄色(或被苏丹红Ⅳ染液染成红色)。淀粉遇碘变蓝色。蛋白质与双缩脲试剂发生作用,产生紫色反应。
第二节 生命活动的主要承担着——蛋白质(生物大分子)蛋白质是组成细胞的有机物中含量最多的。元素组成:C H O N(有的含N P S Fe等)基本单位:氨基酸 a.氨基酸及其种类
氨基酸是组成蛋白质的基本单位。种类:约20种 通式:
有8种氨基酸是人体细胞不能合成的(婴儿有9种),必须从外界环境中直接获取,叫必需氨基酸。
另外12种氨基酸是人体能够合成的,叫非必需氨基酸。b.蛋白质的结构极其多样性
氨基酸分子相互结合的方式是:一个氨基酸分子的羧基(—COOH)和另一个氨基酸分子的氨基(—NH2)相连接,同时脱去一分子水,这种结合方式叫做脱水缩合。连接两个氨基酸分子的化学键(—NH—CO—)叫做肽键。有两个氨基酸分子缩合而成的化合物,叫做二肽。公式:肽键数=失去H2O数=aa数-肽链数(不包括环状)肽链能盘曲、折叠、形成有一定空间结构的蛋白质分子。每种氨基酸的数目成百上千,氨基酸形成肽链时,不同种类氨基酸的排列顺序千变万化,肽链的盘曲、折叠方式及其形成的空间结构千差万别,因此,蛋白质分子的结构是极其多样的。这就是细胞中蛋白质种类繁多的原因。
蛋白质分子的空间结构遭到破坏,引起变性。c.蛋白质的功能 ① 构成细胞核生物体结构的重要物质,称为结构蛋白。② 催化。绝大多数酶都是蛋白质。③ 运输载体。④ 信息传递,调节机体的生命活动。⑤ 免疫功能。人体内的抗体是蛋白质。
一切生命活动都离不开蛋白质,蛋白质是生命活动的主要承担者。
第三节 遗传信息的携带者——核酸 细胞生物含两种核酸:DNA和RNA 病毒只含有一种核酸:DNA或RNA 核酸包括两大类:一类是脱氧核糖核酸;一类是核糖核酸。核酸是细胞内携带遗传信息的物质,在生物体的遗传、变异和蛋白质的生物合成中具有极其重要的作用。a.核酸在细胞中的分布
实验:观察DNA和RNA在细胞中的分布
DNA主要分布在细胞核内,RNA大部分存在于细胞质中。甲基绿使DNA呈绿色,吡罗红使RNA呈现红色。盐酸能够改变细胞膜的通透性,加速染色剂进入细胞,同时使染色质中的DNA与蛋白质分离。
结论:真核细胞的DNA主要分布在细胞核中。线粒体、叶绿体内含有少量的DNA。RNA主要分布在细胞质中。
b.核酸是由核苷酸连接而成的长链(C H O N P)核酸初步水解成许多核苷酸。一个核苷酸是由一分子含氮的碱基,一分子五碳糖和一分子磷酸组成的。根据五碳糖的不同,可以将核苷酸分为脱氧核糖核苷酸(简称脱氧核苷酸)和核糖核苷酸。
DNA由两条脱氧核苷酸链构成。RNA由一条核糖核苷酸连构成。DNA:胸腺嘧啶(T)腺嘌呤(A)鸟嘌呤(G)胞嘧啶(C)RNA:尿嘧啶(U)腺嘌呤(A)鸟嘌呤(G)胞嘧啶(C)
第四节 细胞中的糖类和脂质 糖类是主要的能源物质。a.细胞中的糖类(C H O)单糖:葡萄糖是细胞生命活动所需要的主要能源物质。葡萄糖不能水解,可直接被细胞吸收。二糖:由两分子单糖脱水缩合而成,二糖必须水解成单糖才能被细胞吸收。
Eg:麦芽糖(植物)
蔗糖(植物)
乳糖(人和动物)
多糖:淀粉:植物通过光合作用产生淀粉,作为植物体内的储能物质存在与植物细胞中。
糖原:分布在人和动物的肝脏和肌肉中。
纤维素:植物细胞的细胞壁。
构成他们的基本单位都是葡萄糖分子。b.细胞中的脂质(C H O有的还含有P N)通常不溶于水,溶于脂性有机溶剂。脂肪:只含有C H O,是细胞内良好的储能物质,还是一种很好的绝热体。还具有缓冲减压的作用,可以保护内脏器官。
磷脂:是构成细胞膜的重要成分,也是构成多种细胞器膜的重要成分。
固醇:包括胆固醇,性激素和维生素D等。胆固醇是构成细胞膜的重要成分,在人体内还参与血液中脂质的运输;性激素能促进人和动物生殖器官的发育以及生殖细胞的形成;维生素D能有效地促进人和动物倡导对钙和磷的吸收。c.生物大分子以碳链为骨架
每一个单体都以若干个相连的碳原子构成的碳链为基本骨架,由许多单体连接成多聚体。
第五节 细胞中的无机物 a.细胞中的水
自由水与结合水的关系:①在一定条件下可以相互转化 ②两者的相对含量(自由水/结合水)影响生物组织细胞的代谢速率→代谢旺盛:结合水转换为自由水;代谢缓慢:自由水转换成结合水。
自由水是细胞体内的良好溶剂;细胞内的许多生物化学反应也都需要水的参与;多细胞生物体的绝大多数细胞,必须浸润在以水为基础的液体环境中;可以把营养物质运送到各个细胞,同时也把各个细胞在新陈代谢中产生的废物,运送到排泄器官或者直接排出体外。一切生命活动都离不开水。b.细胞中的无机盐
细胞中大多数无机盐以离子的形式存在。
无机盐对于维持细胞核生物体的生命活动有重要作用。维持细胞的酸碱平衡。
细胞是多种元素和化合物构成的生命系统。C、H、O、N等化学元素在细胞内含量丰富,是构成细胞中主要化合物的基础;以碳链为骨架的糖类、脂质、蛋白质、核酸等有机化合物,构成细胞生命大厦的基本框架;糖类和脂质提供了生命活动的重要能源;水和无机盐与其他物质一道,共同承担起构建细胞、参与细胞生命活动等重要功能。活细胞中的这些化合物,含量和比例处在不断变化之中,但又保持相对稳定,以保证细胞生命活动的正常进行。
第三章 细胞的基本结构
第一节 细胞膜——系统的边界 a.细胞膜的成分
实验:体验制备细胞膜的方法 动物细胞没有细胞壁。
把细胞放在清水里,水会进入细胞,把细胞涨破,细胞内的物质流出来,这样就可以得到细胞膜了。
怎样把细胞膜与细胞器膜分开?用人和其他哺乳动物成熟的红细胞。怎样得到较纯的细胞膜?差速离心法
细胞膜主要由脂质和蛋白质组成。还有少量糖类。磷脂最丰富。功能越复杂的细胞膜,蛋白质的种类和数量越多。b.细胞膜的功能 ① 将细胞与外界环境分隔开。细胞膜保障了细胞内部环境的相对稳定。② 控制物质的进出细胞 ③ 进行细胞间的信息交流:
方式一:内分泌细胞产生激素,随血液到达全身各处,与靶细胞的细胞膜表面的受体结合,将信息传递给靶细胞。
方式二:相邻的两个细胞的细胞膜接触,信息从一个细胞传递给另一个细胞。例如,精子和卵细胞之间的识别和结合。
方式三:相邻的两个细胞之间形成通道,携带信息的物质通过通道进入另一个细胞。例如,高等植物细胞之间通过胞间连丝相互连接,也有信息交流的作用。植物细胞在细胞膜的外面还有一层细胞壁,它的化学成分主要是纤维素和果胶。细胞壁对植物细胞有支持和保护作用。
第二节 细胞器——系统内的分工合作 分离各种细胞器的方法:差速离心法 a.细胞器之间的分工
线粒体:细胞进行有氧呼吸的主要场所。双层膜(内膜向内折叠形成脊),分布在动植物细胞体内。
叶绿体:进行光合作用,“能量转换站”,双层膜,分布在植物的叶肉细胞。内质网:蛋白质合成和加工,以及脂质合成的“车间”,单层膜,动植物都有。
高尔基体:对来自内质网的蛋白质进行加工、分类和包装,单层膜,动植物都有,参与了植物细胞壁的形成。
核糖体:生产蛋白质,无膜。
溶酶体:内含有多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌,单层膜。
液泡:主要存在与植物细胞中,内有细胞液,含糖类、无机盐、色素和蛋白质等物质,可以调节植物细胞内的环境,充盈的液泡还可以使植物细胞保持坚挺。单层膜。
中心体:动物和某些低等植物的细胞,由两个相互垂直排列的中心粒及周围物质组成,与细胞的有丝分裂有关,无膜。
八大细胞器:内质网,液泡,线粒体,高尔基体,核糖体,溶酶体,叶绿体,中心体 光镜能看到:细胞质,线粒体,叶绿体,液泡,细胞壁
在细胞质中,除了细胞器外,还有呈胶质状态的细胞质基质。实验:用高倍显微镜观察叶绿体和线粒体
健那绿染液是将活细胞中线粒体染色的专一性染料,可以使活细胞中的线粒体呈现蓝绿色。材料:新鲜的藓类的叶 b.细胞器之间的协调配合
实验:分泌蛋白的合成和运输:(同位素标记法)
有些蛋白质是在细胞内合成后,分泌到细胞外起作用,这类蛋白叫分泌蛋白。如消化酶(催化作用)、抗体(免疫)和一部分激素(信息传递)
分泌蛋白从合成至分泌到细胞外,经过了哪些细胞器活细胞结构? 答:附和在内质网的核糖体→内质网→高尔基体→细胞膜
PS:内质网鼓出由膜形成的囊泡,包裹着要运输的蛋白质,离开内质网到达高尔基体,与高尔基体膜融合,成为高尔基体膜的一部分。c.细胞的生物膜系统
细胞器膜和细胞膜、核膜等结构,共同构成细胞的生物膜系统。细胞膜不仅使细胞具有一个相对稳定的内部环境,同时在细胞与外部环境进行物质运输、能量转换和信息传递的过程中起着决定性作用;许多重要的化学反应都在生物膜上进行,这些化学反应需要酶的参与,广阔的膜的面积为多种酶提供了大量的附着位点;细胞内的生物膜把各种细胞器分隔开,能够同时进行多种化学反应,而不会互相干扰,保证了细胞生命活动高效、有序的进行。
第三节 细胞核——系统的控制中心
除了高等植物成熟的筛管细胞和哺乳动物成熟的红细胞等极少数细胞外,真核细胞都有细胞核。绝大多数只有一个核。
细胞核控制着细胞的代谢和遗传。细胞核控制细胞的分裂、分化。a.细胞核的结构
核膜(双层膜,把核内物质与细胞质分开)
染色质(主要由DNA和蛋白质组成,DNA是遗传信息的载体)核仁(与某种RNA的合成以及核糖体的形成有关)核孔(实现核质之间频繁的物质交换和信息交流)
细胞分裂时,细胞核解体,染色质高度螺旋化,缩短变粗,成为光学显微镜下清晰可见的圆柱状或杆状的染色体。分裂结束时,染色体解螺旋,重新成为细丝状的染色质。染色质(分裂间期)和染色体(分裂时)是同样的物质在细胞不同时期的两种存在状态。细胞核具有控制细胞代谢的功能。
细胞既是生物体结构的基本单位,又是生物体代谢和遗传的基本单位。
第四章 细胞的物质输入和输出 第一节 物质跨膜运输的实例 渗透作用条件:①半透膜 ②浓度差 a.细胞的吸水和失水
当外界溶液的浓度比细胞质的浓度低时,细胞吸水张破 当外界溶液的浓度比细胞质的浓度高时,细胞失水皱缩
当外界溶液的浓度与细胞质的浓度相同时,水分进出细胞处于动态平衡。细胞内的液体环境主要指的是液泡里面的细胞液。
细胞膜和液泡膜以及两层膜之间的细胞质成为原生质层。植物细胞的原生质层相当于一层半透膜。由于原生质层比细胞壁的伸缩性大,当细胞不断失水时,原生质层就会与细胞壁逐渐分离下来,也就是逐渐发生了质壁分离。b.物质跨膜运输的其他实例
细胞的吸水和失水是水分子顺相对含量的梯度跨膜运输过程。物质跨膜运输并不都是顺向对含量梯度的,而且细胞对于物质的输入和输出有选择性。可以说细胞膜和其他生物膜都是选择性透过性膜,这种膜可以让水分子自由通过,一些离子和小分子也可以通过,而其他的离子、小分子和大分子不能通过。
第二节 生物膜的流动镶嵌模型 a.对生物膜结构的探索历程
膜是由脂质组成的。膜的主要成分是脂质和蛋白质。磷酸头部亲水,脂肪酸尾部疏水。
罗伯特森→暗亮暗→蛋白质—脂质—蛋白质→静态统一结构 桑格和尼克森提出流动镶嵌模型。细胞膜具有流动性。b.流动镶嵌模型的基本内容
磷脂双分子层构成了膜的基本支架,不是静止的,磷脂双分子层是轻油般的流体,具有流动性,蛋白质分子有的镶在磷脂双分子层表面,有的部分或全部嵌入磷脂双分子层中,有的贯穿于整个磷脂双分子层,大多数蛋白质分子也是可以运动的。
细胞膜的外表有一层由细胞膜上的蛋白质与糖类结合形成的糖蛋白,叫做糖被。有保护和润滑的作用;糖被与细胞表面的识别有密切关系。细胞膜表面还有糖类和脂质分子结合成的糖脂。
第三节 物质跨膜运输的方式
物质进出细胞顺浓度梯度扩散统称为被动运输;逆浓度梯度的运输称为主动运输。a.被动运输(高→低,不需要消耗能量)
物质通过简单的扩散作用进出细胞,叫做自由扩散。(水,气体小分子,脂溶性有机小分子,脂肪酸,胆固醇,性激素,维D)
进出细胞的物质借住载体蛋白的扩散,叫做协助扩散。(葡萄糖进入红细胞)b.主动运输(更重要,低→高)低→高,需要载体蛋白的协助,同时需要消耗细胞内化学反应所释放的能量,叫做主动运输。保证了活细胞能够按照生命活动的需要,主动选择吸收所需要的营养物质,排除代谢废物和有害物质。
大分子的运输(eg蛋白质):胞吞胞吐(体现膜的流动性,需要消耗能量)
第五章 细胞的能量供应和利用 第一节 降低化学反应活化能的酶 一..酶的本质和作用
细胞中每时每刻都在进行着许多化学反应,统称为细胞代谢。a.酶在细胞代谢中的作用
细胞代谢是细胞生命活动的基础
控制变量的原则:①对照 ②单一变量
分子从常态转变为容易发生化学反应的活跃状态所需要的能量称为活化能。机理:降低活化能
实质:降低活化能的作用更显著,因而催化效率更高。酶与一般催化剂的共同点: ① 改变化学反应速率,本身不被消耗。② 只能催化已存在的化学反应。③ 降低活化能,使反应速率加快。④ 加快化学反应速率,缩短达到平衡的时间,但不改变平衡点。b.酶的本质
酶是活细胞产生的具有催化作用的有机物,其中绝大多数酶是蛋白质。二.酶的特性
①高效性 ②专一性 ③作用条件温和(最适温度,最适pH)
第二节 细胞的能量“通货”——ATP 直接给细胞的生命活动提供能量的有机物——ATP a.ATP分子中具有高能磷酸键
ATP是三磷酸腺苷的缩写,结构式可简写成A—P~P~P,A代表腺苷,P代表磷酸集团,~代表高能磷酸键。ATP可以水解(高能磷酸键水解),远离A的~易断裂(释放能量);易形成(储存能量)。b.ATP和ADP可以相互转化(酶的作用)
ATP和ADP的相互转化时时刻不停的发生并且处于动态平衡之中。
c.ATP的利用
吸能反应一般与ATP水解相联系;放能反应一般与ATP的合成有关。1mol葡萄糖彻底氧化分解后,释放出2870kj的能量。
第三节 ATP的主要来源——细胞呼吸
呼吸作用的实质:细胞内有机物的氧化分解,并释放能量。细胞呼吸是指有机物在细胞内经过一系列的氧化分解,生成二氧化塘或其他产物,释放能量并生成ATP的过程。a.细胞呼吸的方式
实验:探究酵母菌细胞呼吸的方式
材料:新鲜的食用酵母菌(生殖快,细胞代谢旺盛,实验效果明显。)
检测酒精的产生:橙色的重铬酸钾溶液,在酸性条件下与乙醇发生化学反应,变成灰绿色。b.有氧呼吸
有氧呼吸的主要场所是线粒体。
线粒体的内膜上和基质中含有许多种与有氧呼吸有关的酶,少量的DNA。
一般地说,线粒体均匀的分布在细胞质中,肌质体是由大量变性的线粒体组成的。有氧呼吸最常利用的物质是葡萄糖,反应方程式可以简写成:
第一阶段 C6H12O6酶→细胞质基质=2丙酮酸(C3H4O3)+4[H]+能量(2ATP)
第二阶段 2丙酮酸(C3H4O3)+6H2O酶→线粒体基质=6CO2+20[H]+能量(2ATP)
第三阶段 24[H]+6O2酶→线粒体内膜=12H2O+能量(34ATP)
总反应式 C6H12O6+6H2O+6O2酶→6CO2+12H2O+大量能量(38ATP)
概括的说,有氧呼吸是指细胞在氧的参与下,通过多种酶的催化作用,把葡萄糖等有机物彻底氧化分解,产生二氧化碳和水,释放能量,生成大量ATP的过程。
c.无氧呼吸
无氧呼吸的全过程可以概括为两个阶段,需要不同酶的催化,都在细胞质基质中进行。
C6H12O6(酶)→2C3H6O3(乳酸)+少量能量 C6H12O6(酶)→2C2H5OH(酒精)+2CO2+少量能量
d.细胞呼吸的原理的应用
第四节 能量之源——光与光合作用 一.捕获光能的色素和结构 a.捕获光能的色素
实验:绿叶中色素的提取和分离
提取色素的原理“在层析液中的溶解度不同,溶解度高的随层析液在滤纸上扩散的快;反之则慢。
色素能溶解在有机溶剂无水乙醇中,可以用无水乙醇提取绿叶中的色素。二氧化硅有助于研磨的充分,碳酸钙可防止研磨中的色素被破坏。不能让滤液细线触及层析液。绿叶中的色素有4种,他们可以归纳为两大类: 叶绿素(约占3/4):叶绿素a(蓝绿色)
叶绿素b(黄绿色)类胡萝卜素(约占1/4):胡萝卜素(橙黄色)
叶黄素(黄色)
叶绿素a和叶绿素b主要吸收蓝紫光和红光,胡萝卜素和叶黄素主要吸收蓝紫光。因为叶绿素对绿光吸收最少,绿光被反射出来,所以叶片呈绿色。b.叶绿体的结构
吸收光能的四种色素和光合作用有关的酶,就分布在类囊体的薄膜上。类囊体在基粒上。
叶绿体是进行光合作用的场所。它内部的巨大膜表面上,不仅分布着许多吸收光能的色素分子,还有许多进行光合作用所必须的酶。二.光合作用的原理和应用
光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧气的过程。
a.光合作用的探究历程(同位素标记法)植物更新空气。
植物进行光合作用时,把光能转化成化学能储存起来。光合作用的产物除氧气外还有淀粉。光合作用释放的氧气来自水。
CO2中的碳在光合作用中转化成有机物中的碳的途径,这一途径称为卡尔文循环。b.光合作用的过程
CO2+H2O(光照、酶、叶绿体)==(CH2O)+O2
光反应阶段必须有光才能进行,在类囊体薄膜上进行的。
暗反应阶段有没有光都可以进行,在叶绿体内的基质中进行的。实质:
物质变化:无机物→有机物
能量变化:光能→糖类等有机物中的化学能 c.光合作用原理的应用
实验:环境因素对光合作用强度的影响
影响因素:空气中二氧化碳的浓度,土壤中水分的多少,光照的长短与强弱,光的成分以及温度的高低
注意:避开大的叶脉。d.化能合成作用
绿色植物属于自养生物,人,动物,真菌以及大多数细菌,只能用环境中的有机物来维持自身的生命活动,属于异氧生物。少数细菌能利用体外环境中的某些无机物氧化时所释放的能量来制造有机物,这种合成作用叫做化能合成作用,这些细菌也属于自养生物。Eg:硝化细菌。
2NH3+3O2=亚硝化细菌=2HNO2+2H2O+能量(1)
2HNO2+O2=硝化细菌=2HNO3+能量(2)6CO2+6H2O=能量(1)(2)酶=C6H12O6+6O2
第六章 细胞的生命历程 第一节 细胞的增殖
器官大小主要决定于细胞数量的多少。a.细胞不能无限长大
细胞体积越大,其相对表面积越小,细胞的物质运输的效率就越低。细胞表面积与体积的关系限制了细胞的长大。细胞核控制范围(核质比)大→cell小。b.细胞通过分裂进行增殖
意义:单细胞生物通过细胞增殖而繁衍。
细胞增殖是重要的生命活动,是生物体生长、发育、繁殖、遗传的基础。真核细胞的分裂方式:有丝分裂、无丝分裂、减数分裂。a.有丝分裂
有丝分裂是真核生物进行细胞分裂的主要方式。具有周期性。即连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成为止,为一个细胞周期。习惯上按先后顺序划分为间期、前期、中期、后期和末期五个时期。
有丝分裂间期,染色质没有高度螺旋化形成染色体,而是以染色质的形式进行DNA(即脱氧核糖核酸)单链复制。有丝分裂间期是有丝分裂全部过程重要准备过程。间期细胞进入有丝分裂前期时,核的体积增大,由染色质构成的细染色线逐渐缩短变粗,形成染色体。核仁在前期的后半渐渐消失。而于核膜破裂后终于形成两极之间的纺锤体。自核膜破裂起到染色体排列在赤道面上为止。核膜的断片残留于细胞质中,与内质网不易区别,在纺锤体的周围有时可以看到它们。
中期染色体在赤道面呈放射状排列,这时它们不是静止不动的,而是处于不断摆动的状态。中期染色体浓缩变粗,显示出该物种所特有的数目和形态。因此有丝分裂中期适于做染色体的形态、结构和数目的研究,适于分析。中期时间较短。
后期每条染色体的两条姊妹染色单体分开并移向两极。分开的染色体称为子染色体。子染色体到达两极时后期结束。染色单体的分开常从着丝点处开始,然后两个染色单体的臂逐渐分开。当它们完全分开后就向相对的两极移动。子染色体向两极的移动是靠纺锤体的活动实现的。
末期的主要过程是子核的形成和细胞体的分裂。到达两极的子染色体首先解螺旋而轮廓消失,全部子染色体构成一个大染色质块,在其周围集合核膜成分,融合而形成子核的核膜,随着子细胞核的重新组成,核内出现核仁。缢束逐渐加深使细胞体最后一分为二。
高等植物细胞的胞质分裂是靠细胞板的形成。在末期,纺锤丝首先在靠近两极处解体消失,但中间区的纺锤丝保留下来,并且微管增加数量,向周围扩展,形成桶状结构,称为成膜体。与形成成膜体的同时,来自内质网和高尔基器的一些小泡和颗粒成分被运输到赤道区,它们经过改组融合而参加细胞板的形成。细胞板逐渐扩展到原来的细胞壁乃把细胞质一分为二。参与的细胞器:
间期:核糖体,中心体
前期:中心体(复制形成纺锤体)末期:高尔基体(细胞壁的合成)线粒体全过程。
有单体出现时,DNA与染色体数目相同,单体消失时,DNA数目为染色体的2倍。b.无丝分裂
没有出现纺锤丝和染色体的变化,但是有遗传物质的复制和平均分配。Eg:蛙的红细胞。
第二节 细胞的分化 a.细胞分化及其意义
在个体发育中,由一个或一种细胞增殖产生的后代,在形态,结构和生理功能上发生稳定性差异的过程,叫做细胞分化。
细胞分化特点:稳定性、持久性、不可逆性 分裂结果:增加细胞的数目 分化结果:增加细胞的种类
细胞分化是生物个体发育的基础。使多种生物体中的细胞趋向专门化,有利于提高各种生理功能的效率。基因进行选择性表达。b.细胞的全能性
特点:①高度分化
②基因没改变 已经分化的细胞,仍然具有发育成完整个体的潜能。少数具有分裂和分化能力的细胞角干细胞。
细胞全能性的原因:已分化的细胞一般都有一套和受精卵相同的遗传物质。
第三节 细胞的衰老和掉网 a.个体衰老与细胞衰老的关系
对于单细胞生物来说,细胞的衰老或死亡就是个体的衰老或死亡;但对多细胞生物来说,细胞的衰老和死亡与个体的衰老和死亡并不是一回事。多细胞生物体内的细胞总是在不断更新着。从总体上来看,个体衰老的过程也是组成个体的细胞普遍衰老的过程。b.细胞衰老的特征
生理状态和化学反应发生复杂变化的过程,最终表现为细胞的形态、结构和功能发生变化。特征:水分减少;多种酶的活性降低;某些色素会随着细胞衰老而逐渐积累;呼吸速率减慢,细胞核的体积增大;细胞膜的通透性改变,物质运输功能降低。c.细胞的凋亡
由基因所决定得细胞自动结束生命的过程,叫细胞的凋亡。受到严格的有遗传机制决定的程序性调控,所以也被称为细胞编程性死亡。
意义:细胞的自然更新、被病原体感染的细胞的清除,也是通过细胞凋亡完成的。完成正常发育,维持内部环境的稳定,抵御外界各种因素的干扰起着重要作用。细胞坏死是在种种不利因素影响下,由于细胞正常代谢活动受阻或中断引起的细胞损伤和死亡。
第四节 细胞的癌变 外因:致癌因子
内因:遗传物质发生变化
不受集体控制的、连续进行分裂的恶性增殖细胞叫癌细胞。a.癌细胞的主要特征
适宜的条件下,无限增殖;形态结构发生显著变化;表面发生变化,糖蛋白等物质减少,黏着性显著降低,容易在体内分散和转移;游离核糖体增多。b.致癌因子
分三类:物理致癌因子、化学致癌因子、病毒致癌因子
原癌基因主要负责调节细胞周期,控制细胞生长和分裂的进程。抑癌细胞主要是阻止细胞不正常的增殖。
第三篇:【期末干货】高中生物必修一知识点总结
【期末干货】高中生物必修一知识点总结
1、生命系统的结构层次依次为:细胞→组织→器官→系统→个体→种群→群落→生态系统
细胞是生物体结构和功能的基本单位;地球上最基本的生命系统是细胞
2、光学显微镜的操作步骤:
对光→低倍物镜观察→移动视野中央(偏哪移哪)→高倍物镜观察:①只能调节细准焦螺旋;②调节大光圈、凹面镜
3、原核细胞与真核细胞根本区别为:有无核膜为界限的细胞核
①原核细胞:无核膜,无染色体,如大肠杆菌等细菌、蓝藻
②真核细胞:有核膜,有染色体,如酵母菌,各种动物
注:病毒无细胞结构,但有DNA或RNA
4、蓝藻是原核生物,自养生物
5、真核细胞与原核细胞统一性体现在二者均有细胞膜和细胞质
6、细胞学说建立者是施莱登和施旺,细胞学说建立揭示了细胞的统一性和生物体结构的统一性。细胞学说建立过程,是一个在科学探究中开拓、继承、修正和发展的过程,充满耐人寻味的曲折
7、组成细胞(生物界)和无机自然界的化学元素种类大体相同,含量不同
8、组成细胞的元素
①大量无素:C、H、O、N、P、S、K、Ca、Mg
②微量无素:Fe、Mn、B、Zn、Mo、Cu ③主要元素:C、H、O、N、P、S
④基本元素:C
⑤细胞干重中,含量最多元素为C,鲜重中含最最多元素为O9、生物(如沙漠中仙人掌)鲜重中,含量最多化合物为水,干重中含量最多的 化合物为蛋白质。
10、(1)还原糖(葡萄糖、果糖、麦芽糖)可与斐林试剂反应生成砖红色沉淀;脂肪可苏丹III染成橘黄色(或被苏丹IV染成红色);淀粉(多糖)遇碘变蓝色;蛋白质与双缩脲试剂产生紫色反应
(2)还原糖鉴定材料不能选用甘蔗
(3)斐林试剂必须现配现用(与双缩脲试剂不同,双缩脲试剂先加A液,再加B液)
11、蛋白质的基本组成单位是氨基酸,氨基酸结构通式为NH2—C—COOH,各种氨基酸的区别在于R基的不同
12、两个氨基酸脱水缩合形成二肽,连接两个氨基酸分子的化学键(—NH—CO—)叫肽键
13、脱水缩合中,脱去水分子数=形成的肽键数=氨基酸数—肽链条数
14、蛋白质多样性原因:构成蛋白质的氨基酸种类、数目、排列顺序千变万化,多肽链盘曲折叠方式千差万别
15、每种氨基酸分子至少都含有一个氨基(—NH2)和一个羧基(—COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上,这个碳原子还连接一个氢原子和一个侧链基因
16、遗传信息的携带者是核酸,它在生物体的遗传变异和蛋白质合成中具有极其重要作用,核酸包括两大类:一类是脱氧核糖核酸,简称DNA;一类是核糖核酸,简称RNA,核酸基本组成单位核苷酸
17、蛋白质功能:
①结构蛋白,如肌肉、羽毛、头发、蛛丝
②催化作用,如绝大多数酶
③运输载体,如血红蛋白
④传递信息,如胰岛素
⑤免疫功能,如抗体
18、氨基酸结合方式是脱水缩合:一个氨基酸分子的羧基(—COOH)与另一个氨基酸分子的氨基(—NH2)相连接,同时脱去一分子水,如图:
HOHHH
NH2—C—C—OH+H—N—C—COOH H2O+NH2—C—C—N—C—COOH
R1HR2R1OHR2
19、DNA与RNA的区别:
20、主要能源物质:糖类
细胞内良好储能物质:脂肪
人和动物细胞储能物:糖原
直接能源物质:ATP
21、糖类:
①单糖:葡萄糖、果糖、核糖、脱氧核糖
②二糖:麦芽糖、蔗糖、乳糖
③多糖:淀粉和纤维素(植物细胞)、糖原(动物细胞)
④脂肪:储能;保温;缓冲;减压
22、脂质:磷脂(生物膜重要成分)
胆固醇、固醇(性激素:促进人和动物生殖器官的发育及生殖细胞形成)
维生素D(促进人和动物肠道对Ca和P的吸收)
23、多糖,蛋白质,核酸等都是生物大分子,组成单位依次为:单糖、氨基酸、核苷酸。
生物大分子以碳链为基本骨架,所以碳是生命的核心元素。
24、细胞内水的存在形式为结合水和自由水
自由水(95.5%):良好溶剂;参与生物化学反应;提供液体环境;运送营养物质及代谢废物;绿色植物进行光合作用的原料
结合水(4.5%):组成细胞的成分之一
25、无机盐绝大多数以离子形式存在。哺乳动物血液中Ca2+过低,会出现抽搐症状;患急性肠炎的病人脱水时要补充输入葡萄糖盐水;高温作业大量出汗的工人要多喝淡盐水。
26、细胞膜主要由脂质和蛋白质,和少量糖类组成,脂质中磷脂最丰富,功能越复杂的细胞膜,蛋白质种类和数量越多;细胞膜基本支架是磷脂双分子层;细胞膜具有一定的流动性和选择透过性。将细胞与外界环境分隔开
27、细胞膜的功能控制物质进出细胞进行细胞间信息交流
28、植物细胞的细胞壁成分为纤维素和果胶,具有支持和保护作用
29、制取细胞膜利用哺乳动物成熟红细胞,因为无核膜和细胞器膜
30、叶绿体:光合作用的细胞器;双层膜
线粒体:有氧呼吸主要场所;双层膜
核糖体:生产蛋白质的细胞器;无膜
中心体:与动物细胞有丝分裂有关;无膜
液泡:调节植物细胞内的渗透压,内有细胞液
内质网:对蛋白质加工
高尔基体:对蛋白质加工,分泌
31、消化酶、抗体等分泌蛋白合成需要四种细胞器:核糖体,内质网、高尔基体、线粒体。
32、细胞膜、核膜、细胞器膜共同构成细胞的生物膜系统,它们在结构和功能上紧密联系,协调。
维持细胞内环境相对稳定生物膜系统功能许多重要化学反应的位点把各种细胞器分开,提高生命活动效率
核膜:双层膜,其上有核孔,可供mRNA通过结构核仁
33、细胞核由DNA及蛋白质构成,与染色体是同种物质在不同时期的染色质两种状态容易被碱性染料染成深色
功能:是遗传信息库,是细胞代谢和遗传的控制中心
34、植物细胞内的液体环境,主要是指液泡中的细胞液
原生质层指细胞膜,液泡膜及两层膜之间的细胞质
植物细胞原生质层相当于一层半透膜;质壁分离中质指原生质层,壁为细胞壁
35、细胞膜和其他生物膜都是选择透过性膜
自由扩散:高浓度→低浓度,如H2O,O2,CO2,甘油,乙醇、苯
协助扩散:载体蛋白质协助,高浓度→低浓度,如葡萄糖进入红细胞
36、物质跨膜运输方式主动运输:需要能量;载体蛋白协助;低浓度→高浓度,如无机盐、离子、胞吞、胞吐:如载体蛋白等大分子
37、细胞膜和其他生物膜都是选择透过性膜,这种膜可以让水分子自由通过,一些离子和小分子也可以通过,而其他离子,小分子和大分子则不能通过。
38、酶的本质:活细胞产生的有机物,绝大多数为蛋白质,少数为RNA
酶的特性:高效性、专一性(每种酶只能催化一种成一类化学反应)
酶作用条件温和,影响酶活性的条件:温度、pH等。最适温度(pH值)下,酶活性最高,温度和pH偏高或偏低,酶活性都会明显降低,甚至失活(过高、过酸、过碱)
功能:催化作用,降低化学反应所需要的活化能
结构简式:A—P~P~P,A表示腺苷,P表示磷酸基团,~表示高能磷酸键
全称:三磷酸腺苷
39、ATP与ADP相互转化:A—P~P~PA—P~P+Pi+能量
功能:细胞内直接能源物质
40、细胞呼吸:有机物在细胞内经过一系列氧化分解,生成CO2或其他产物,释放能量并生成ATP过程
41、有氧呼吸与无氧呼吸比较:
不同点比较:
相同点比较:
42、细胞呼吸应用:包扎伤口,选用透气消毒纱布,抑制细菌有氧呼吸
酵母菌酿酒:选通气,后密封。先让酵田菌有氧呼吸,大量繁殖,再无氧呼吸产生酒精
花盆经常松土:促进根部有氧呼吸,吸收无机盐等
稻田定期排水:抑制无氧呼吸产生酒精,防止酒精中毒,烂根死亡
提倡慢跑:防止剧烈运动,肌细胞无氧呼吸产生乳酸
破伤风杆菌感染伤口:须及时清洗伤口,以防无氧呼吸
43、活细胞所需能量的最终源头是太阳能;流入生态系统的总能量为生产者固定的太阳能
44、叶绿素a和b主要吸收红光和蓝紫光,绿叶中叶绿素和类胡萝卜素含量不同,乙醇提取的叶绿素只要结构没有被破坏,仍是可以吸收光能的。
45、光合作用是指绿色植物通过叶绿体,利用光能,把CO2和H2O转化成储存能量的有机物,并且释放出O2的过程。
46、18C中期,人们认为只有土壤中水分构建植物,未考虑空气作用
1771年,英国普利斯特利实验证实植物生长可以更新空气,未发现光的作用
1779年,荷兰英格豪斯多次实验验证,只有阳光照射下,只有绿叶更新空气,但未知释放该气体的成分。
1785年,明确放出气体为O2,吸收的是CO2
1845年,德国梅耶发现光能转化成化学能
1864年,萨克斯证实光合作用产物除O2外,还有淀粉
1939年,美国鲁宾卡门利用同位素标记法证明光合作用释放的O2来自水
47、(1)条件:一定需要光
光反应阶段场所:类囊体薄膜,产物:[H]、O2和能量
过程:①水在光能下,分解成[H]和O2;
②ADP+Pi+光能ATP(2)条件:有没有光都可以进行
暗反应阶段场所:叶绿体基质
产物:糖类等有机物和五碳化合物
过程:
①CO2的固定:1分子C5和CO2生成2分子C3
②C3的还原:C3在[H]和ATP作用下,部分还原成糖类,部分又形成C5
联系:光反应阶段与暗反应阶段既区别又紧密联系,是缺一不可的整体,光反应为暗反应提供[H]和ATP。
48、空气中CO2浓度,土壤中水分多少,光照长短与强弱,光的成分及温度高低等,都是影响光合作用强度的外界因素:可通过适当延长光照,增加CO2浓度等提高产量。
49、自养生物:可将CO2、H2O等无机物合成葡萄糖等有机物,如绿色植物,硝化细菌(化能合成)
异养生物:不能将CO2、H2O等无机物合成葡萄糖等有机物,只能利用环境中现成的有机物来维持自身生命活动,如许多动物
50、细胞表面积与体积关系限制了细胞的长大,细胞增殖是生物体生长、发育、繁殖遗传的基础
51、真核细胞的分裂方式减数分裂:生殖细胞(精子,卵细胞)增殖
52、有丝分裂:体细胞增殖
分裂间期:完成DNA分子复制及有关蛋白质合成,染色体数目不增加,DNA加倍。
分裂期:
前期:核膜核仁逐渐消失,出现纺缍体及染色体,染色体散乱排列
中期:染色体着丝点排列在赤道板上,染色体形态比较稳定,数目比分裂期较清晰便于观察
后期:着丝点分裂,姐妹染色单体分离,染色体数目加倍
末期:核膜,核仁重新出现,纺缍体,染色体逐渐消失
无丝分裂:蛙的红细胞。分裂过程中没有出现纺缍丝和染色体变化
53、动植物细胞有丝分裂区别:
54、有丝分裂特征及意义:将亲代细胞染色体经过复制(实质为DNA复制后),精确地平均分配到两个子细胞,在亲代与子代之间保持了遗传性状稳定性,对于生物遗传有重要意义
55、有丝分裂中,染色体及DNA数目变化规律
56、细胞分化:个体发育中,由一个或一种细胞增殖产生的后代,在形态、结构和生理功能上发生稳定性差异的过程,它是一种持久性变化,是生物体发育的基础,使多细胞生物体中细胞趋向专门化,有利于提高各种生理功能效率。
57、细胞分化举例:红细胞与肌细胞具有完全相同遗传信息,(同一受精卵有丝分裂形成);形态、功能不同原因是不同细胞中遗传信息执行情况不同
58、细胞全能性:指已经分化的细胞,仍然具有发育成完整个体潜能
高度分化的植物细胞具有全能性,如植物组织培养因为细胞(细胞核)具有该生物
生长发育所需的遗传信息高度分化的动物细胞核具有全能性,如克隆羊
59、细胞衰老特征:
细胞内水分减少,新陈代谢速率减慢
细胞内酶活性降低,细胞衰老特征细胞内色素积累
细胞内呼吸速度下降,细胞核体积增大
细胞膜通透性下降,物质运输功能下降
60、细胞凋亡指基因决定的细胞自动结束生命的过程,是一种正常的自然生理过程,如蝌蚪尾消失,它对于多细胞生物体正常发育,维持内部环境的稳定以及抵御外界因素干扰具有非常关键作用
61、癌细胞特征:能够无限增殖;形态结构发生显著变化;癌细胞表面糖蛋白减少,容易在体内扩散,转移
62、癌症防治:远离致癌因子,进行CT,核磁共振及癌基因检测;也可手术切除、化疗和放疗
第四篇:高中生物必修一知识点总结
高中生物必修一知识点
1、生命系统的结构层次:
细胞→组织→器官→系统(植物没有系统)→个体→种群 →群落→生态系统→生物圈
细
胞:是生物体结构和功能的基本单位。除了病毒以外,所有生物都是由细胞构成的。细胞是地球上最基本的生命系统
2、光学显微镜的操作步骤:对光→低倍物镜观察→移动视野中央(偏哪移哪)→ 高倍物镜观察:①只能调节细准焦螺旋;②调节大光圈、凹面镜
★
3、细胞种类:根据细胞内有无以核膜为界限的细胞核,把细胞分为原核细胞和真核细胞 注、原核细胞和真核细胞的比较:
①、原核细胞:细胞较小,无核膜、无核仁,没有成形的细胞核;遗传物质(一个环状DNA分子)集中的区域称为拟核;没有染色体,DNA 不与蛋白质结合,;细胞器只有核糖体;有细胞壁(主要成分是肽聚糖),成分与真核细胞不同。
②、真核细胞:细胞较大,有核膜、有核仁、有真正的细胞核;有一定数目的染色体(DNA与蛋白质结合而成);一般有多种细胞器。
③、原核生物:由原核细胞构成的生物。如:蓝藻、细菌(如硝化细菌、乳酸菌、大肠杆菌、肺炎双球菌)、放线菌、支原体等都属于原核生物。
④、真核生物:由真核细胞构成的生物。如动物(草履虫、变形虫)、植物、真菌(酵母菌、霉菌、粘菌)等。补:病毒的相关知识:
1、病毒(Virus)是一类没有细胞结构的生物体,病毒既不是真核也不是原核生物。主要特征:
①、个体微小,一般在10~30nm之间,大多数必须用电子显微镜才能看见; ②、仅具有一种类型的核酸,DNA或RNA,没有含两种核酸的病毒; ③、专营细胞内寄生生活;
④、结构简单,一般由核酸(DNA或RNA)和蛋白质外壳所构成。
2、根据寄生的宿主不同,病毒可分为动物病毒、植物病毒和细菌病毒(即噬菌体)三大类。根据病毒所含核酸种类的不同分为DNA病毒和RNA病毒。
3、常见的病毒有:人类流感病毒(引起流行性感冒)、SARS病毒、人类免疫缺陷病毒(HIV)[引起艾滋病(AIDS)]、禽流感病毒、乙肝病毒、人类天花病毒、狂犬病毒、烟草花叶病毒等。
4、蓝藻是原核生物,自养生物
5、真核细胞与原核细胞统一性体现在二者均有细胞膜和细胞质
6、虎克既是细胞的发现者也是细胞的命名者;细胞学说建立者是施莱登和施旺,细胞学说内容:
1、一切动植物都是由细胞构成的。
2、细胞是一个相对独立的单位
3、新细胞可以从老细胞产生。细胞学说建立揭示了细胞的统一性和生物体结构的统一性。细胞学说建立过程,是一个在科学探究中开拓、继承、修正和发展的过程,充满耐人寻味的曲折
7、组成细胞(生物界)和无机自然界的化学元素种类大体相同,含量不同 ★
8、组成细胞的元素
①大量无素:C、H、O、N、P、S、K、Ca、Mg②微量无素:Fe、Mn、B、Zn、Mo、Cu ③主要元素:C、H、O、N、P、S ④基本元素:C
⑤细胞干重中,含量最多元素为C,鲜重中含最最多元素为O 统一性:构成生物体的元素在无机自然界都可以找到,没有一种是生物所特有的。差异性:组成生物体的元素在生物体体内和无机自然界中的含量相差很大。
★
9、生物(如沙漠中仙人掌)鲜重中,含量最多化合物为水,干重中含量最多的化合物为蛋白质。★
10、(1)还原糖(葡萄糖、果糖、麦芽糖)可与斐林试剂反应生成砖红色沉淀;脂肪可与苏丹III染成橘黄色(或被苏丹IV染成红色);淀粉(多糖)遇碘变蓝色;蛋白质与双缩脲试剂产生紫色反应。
(2)还原糖鉴定材料不能选用甘蔗
(3)斐林试剂必须现配现用(与双缩脲试剂不同,双缩脲试剂先加A液,再加B液)
★
11、蛋白质
由C、H、O、N元素构成,有些含有P、S
R
★ 蛋白质的基本组成单位是氨基酸,氨基酸结构通式为NH2—C—COOH,各种氨基酸的区
H 别在于R基的不同。氨基酸
约20种 ★ 结构特点:每种氨基酸分子至少都含有一个氨基(—NH2)和一个羧基(—COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上,这个碳原子还连接一个氢原子和一个侧链基因。
★
12、两个氨基酸脱水缩合形成二肽,连接两个氨基酸分子的化学键(—NH—CO—)叫肽键。
多
肽:由三个或三个以上的氨基酸分子缩合而成的链状结构。肽
链:多肽通常呈链状结构,叫肽链。★
13、有关计算:
脱水缩合中,脱去水分子的个数 = 形成的肽键个数 = 氨基酸个数n – 肽链条数m
蛋白质分子量 = 氨基酸分子量 ╳ 氨基酸个数-水的个数 ╳ 18 至少含有的羧基(—COOH)或氨基数(—NH2)= 肽链数
★
14、蛋白质多样性原因:构成蛋白质的氨基酸种类、数目、排列顺序千变万化,多肽链盘曲折叠方式千差万别。
15、蛋白质的主要功能(生命活动的主要承担者):
① 构成细胞和生物体的重要物质,即结构蛋白,如羽毛、头发、蛛丝、肌动蛋白; ② 催化作用:如绝大多数酶;③ 传递信息,即调节作用:如胰岛素、生长激素; ④ 免疫作用:如免疫球蛋白(抗体);⑤ 运输作用:如红细胞中的血红蛋白。
16、氨基酸结合方式是脱水缩合:一个氨基酸分子的羧基(—COOH)与另一个氨基酸分子的氨基(—NH2)相连接,同时脱去一分子水,如图:
H O
H
H
H NH2—C—C—OH + H—N—C—COOH
H2O+NH2—C—C—N—C—COOH
R1
H R2
R1 O H R2 ★
17、核酸的结构和功能
核酸
由C、H、O、N、P
5种元素构成 基本单位:核苷酸(8种)结构:一分子磷酸、一分子五碳糖(脱氧核糖或核糖)、一分子含氮碱基(有5种)A、T、C、G、U 构成DNA的核苷酸:(4种)
构成RNA的核苷酸:(4种)
功能 核酸是细胞内携带遗传信息的载体,在生物的遗传、变异和蛋白质的生物合成中具有极其重要的作用,是一切生物的遗传物质。核酸包括两大类:一类是脱氧核糖核酸,简称DNA;一类是核糖核酸,简称RNA。
18、DNA RNA ★全称 脱氧核糖核酸 核糖核酸
★分布 细胞核、线粒体、叶绿体 主要存在细胞质 染色剂 甲基绿 吡罗红 链数 双链 单链 碱基 ATCG AUCG 五碳糖 脱氧核糖 核糖
组成单位 脱氧核苷酸 核糖核苷酸
代表生物 原核生物、真核生物、噬菌体 HIV、SARS病毒 注:DNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、胸腺嘧啶(T)RNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、尿 嘧 啶(U)
19、糖类:是主要的能源物质;主要分为单糖、二糖和多糖等 单糖:是不能再水解的糖。如葡萄糖。二糖:是水解后能生成两分子单糖的糖。
多糖:是水解后能生成许多单糖的糖。多糖的基本组成单位都是葡萄糖。可溶性还原性糖:葡萄糖、果糖、麦芽糖等 20、糖类的比较:
分类 元素 常见种类 分布 主要功能 单糖 C H
O 核糖 动植物 组成核酸
脱氧核糖
葡萄糖、果糖、半乳糖
重要能源物质 二糖
蔗糖 植物 ∕
麦芽糖
乳糖 动物
多糖
淀粉 植物 植物贮能物质
纤维素
细胞壁主要成分
糖原(肝糖原、肌糖原)动物 动物贮能物质
21、四大能源: ①重要能源:葡萄糖
②主要能源:糖类 ③直接能源:ATP
④ 根本能源:阳光
22、脂质的比较:
分类 元素 常见种类 功能
脂质 脂肪 C、H、O ∕ 储能;保温;缓冲;减压
磷脂 C、H、O(N、P)∕ 构成生物膜(细胞膜、液泡膜、线粒体膜等)重要成分
固醇
胆固醇 与细胞膜流动性有关
性激素 维持生物第二性征,促进生殖器官发育及生殖细胞形成维生素D 促进人和动物肠道对Ca和P的吸收
★
23、多糖,蛋白质,核酸等都是生物大分子,基本组成单位依次为:单糖、氨基酸、核苷酸。生物大分子以碳链为基本骨架,所以碳是生命的核心元素。自由水(95.5%):(幼嫩植物、代谢旺盛细胞含量高)良好溶剂;参与生物化学反应;提供液体环境;运送营养物质及代谢废物;绿色植物进行光
24、水存在形式
合作用的原料。
结合水(4.5%)与细胞内其它物质结合是细胞结构的组成成分
★
25、无机盐绝大多数以离子形式存在。哺乳动物血液中Ca2+过低,会出现抽搐症状;患急性肠炎的病人脱水时要补充输入葡萄糖盐水;高温作业大量出汗的工人要多喝淡盐水。
Mg是组成叶绿素的主要成分
Fe是人体血红蛋白的主要成分
26、细胞膜主要由脂质和蛋白质,和少量糖类组成,脂质中磷脂最丰富,功能越复杂的细胞膜,蛋白质种类和数量越多;细胞膜基本支架是磷脂双分子层;
将细胞与外界环境分隔开
27、细胞膜的功能 控制物质进出细胞
进行细胞间信息交流
A、生物膜的流动镶嵌模型
(1)蛋白质在脂双层中的分布是不对称和不均匀的。
(2)膜结构具有流动性。膜的结构成分不是静止的,而是动态的,生物膜是流动的脂质双分子层与镶嵌着的球蛋白按二维排列组成。
(3)膜的功能是由蛋白与蛋白、蛋白与脂质、脂质与脂质之间复杂的相互作用实现的。
B、细胞膜的结构特点:具有流动性
细胞膜的功能特点:具有选择透过性
28、植物细胞的细胞壁成分为纤维素和果胶,具有支持和保护作用。
★
29、制取细胞膜利用哺乳动物成熟红细胞,因为无核膜和细胞器膜。(但是这个细胞仍然是真核细胞)
30、几种细胞器的结构和功能
★⑴、线粒体:真核细胞主要细胞器(动植物都有),机能旺盛的含量多。呈粒状、棒状,具有双膜结构,内膜向内突起形成“嵴”,内膜基质和基粒上 有与有氧呼吸有关的酶,是有氧呼吸第二、三阶段的场所,生物体95%的能量来自线粒体,又叫“动力工厂”。含少量的DNA、RNA。
★⑵、叶绿体:只存在于植物的绿色细胞中。扁平的椭球形或球形,双层膜结构。基粒上有色素,基质和基粒中含有与光合作用有关的酶,是光合作用的场所。含少量的DNA、RNA。
注:①叶绿体的外膜②叶绿体的内膜③叶绿体的基粒(类囊体堆叠形成)④叶绿体的基质 ⑤线粒体的外膜⑥线粒体的内膜⑦线粒体的基质⑧嵴 ⑶.内质网:单层膜折叠体,是有机物的合成“车间”,蛋白质运输的通道。
⑷.高尔基体:单膜囊状结构,动物细胞中与细胞分泌物的形成有关,植物细胞中与细胞壁的形成有关。
⑸.液泡:单膜囊泡,成熟的植物有大液泡。功能:贮藏(营养、色素等)、保持细胞形态,调节渗透吸水。
⑹.核糖体:无膜的结构,椭球形粒状小体,将氨基酸脱水缩合成蛋白质。蛋白质的“装配机器”
⑺.中心体:无膜结构,由垂直的两个中心粒构成,存在于动物和低等植物细胞中,与动物细胞有丝分裂有关。
31、消化酶、抗体等分泌蛋白合成需要四种细胞器:核糖体,内质网、高尔基体、线粒体。核糖体(合成肽链)→内质网(加工成具有一定空间结构的蛋白质)→ 高尔基体(进一步修饰加工)→囊泡→细胞膜→细胞外
32、细胞膜、核膜、细胞器膜共同构成细胞的生物膜系统,它们在结构和功能上紧密联系,协调。
维持细胞内环境相对稳定
生物膜系统功能 许多重要化学反应的位点
把各种细胞器分开,提高生命活动效率
核膜:双层膜,其上有核孔,可供蛋白质和mRNA通过 结构 核仁
33、细胞核
由DNA及蛋白质构成,与染色体是同种物质在不同时期的 染色质
两种状态
容易被碱性染料染成深色
功能:是遗传信息库,是遗传物质贮存和复制的场所,是细胞代谢和遗传的控制中心 ★
34、植物细胞内的液体环境,主要是指液泡中的细胞液。
原生质层指细胞膜,液泡膜及两层膜之间的细胞质
植物细胞原生质层相当于一层半透膜;质壁分离中质指原生质层,壁为细胞壁 ★
35、细胞膜和其他生物膜都是选择透过性膜
自由扩散:高浓度→低浓度,如H2O,O2,CO2,甘油,乙醇、苯
协助扩散:载体蛋白质协助,高浓度→低浓度,如葡萄糖进入红细胞
★
36、物质跨膜运输方式 主动运输:需要能量;载体蛋白协助;低浓度→高浓度,如小肠绒毛
上皮细胞吸收氨基酸,葡萄糖,K+,Na+ 离子
胞吞、胞吐:如载体蛋白等大分子
★
37、细胞膜和其他生物膜都是选择透过性膜,这种膜可以让水分子自由通过,一些离子和小分子也可以通过,而其他离子,小分子和大分子则不能通过。
38、本质:活细胞产生的有机物,绝大多数为蛋白质,少数为RNA
高效性:酶在降低反应的活化能方面比无机催化剂更显著,因而催化效率更高
特性 专一性:每种酶只能催化一种或一类化学反应
酶
作用条件温和:适宜的温度,pH,最适温度(pH值)下,酶活性最高,温度和pH偏高或偏低,酶活性都会明显降低,甚至失
活(过高、过酸、过碱)
功能:催化作用,降低化学反应所需要的活化能。
结构简式:A—P~P~P,A表示腺苷,P表示磷酸基团,~表示高能磷酸键
中文名称:三磷酸腺苷
★
39、ATP
与ADP相互转化:A—P~P~P A—P~P+Pi+能量(Pi表示磷酸)远离A的那个高能磷酸键断裂(1molATP水解释放30.54KJ能量)
元素组成:ATP 由C、H、O、N、P五种元素组成 功能:细胞内直接能源物质
ADP中文名称叫二磷酸腺苷,结构简式A—P~P ATP在细胞内含量很少,但在细胞内的转化速度很快,用掉多少马上形成多少。ATP和ADP相互转化的过程和意义:
这个过程储存能量(放能反应)
这个过程释放能量(吸能反应)ATP与ADP的相互转化
ATP
ADP + Pi + 能量
方程从左到右代表释放的能量,用于一切生命活动。
方程从右到左代表转移的能量,动物中为呼吸作用转移的能量。植物中来自光合作用和呼
吸作用。
意义:能量通过ATP分子在吸能反应和放能反应之间循环流通,ATP是细胞里的能量流通的能量“通货”
40、18世纪中期,人们认为只有土壤中水分构建植物,未考虑空气作用 1771年,英国普利斯特利实验证实植物生长可以更新空气,未发现光的作用 1779年,荷兰英格豪斯多次实验验证,只有阳光照射下,只有绿叶更新空气,但
未知释放该气体的成分。
1785年,明确放出气体为O2,吸收的是CO2 1845年,德国梅耶发现光能转化成化学能
1864年,萨克斯证实光合作用产物除O2外,还有淀粉
1939年,美国鲁宾卡门利用同位素标记法证明光合作用释放的O2来自水。
41、叶绿素a 叶绿素
主要吸收红光和蓝紫光
叶绿体中色素
叶绿素b(类囊体薄膜)
胡萝卜素 类胡萝卜素
主要吸收蓝紫光
叶黄素
注
色素:包括叶绿素3/4 和 类胡萝卜素 1/4 色素分布图:
色素提取实验:乙醇(丙酮)提取色素;
二氧化硅使研磨更充分
碳酸钙防止色素受到破坏
42、光合作用是指绿色植物通过叶绿体,利用光能,把CO2和H2O转化成储存能量的有机物,并且释放出O2的过程。
方程式:
CO2+ H2180
(CH2O)+18O2
注意:光合作用释放的氧气全部来自水。
★
43、条件:一定需要光 光反应阶段 场所:类囊体薄膜,产物:[H]、O2和能量 过程:(1)水的光解,水在光下分解成[H]和O2;
2H2O—→4[H] + O2(2)形成ATP:ADP+Pi+光能 ATP
能量变化:光能变为ATP中活跃的化学能 条件:有没有光都可以进行
场所:叶绿体基质
暗反应阶段
产物:糖类等有机物和五碳化合物
过程:(1)CO2的固定:1分子C5和CO2生成2分子C3
(2)C3的还原:C3在[H]和ATP作用下,部分还原成糖
类,部分又形成C5 能量变化:ATP活跃的化学能转变成化合物中稳定的化学能
联系:光反应阶段与暗反应阶段既有区别又紧密联系,是缺一不可的整体,光反应为暗反应提供[H]和ATP,暗反应为光反应提供ADP+Pi,没有光反应,暗反应无法进行,没有暗反应,有机物无法合成。
注:(A)环境因素对光合作用速率的影响
①空气中C02浓度
②温度高低
③光照强度
④光照长短
⑤光的成分
44、农业生产以及温室中提高农作物产量的方法
⑴、控制光照强度的强弱
⑵、控制温度的高低
⑶、适当的增加作物环境中二氧化碳的浓度
⑷、延长光合作用的时间。
⑸、增加光合作用的面积-----合理密植,间作套种。
⑹、温室大棚用无色透明玻璃。
⑺、温室栽培植物时,白天适当提高温度,晚上适当降温。⑻、温室栽培多施有机肥或放置干冰,提高二氧化碳浓度。★
45、活细胞所需能量的最终源头是太阳能;流入生态系统的总能量为生产者固定的太阳能
★
46、有氧呼吸与无氧呼吸比较
有氧呼吸 无氧呼吸
场所 细胞质基质、线粒体(主要)细胞质基质 产物 CO2,H2O,能量 CO2,酒精(或乳酸)、能量
反应式 C6H12O6+6O2 6CO2+6H2O+能量 C6H12O6 2C3H6O3+能量 C6H12O6 2C2H5OH+2CO2+能量 过程 第一阶段:1分子葡萄糖分解为2分子丙酮酸和少量[H],释放少量能量,细胞质基质 第二阶段:丙酮酸和水彻底分解成CO2 和[H],释放少量能量,线粒 体基质
第三阶段:[H]和O2结合生成水,大量能量,线粒体内膜 第一阶段:同有氧呼吸 第二阶段:丙酮酸在不同酶催化作用 下,分解成酒精和CO2或 转化成乳酸 能量 大量 少量
细胞呼吸是ATP分子高能磷酸键中能量的主要来源 注:细胞呼吸的意义及其在生产和生活中的应用
呼吸作用的意义:①为生命活动提供能量
②为其他化合物的合成提供原料
47、细胞呼吸:有机物在细胞内经过一系列氧化分解,生成CO2或其他产物,释放能量并 生成ATP过程
48、细胞呼吸应用:
包扎伤口,选用透气消毒纱布,抑制细菌无氧呼吸
酵母菌酿酒:选通气,后密封。先让酵母菌有氧呼吸,大量繁殖,再无氧呼吸产 生酒精
花盆经常松土:促进根部有氧呼吸,吸收无机盐等
稻田定期排水:抑制无氧呼吸产生酒精,防止酒精中毒,烂根死亡
提倡慢跑:防止剧烈运动,肌细胞无氧呼吸产生乳酸
破伤风杆菌感染伤口:须及时清洗伤口,以防无氧呼吸
49、自养生物:可将CO2、H2O等无机物合成葡萄糖等有机物,如绿色植物,硝化细菌(化能合 成作用)
异养生物:不能将CO2、H2O等无机物合成葡萄糖等有机物,只能利用环境中现成的有机物来
维持自身生命活动,如许多动物。
50、细胞表面积与体积关系限制了细胞的长大,细胞增殖是生物体生长、发育、繁殖遗传的基础。
有丝分裂:体细胞增殖
51、真核细胞的分裂方式
减数分裂:生殖细胞(精子,卵细胞)增殖
★无丝分裂:蛙的红细胞。分裂过程中没有出现纺缍丝和染色体 变化
★
52、分裂间期:完成DNA分子复制及有关蛋白质合成,染色体数目不增加,DNA
加倍。
前期:核膜核仁逐渐消失,出现纺缍体及染色体,染色体散乱排列。有丝分裂
中期:染色体着丝点排列在赤道板上,染色体形态比较稳定,数目比 分裂期
较清晰便于观察
后期:着丝点分裂,姐妹染色单体分离,染色体数目加倍 末期:核膜,核仁重新出现,纺缍体,染色体逐渐消失。★
53、动植物细胞有丝分裂区别
植物细胞 动物细胞
间期 DNA复制,蛋白质合成(染色体复制)染色体复制,中心粒也倍增 前期 细胞两极发生纺缍丝构成纺缍体 中心体发出星射线,构成纺缍体
末期 赤道板位置形成细胞板向四周扩散形成细胞壁 不形成细胞板,细胞从中央向内凹陷,缢裂成两子细胞
★
54、有丝分裂特征及意义:将亲代细胞染色体经过复制(实质为DNA复制后),精确地平均分配到两个子细胞,在亲代与子代之间保持了遗传性状稳定性,对于生物遗传有重要意义。
55、有丝分裂中,染色体及DNA数目变化规律
56、细胞分化:个体发育中,由一个或一种细胞增殖产生的后代,在形态、结构和生理功能上发生稳定性差异的过程,它是一种持久性变化,是生物体发育的基础,使多细胞生物体中细胞趋向专门化,有利于提高各种生理功能效率。★
57、细胞分化举例:红细胞与肌细胞具有完全相同遗传信息,(同一受精卵有丝分裂形成);形态、功能不同
原因是不同细胞中遗传信息执行情况不同。
★
58、细胞全能性:指已经分化的细胞,仍然具有发育成完整个体潜能。
高度分化的植物细胞具有全能性,如植物组织培养
高度分化的动物细胞核具有全能性,如克隆羊
因为细胞(细胞核)具有该生生长发育所需的全部遗传信息物
59、细胞内水分减少,新陈代谢速率减慢
细胞内酶活性降低
细胞衰老特征 细胞内色素积累
细胞内呼吸速度下降,细胞核体积增大
细胞膜通透性下降,物质运输功能下降
60、细胞凋亡指基因决定的细胞自动结束生命的过程,是一种正常的自然生理过程,如蝌蚪尾消失,它对于多细胞生物体正常发育,维持内部环境的稳定以及抵御外界因素干扰具有非常关键作用。
能够无限增殖
★61、癌细胞特征 形态结构发生显著变化
癌细胞表面糖蛋白减少,容易在体内扩散,转移
62、癌症防治:远离致癌因子,进行CT,核磁共振及癌基因检测;也可手术切除、化疗和放疗。
必修1的生物实验知识汇编
实验
一、检测生物组织还原糖,脂肪和蛋白质
1、原理:还原糖(如:果糖、葡萄糖、麦芽糖)与斐林试剂,在加热后作用生成砖红色沉淀;脂肪可被苏丹III染成橘黄色(或被苏丹IV染成红色),蛋白质与双缩脲试剂发生紫色反应。
2、材料:还原糖:苹果或梨、马铃薯,千万不能用甘蔗
脂肪:花生
蛋白质:蛋白质豆浆、鲜肝脏提取液
3、步骤中注意点:
(1)斐林试剂必须现配现用,且须水浴加热
(2)脂肪鉴定中,需要制作切片,利用显微镜观察(3)双缩脲试剂先加A液,再加B液 实验
二、观察植物细胞的质壁分离和复原
1、原理:原生质层:细胞膜、液泡膜以及两层膜之间的细胞质 细胞液:液泡里面的液体
植物细胞的原生质层相当于一层半透膜,当细胞液浓度小于外界溶液渡度时,细胞不断失水,逐渐出现质壁分离;当细胞液浓度大于外界溶液浓度时,细胞 就会不断吸水,逐渐出生质壁分离的复原。
2、材料:紫色洋葱鳞片叶(含成熟的液泡),0.3g/ml的蔗糖溶液,清水。
3、步骤中的关键:(1)制作临时装片
(2)一侧滴加蔗糖,盖玻片另一侧用吸水低吸引,重复几次。实验三:探究影响酶活性的因素
1、原理:(1)酶的作用条件较温和,高温、过酸、过碱均会使酶的空间结构遭到破坏,使酶永久失活,低温使酶活性明显降低。
(2)在最适宜的温度和pH条件下,酶活性最高。
实验四:探究酵母菌的呼吸方式:
原理:酵母菌是一种单细胞真菌(真核生物),在有氧和无氧条件下都能生存,属于兼性
厌氧菌,便于探究细胞呼吸方式。
酵母菌有氧呼吸反应式:C6H12O6+6O2 6CO2+6H2O+能量 酵母菌无氧呼吸反应式:C6H12O6 2C2H5OH+2CO2+能量 CO2检验:通入澄清石灰水,石灰水变浑浊
C2H5OH(酒精)检验:橙色重铬酸钾,变成灰绿色 实验五:绿叶中色素提取和分离
1、原理:
(1)提取原理:色素能够溶解在有机溶剂无水乙醇中。
(2)分离原理:各种色素在层析液中溶解度不同,溶解度高的随层析液在滤纸上扩散得
快,反之,则慢。
2、材料,新鲜菠菜叶:SiO2、CaCO3
3、步骤中注意点:
(1)SiO2有助于研磨充分;CaCO3可防止研磨中色素被破坏
(2)滤纸条一端必须剪去两角目的:①作标记;②使扩散速度均匀。(3)不能让滤液细线触及层析线,因为防止色素溶解到层析液中。
4、实验结果:扩散最快的是橙黄色的胡萝卜素、色素带最宽的是蓝绿色的叶绿素a。实验六:观察植物细胞的有丝分裂
1、原理:分生区细胞呈正方形,排列紧密,细胞有丝分裂旺盛
染色体容易被碱性染料(如龙胆紫、醋酸洋红)着色
2、材料:洋葱根尖、龙胆紫或醋酸洋红
3、步骤关键:(1)解离:(盐酸和酒精混合液)使组织中细胞相互分离开(2)漂洗:(清水)洗去药液,防止解离过度(3)染色:(龙胆紫)使染色体着色(4)制片:压片目的使细胞分散开
4、结果观察:先找到
高一生物必修(1)知识点整理
第一章 走近细胞
第一节 从生物圈到细胞
一、相关概念、细 胞:是生物体结构和功能的基本单位。除了病毒以外,所有生物都是由细胞构成的。细胞是地球上最基本的生命系统
生命系统的结构层次: 细胞→组织→器官→系统(植物没有系统)→个体→种群
→群落→生态系统→生物圈
二、病毒的相关知识:
1、病毒(Virus)是一类没有细胞结构的生物体。主要特征:
①、个体微小,一般在10~30nm之间,大多数必须用电子显微镜才能看见;
②、仅具有一种类型的核酸,DNA或RNA,没有含两种核酸的病毒;
③、专营细胞内寄生生活;
④、结构简单,一般由核酸(DNA或RNA)和蛋白质外壳所构成。
2、根据寄生的宿主不同,病毒可分为动物病毒、植物病毒和细菌病毒(即噬菌体)三大类。根据病毒所含核酸种类的不同分为DNA病毒和RNA病毒。
3、常见的病毒有:人类流感病毒(引起流行性感冒)、SARS病毒、人类免疫缺陷病毒(HIV)[引起艾滋病(AIDS)]、禽流感病毒、乙肝病毒、人类天花病毒、狂犬病毒、烟草花叶病毒等。
第二节 细胞的多样性和统一性
一、细胞种类:根据细胞内有无以核膜为界限的细胞核,把细胞分为原核细胞和真核细胞
二、原核细胞和真核细胞的比较:
1、原核细胞:细胞较小,无核膜、无核仁,没有成形的细胞核;遗传物质(一个环状DNA分子)集中的区域称为拟核;没有染色体,DNA 不与蛋白质结合,;细胞器只有核糖体;有细胞壁,成分与真核细胞不同。
2、真核细胞:细胞较大,有核膜、有核仁、有真正的细胞核;有一定数目的染色体(DNA与蛋白质结合而成);一般有多种细胞器。
3、原核生物:由原核细胞构成的生物。如:蓝藻、细菌(如硝化细菌、乳酸菌、大肠杆菌、肺炎双球菌)、放线菌、支原体等都属于原核生物。
4、真核生物:由真核细胞构成的生物。如动物(草履虫、变形虫)、植物、真菌(酵母菌、霉菌、粘菌)等。
三、细胞学说的建立:
1、1665 英国人虎克(Robert Hooke)用自己设计与制造的显微镜(放大倍数为40-140倍)观察了软木的薄片,第一次描述了植物细胞的构造,并首次用拉丁文cella(小室)这个词来对细胞命名。
2、1680 荷兰人列文虎克(A.van Leeuwenhoek),首次观察到活细胞,观察过原生动物、人类精子、鲑鱼的红细胞、牙垢中的细菌等。
3、19世纪30年代德国人施莱登(Matthias Jacob Schleiden)、施旺(Theodar Schwann)提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。这一学说即“细胞学说(Cell Theory)”,它揭示了生物体结构的统一性。
第二章 组成细胞的分子
第一节 细胞中的元素和化合物
一、1、生物界与非生物界具有统一性:组成细胞的化学元素在非生物界都可以找到
2、生物界与非生物界存在差异性:组成生物体的化学元素在细胞内的含量与在非生物界中的含量明显不同
二、组成生物体的化学元素有20多种:
大量元素:C、O、H、N、S、P、Ca、Mg、K等;
微量元素:Fe、Mn、B、Zn、Cu、Mo;
基本元素:C;
主要元素;C、O、H、N、S、P;
细胞含量最多4种元素:C、O、H、N;
水
无机物 无机盐
组成细胞 蛋白质
的化合物 脂质
有机物 糖类
核酸
三、在活细胞中含量最多的化合物是水(85%-90%);含量最多的有机物是蛋白质(7%-
10%);占细胞鲜重比例最大的化学元素是O、占细胞干重比例最大的化学元素是C。
第二节 生命活动的主要承担者------蛋白质
一、相关概念:
氨 基 酸:蛋白质的基本组成单位,组成蛋白质的氨基酸约有20种。
脱水缩合:一个氨基酸分子的氨基(—NH2)与另一个氨基酸分子的羧基(—COOH)相连接,同时失去一分子水。
肽 键:肽链中连接两个氨基酸分子的化学键(—NH—CO—)二 肽:由两个氨基酸分子缩合而成的化合物,只含有一个肽键。
多 肽:由三个或三个以上的氨基酸分子缩合而成的链状结构。
肽 链:多肽通常呈链状结构,叫肽链。
二、氨基酸分子通式:
NH2
|
R — C —COOH
|
H
三、氨基酸结构的特点:每种氨基酸分子至少含有一个氨基(—NH2)和一个羧基(—COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上(如:有—NH2和—COOH但不是连在同一个碳原子上不叫氨基酸);R基的不同导致氨基酸的种类不同。
四、蛋白质多样性的原因是:组成蛋白质的氨基酸数目、种类、排列顺序不同,多肽链空间结构千变万化。
五、蛋白质的主要功能(生命活动的主要承担者):
① 构成细胞和生物体的重要物质,如肌动蛋白;
② 催化作用:如酶;
③ 调节作用:如胰岛素、生长激素;
④ 免疫作用:如抗体,抗原;
⑤ 运输作用:如红细胞中的血红蛋白。
六、有关计算:
① 肽键数 = 脱去水分子数 = 氨基酸数目 — 肽链数
② 至少含有的羧基(—COOH)或氨基数(—NH2)= 肽链数
第三节 遗传信息的携带者------核酸
一、核酸的种类:脱氧核糖核酸(DNA)和核糖核酸(RNA)
二、核 酸:是细胞内携带遗传信息的物质,对于生物的遗传、变异和蛋白质的合成具有重要作用。
三、组成核酸的基本单位是:核苷酸,是由一分子磷酸、一分子五碳糖(DNA为脱氧核糖、RNA为核糖)和一分子含氮碱基组成 ;组成DNA的核苷酸叫做脱氧核苷酸,组成RNA的核苷酸叫做核糖核苷酸。
四、DNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、胸腺嘧啶(T)
RNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、尿 嘧 啶(U)
五、核酸的分布:真核细胞的DNA主要分布在细胞核中;线粒体、叶绿体内也含有少量的DNA;RNA主要分布在细胞质中。
第四节 细胞中的糖类和脂质
一、相关概念:
糖类:是主要的能源物质;主要分为单糖、二糖和多糖等
单糖:是不能再水解的糖。如葡萄糖。
二糖:是水解后能生成两分子单糖的糖。
多糖:是水解后能生成许多单糖的糖。多糖的基本组成单位都是葡萄糖。
可溶性还原性糖:葡萄糖、果糖、麦芽糖等
二、糖类的比较:
分类 元素 常见种类 分布 主要功能
单糖 C
H
O 核糖 动植物 组成核酸
脱氧核糖
葡萄糖、果糖、半乳糖 重要能源物质
二糖 蔗糖 植物 ∕
麦芽糖
乳糖 动物
多糖 淀粉 植物 植物贮能物质
纤维素 细胞壁主要成分
糖原(肝糖原、肌糖原)动物 动物贮能物质
三、脂质的比较:
分类 元素 常见种类 功能
脂质 脂肪 C、H、O ∕
1、主要储能物质
2、保温
3、减少摩擦,缓冲和减压
磷脂 C、H、O
(N、P)∕ 细胞膜的主要成分
固醇 胆固醇 与细胞膜流动性有关
性激素 维持生物第二性征,促进生殖器官发育
维生素D 有利于Ca、P吸收
第五节 细胞中的无机物
一、有关水的知识要点
存在形式 含量 功能 联系
水 自由水 约95%
1、良好溶剂
2、参与多种化学反应
3、运送养料和代谢废物 它们可相互转化;代谢旺盛时自由水含量增多,反之,含量减少。
结合水 约4.5% 细胞结构的重要组成成分
二、无机盐(绝大多数以离子形式存在)功能:
①、构成某些重要的化合物,如:叶绿素、血红蛋白等
②、维持生物体的生命活动(如动物缺钙会抽搐)
③、维持酸碱平衡,调节渗透压。
第三章 细胞的基本结构
第一节 细胞膜------系统的边界
一、细胞膜的成分:主要是脂质(约50%)和蛋白质(约40%),还有少量糖类(约2%--10%)
二、细胞膜的功能:
①、将细胞与外界环境分隔开
②、控制物质进出细胞
③、进行细胞间的信息交流
三、植物细胞含有细胞壁,主要成分是纤维素和果胶,对细胞有支持和保护作用;其性质是全透性的。
第二节 细胞器----系统内的分工合作
一、相关概念:
细 胞 质:在细胞膜以内、细胞核以外的原生质,叫做细胞质。细胞质主要包括细胞质基质和细胞器。
细胞质基质:细胞质内呈液态的部分是基质。是细胞进行新陈代谢的主要场所。
细 胞 器:细胞质中具有特定功能的各种亚细胞结构的总称。
二、八大细胞器的比较:
1、线粒体:(呈粒状、棒状,具有双层膜,普遍存在于动、植物细胞中,内有少量DNA和RNA内膜突起形成嵴,内膜、基质和基粒中有许多种与有氧呼吸有关的酶),线粒体是细胞进行有氧呼吸的主要场所,生命活动所需要的能量,大约95%来自线粒体,是细胞的“动力车间”
2、叶绿体:(呈扁平的椭球形或球形,具有双层膜,主要存在绿色植物叶肉细胞里),叶绿体是植物进行光合作用的细胞器,是植物细胞的“养料制造车间”和“能量转换站”,(含有叶绿素和类胡萝卜素,还有少量DNA和RNA,叶绿素分布在基粒片层的膜上。在片层结构的膜上和叶绿体内的基质中,含有光合作用需要的酶)。
3、核糖体:椭球形粒状小体,有些附着在内质网上,有些游离在细胞质基质中。是细胞内将氨基酸合成蛋白质的场所。
4、内质网:由膜结构连接而成的网状物。是细胞内蛋白质合成和加工,以及脂质合成的“车间”
5、高尔基体:在植物细胞中与细胞壁的形成有关,在动物细胞中与蛋白质(分泌蛋白)的加工、分类运输有关。
6、中心体:每个中心体含两个中心粒,呈垂直排列,存在于动物细胞和低等植物细胞,与细胞的有丝分裂有关。
7、液泡:主要存在于成熟植物细胞中,液泡内有细胞液。化学成分:有机酸、生物碱、糖类、蛋白质、无机盐、色素等。有维持细胞形态、储存养料、调节细胞渗透吸水的作用。
8、溶酶体:有“消化车间”之称,内含多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌。
三、分泌蛋白的合成和运输:
核糖体(合成肽链)→内质网(加工成具有一定空间结构的蛋白质)→
高尔基体(进一步修饰加工)→囊泡→细胞膜→细胞外
四、生物膜系统的组成:包括细胞器膜、细胞膜和核膜等。
第三节 细胞核----系统的控制中心
一、细胞核的功能:是遗传信息库(遗传物质储存和复制的场所),是细胞代谢和遗传的控制中心;
二、细胞核的结构:
1、染色质:由DNA和蛋白质组成,染色质和染色体是同样物质在细胞不同时期的两种存在状态。
2、核 膜:双层膜,把核内物质与细胞质分开。
3、核 仁:与某种RNA的合成以及核糖体的形成有关。
4、核 孔:实现细胞核与细胞质之间的物质交换和信息交流。
第五篇:人教版高中生物必修一知识点总结
新教材高中生物必修一知识点总结
第一章走近细胞
第一节从生物圈到细胞 知识梳理:
1病毒没有细胞结构,但必须依赖(活细胞)才能生存。
2生命活动离不开细胞,细胞是生物体结构和功能的(基本单位)。
3生命系统的结构层次:(细胞)、(组织)、(器官)、(系统)、(个体)、(种群)(群落)、(生态系统)、(生物圈)。
4血液属于(组织)层次,皮肤属于(器官)层次。
5植物没有(系统)层次,单细胞生物既可化做(个体)层次,又可化做(细胞)层次。
6地球上最基本的生命系统是(细胞)。最大的生命系统是生物圈
第二节细胞的多样性和统一性
知识梳理:
一、高倍镜的使用步骤(尤其要注意第1和第4步)1.在低倍镜下找到物象,将物象移至(视野中央),2.转动(转换器),换上高倍镜。
3。调节(光圈)和(反光镜),使视野亮度适宜。
4.调节(细准焦螺旋),使物象清晰。
二、显微镜使用常识
1调亮视野的两种方法(放大光圈)、(使用凹面镜)。
2高倍镜:物象(大),视野(暗),看到细胞数目(少)。
低倍镜:物象(小),视野(亮),看到的细胞数目(多)。
3物镜:(有)螺纹,镜筒越(长),放大倍数越大。
目镜:(无)螺纹,镜筒越(短),放大倍数越大。
三、原核生物与真核生物主要类群:
原核生物:蓝藻,含有(叶绿素)和(藻蓝素),可进行光合作用。细菌:(球菌,杆菌,螺旋菌,乳酸菌)
放线菌:(链霉菌)支原体,衣原体,立克次氏体
真核生物:动物、植物、真菌:(青霉菌,酵母菌,蘑菇)等
四、细胞学说1创立者:(施莱登,施旺)
2内容要点:共三点。1.新细胞可以从老细胞中产生2.一切动植物都由细胞发育而来,并由细胞和细胞产物所构成。3.细胞是一个相对独立的单位,既有他自己的生命,又对与其他细胞共同组成的整体的生命起作用。
3揭示问题:揭示了(细胞统一性,和生物体结构的统一性)。
五、真核细胞和原核细胞的比较(表略,见笔记)第二章组成细胞的元素和化合物
第一节细胞中的元素和化合物
知识梳理:
统一性:元素种类大体相同
1、生物界与非生物界差异性:元素含量有差异
2.组成细胞的元素
大量元素:C、H、O、N、P、S、K、Ca、Mg
微量元素:Fe、Mn、Zn、Cu、B、Mo主要元素:C、H、O、N、P、S
含量最高的四种元素:C、H、O、N基本元素:C(干重下含量最高)
质量分数最大的元素:O(鲜重下含量最高)
结构要点:每种氨基酸都至少含有一个氨基(-NH2)和一个羧基(-COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上。氨基酸的种类由R基(侧链基团)决定。
二蛋白质的结构
氨基酸二肽三肽多肽多肽链一条或若干条多肽链盘曲折叠蛋白质
氨基酸分子相互结合的方式:脱水缩合一个氨基酸分子的氨基和另一个氨基酸分子的羧基相连接,同时失去一分子的水。
连接两个氨基酸分子的化学键叫做肽键三蛋白质的功能
1.构成细胞和生物体结构的重要物质(肌肉毛发)-------结构蛋白
2.催化细胞内的生理生化反应),---酶 3组成细胞的化合物
无机化合物 水(鲜重含量最高的化合物)
无机盐,糖类
有机化合物 脂质
蛋白质(干重中含量最高的化合物)
核酸
4检测生物组织中糖类、脂肪和蛋白质(1)还原糖的检测和观察
常用材料:苹果和梨试剂:斐林试剂(甲液:0.1g/ml的NaOH乙液:0.05g/ml的CuSO4)
注意事项:①还原糖有葡萄糖,果糖,麦芽糖②甲乙液必须等量混合均匀后再加入样液中,现配现用, ③必须用水浴加热(50-65)颜色变化:浅蓝色棕色砖红色(2)脂肪的鉴定
常用材料:花生子叶或向日葵种子试剂:苏丹Ⅲ或苏丹Ⅳ染液 注意事项:
①切片要薄,如厚薄不均就会导致观察时有的地方清晰,有的地方模糊。②酒精的作用是:洗去浮色③需使用显微镜观察 ④使用不同的染色剂染色时间不同 颜色变化:橘黄色或红色(3)蛋白质的鉴定
常用材料:鸡蛋清,黄豆组织样液,牛奶
试剂:双缩脲试剂(A液:0.1g/ml的NaOHB液:0.01g/ml的CuSO4)注意事项:
①先加A液1ml,再加B液4滴
②鉴定前,留出一部分组织样液,以便对比 颜色变化:变成紫色(4)淀粉的检测和观察
常用材料:马铃薯 试剂:碘液颜色变化:变蓝
第二节生命活动的主要承担者--蛋白质 一氨基酸及其种类
氨基酸是组成蛋白质的基本单位。氨基酸分子通式:
3.运输载体(血红蛋白)
4.传递信息,调节机体的生命活动----(胰岛素)激素
5.免疫功能--(抗体)6.调节功能-部分激素7.受体---糖蛋白
四蛋白质分子多样性的原因
构成蛋白质的氨基酸的种类,数目,排列顺序,以及肽链空间结构不同导致蛋白质结构多样性。蛋白质结构多样性导致蛋白质的功能的多样性。
规律方法R
1、构成生物体的蛋白质的20种氨基酸的结构通式为:NH2-C H-COOH
根据R基的不同分为不同的氨基酸。
氨基酸分子中,至少含有一个NH2和一个COOH位于同一个C原子上,由此可以判断是否属于构成蛋白质的氨基酸。
2、n个氨基酸脱水缩合形成m条多肽链时,共脱去(n-m)个水分子,形成(n-m)
个肽键,至少存在m个NH2和COOH,形成的蛋白质的分子量为
n·氨基酸的平均分子量-18(n-m)
第三节遗传信息的携带者--核酸
一核酸的分类DNA(脱氧核糖核酸)
RNA(核糖核酸)
DNA与RNA组成成分比较1.构成碱基种类不同2.构成五炭糖不同3.存在部位不同。
二、核酸的结构
基本组成单位-核苷酸核苷酸由一分子五碳糖、一分子磷酸、一分子含氮碱基组成)
化学元素组成:C、H、O、N、P
三、核酸的功能核酸是细胞内携带遗传信息的物质,在生物体的遗传、变异和蛋白质的生物合成 中具有极其重要的作用。
核酸在细胞中的分布观察核酸在细胞中的分布:
材料:人的口腔上皮细胞
试剂:甲基绿、吡罗红混合染色剂注意事项:
o盐酸的作用:o改变细胞膜的通透性,加速染色剂进入细胞,同时使染色体中的DNA与蛋白质分离,有利于DNA与染色剂结合。
现象:
甲基绿将细胞核中的DNA染成绿色,吡罗红将细胞质中的RNA染成红色。
DNA是细胞核中的遗传物质,此外,在线粒体和叶绿体中也有少量的分布。
RNA主要存在于细胞质中,少量存在于细胞核中。
第四节细胞中的糖类和脂质细胞中的糖类--主要的能源物质
糖类的分类
单糖(葡萄糖,果糖,半乳糖,核糖,脱氧核糖)
二糖(蔗糖,麦芽糖,乳糖)
多糖(淀粉,纤维素,糖原)
细胞中的脂质的分类
脂肪:储能,保温,缓冲减压
磷脂:构成细胞膜和细胞器膜的主要成分
胆固醇
固醇性激素
维生素D
第五节细胞中的无机物 细胞中的水包括
结合水:细胞结构的重要组成成分
自由水:细胞内良好溶剂运输养料和废物 许多生化反应有水的参与 细胞中的无机盐
细胞中大多数无机盐以离子的形式存在 无机盐的作用:
1.细胞中许多有机物的重要组成成分2.维持细胞和生物体的生命活动有重要作用 3.维持细胞的酸碱平衡4.维持细胞的渗透压 附表
类别DNARNA 基本单位脱氧核糖核苷酸核糖核苷酸 核苷酸腺嘌呤脱氧核苷酸 鸟嘌呤脱氧核苷酸 胞嘧啶脱氧核苷酸
胸腺嘧啶脱氧核苷酸,腺嘌呤核糖核苷酸,鸟嘌呤核糖核苷酸,胞嘧啶核糖核苷酸,尿嘧啶核糖核苷酸 碱基腺嘌呤(A)鸟嘌呤(G)胞嘧啶(C)胸腺嘧啶(T)腺嘌呤(A)鸟嘌呤(G)胞嘧啶(C)尿嘧啶(U)五碳糖脱氧核糖核糖 磷酸磷酸磷酸
第三章细胞的基本结构
第一节细胞膜--系统的边界知识网络:
1、研究细胞膜的常用材料:人或哺乳动物成熟红细胞
2、细胞膜主要成分:脂质和蛋白质,还有少量糖类
成分特点:脂质中磷脂最丰富,功能越复杂的细胞膜,蛋白质种类和数量越多
3、细胞膜功能:
将细胞与环境分隔开,保证细胞内部环境的相对稳定 控制物质出入细胞 进行细胞间信息交流
还有分泌,排泄,和免疫等功能。
一、制备细胞膜的方法(实验)
原理:渗透作用(将细胞放在清水中,水会进入细胞,细胞涨破,内容物流出,得到细胞膜)选材:人或其它哺乳动物成熟红细胞
原因:因为材料中没有细胞核和众多细胞器 提纯方法:差速离心法
细节:取材用的是新鲜红细胞稀释液(血液加适量生理盐水)
二、与生活联系:
细胞癌变过程中,细胞膜成分改变,产生甲胎蛋白(AFP),癌胚抗原(CEA)
三、细胞壁成分
植物:纤维素和果胶 原核生物:肽聚糖 作用:支持和保护
四、细胞膜特性: 结构特性:流动性
举例:(变形虫变形运动、白细胞吞噬细菌)功能特性:选择透过性
举例:(腌制糖醋蒜,红墨水测定种子发芽率,判断种子胚、胚乳是否成活)第二节细胞器--系统内的分工合作
一、细胞器之间分工(1)双层膜
叶绿体:存在于绿色植物细胞,光合作用场所 线粒体:有氧呼吸主要场所(2)单层膜
内质网:细胞内蛋白质合成和加工,脂质合成的场所 高尔基体:对蛋白质进行加工、分类、包装
液泡:植物细胞特有,调节细胞内环境,维持细胞形态
溶酶体:分解衰老、损伤细胞器,吞噬并杀死侵入细胞的病毒或病菌
(3)无膜;核糖体:合成蛋白质的主要场所;中心体:与细胞有丝分裂有关
二、分泌蛋白的合成和运输 核糖体内质网高尔基体细胞膜
(合成肽链)(加工成蛋白质)(进一步加工)(囊泡与细胞膜融合,蛋白质释放)
三、生物膜系统
1、概念:细胞膜、核膜,各种细胞器的膜共同组成的生物膜系统
2、作用:使细胞具有稳定内部环境物质运输、能量转换、信息传递 为各种酶提供大量附着位点,是许多生化反应的场所 把各种细胞器分隔开,保证生命活动高效、有序进行 问题
1、细胞膜的化学成分是什么?
2、为获得纯净的细胞膜,应选取什么材料做实验?理由是什么?
3、欲使细胞破裂,对所选材料进行的处理方法是什么?
4、细胞膜的功能是什么?
5、细胞壁的主要成分是什么?其作用是什么?
6、细胞膜的两个特性?
7、细胞器中具有双层膜结构的是什么?不具膜结构的是什么?
8、被称为“消化车间”的是哪种细胞器?
9、植物叶肉细胞里,都具有色素的一组细胞器是什么?
10、蛔虫的细胞内肯定没有哪种细胞器?这种细胞器的功能是什么?
11、动物细胞特有的细胞器是什么?功能是什么?植物特有的细胞器?
12、线粒体与叶绿体如何将能量转换的?
13、在动物细胞内,DNA分布在细胞的什么结构中?
14、与分泌蛋白合成和运输有关的细胞器是什么?分别有什么功能?
15、专一性染线粒体的活染是什么?使活细胞中的线粒体呈什么颜色?
16、细胞核有什么功能?
17、核孔、核仁有什么功能?
18、染色质的主要成分是什么?
19、染色质与染色体的关系是什么? 第四章细胞的物质输入和输出 第一节物质跨膜运输的实例
一、渗透作用
(1)渗透作用:指水分子(或其他溶剂分子)通过半透膜的扩散。(2)发生渗透作用的条件:
一是具有半透膜,二是半透膜两侧具有浓度差。
二、细胞的吸水和失水(原理:渗透作用)
1、动物细胞的吸水和失水
外界溶液浓度<细胞质浓度时,细胞吸水膨胀
外界溶液浓度>细胞质浓度时,细胞失水皱缩
外界溶液浓度=细胞质浓度时,水分进出细胞处于动态平衡
2、植物细胞的吸水和失水
细胞内的液体环境主要指的是液泡里面的细胞液。
原生质层:细胞膜和液泡膜以及两层膜之间的细胞质
外界溶液浓度>细胞液浓度时,细胞质壁分离
外界溶液浓度<细胞液浓度时,细胞质壁分离复原
外界溶液浓度=细胞液浓度时就,水分进出细胞处于动态平衡
中央液泡大小原生质层位置细胞大小
蔗糖溶液变小脱离细胞壁基本不变
清水逐渐恢复原来大小恢复原位基本不变
3、质壁分离产生的条件:
(1)具有大液泡(2)具有细胞壁
4、质壁分离产生的原因:
内因:原生质层伸缩性大于细胞壁伸缩性
外因:外界溶液浓度>细胞液浓度
5、植物吸水方式有两种:
(1)吸帐作用(未形成液泡)如:干种子、根尖分生区
(2)渗透作用(形成液泡)
二、物质跨膜运输的其他实例
1、对矿质元素的吸收
(1)逆相对含量梯度--主动运输
(2)对物质是否吸收以及吸收多少,都是由细胞膜上载体的种类和数量决定。
2、细胞膜是一层选择透过性膜,水分子可以自由通过,一些离子和小分子也可以通过,而其他的离子、小分子和大分子则不能通过。
三、比较几组概念
扩散:物质从高浓度到低浓度的运动叫做扩散(扩散与过膜与否无关)
(如:O2从浓度高的地方向浓度低的地方运动)
渗透:水分子或其他溶剂分子通过半透膜的扩散又称为渗透
(如:细胞的吸水和失水,原生质层相当于半透膜)渗透相当于溶剂分子的扩散
半透膜:物质的透过与否取决于半透膜孔隙直径的大小
(如:动物膀胱、玻璃纸、肠衣、鸡蛋的卵壳膜等)
选择透过性膜:细胞膜上具有载体,且不同生物的细胞膜上载体种类和数量不同,构成了对不同物质吸收与否和吸收多少的选择性。
(如:细胞膜等各种生物膜)
四.质壁分离说明的问题:判断细胞的死活。测定细胞内外的浓度。细胞膜的伸缩性。
第二节生物膜的流动镶嵌模型
一、探索历程(略,见P65-67)
二、流动镶嵌模型的基本内容
▲磷脂双分子层构成了膜的基本支架
▲蛋白质分子有的镶嵌在磷脂双分子层表面,有的部分或全部嵌入磷脂双分子层中,有的横跨整个磷脂双分子层
▲磷脂双分子层和大多数蛋白质分子可以运动糖蛋白(糖被)
组成:由细胞膜上的蛋白质与糖类结合形成。
作用:细胞识别、免疫反应、血型鉴定、保护润滑等。
第三节物质跨膜运输的方式
一、被动运输:物质进出细胞,顺浓度梯度的扩散,称为被动运输。
(1)自由扩散:物质通过简单的扩散作用进出细胞
(2)协助扩散:进出细胞的物质借助载体蛋白的扩散
二、主动运输:从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量,这种方式叫做主动运输。
方向载体能量举例
自由扩散高→低不需要不需要水、CO2、O2、N2、乙醇、甘油、苯、脂肪酸、维生素等
协助扩散高→低需要不需要葡萄糖进入红细胞
主动运输低→高需要需要氨基酸、K+、Na+、Ca+等离子、葡萄糖进入小肠上皮细胞
三、大分子物质进出细胞的方式:胞吞、胞吐
第五章细胞的能量供应和利用
第一节降低反应活化能的酶
一、细胞代谢与酶
1、细胞代谢的概念:细胞内每时每刻进行着许多化学反应,统称为细胞代谢.2、酶的发现:发现过程,发现过程中的科学探究思想,发现的意义
3、酶的概念:酶是活细胞产生的具有催化作用的有机物,绝大多数是蛋白质,少数是RNA。
4、酶的特性:专一性,高效性,作用条件较温和
5、活化能:分子从常态转变为容易发生化学反应的活跃状态所需要的能量。
二、影响酶促反应的因素(难点)
1、底物浓度
2、酶浓度
3、PH值:过酸、过碱使酶失活
4、温度:高温使酶失活。低温降低酶的活性,在适宜温度下酶活性可以恢复。
三、实验
1、比较过氧化氢酶在不同条件下的分解(过程见课本P79)
实验结论:酶具有催化作用,并且催化效率要比无机催化剂Fe3+高得多
控制变量法:变量、自变量、因变量、无关变量的定义。
对照实验:除一个因素外,其余因素都保持不变的实验。
2、影响酶活性的条件(要求用控制变量法,自己设计实验)
建议用淀粉酶探究温度对酶活性的影响,用过氧化氢酶探究PH对酶活性的影响。
第二节细胞的能量“通货”--ATP
一、什么是ATP?是细胞内的一种高能磷酸化合物,中文名称叫做三磷酸腺苷
二、结构简式:A-P~P~PA代表腺苷P代表磷酸基团~代表高能磷酸键
三、ATP和ADP之间的相互转化
ADP+Pi+能量ATP
ATP酶ADP+Pi+能量
ADP转化为ATP所需能量来源:动物和人:呼吸作用绿色植物:呼吸作用、光合作用
第三节ATP的主要来源--细胞呼吸
1、概念:有机物在细胞内经过一系列的氧化分解,生成二氧化碳或其他产物,释放出能量并生成ATP的过程。
2、有氧呼吸
总反应式:C6H12O6+6O26CO2+12H2O+大量能量
第一阶段:细胞质基质C6H12O62丙酮酸+少量[H]+少量能量 第二阶段:线粒体基质2丙酮酸+6H2O6CO2+大量[H]+少量能量 第三阶段:线粒体内膜24[H]+6O212H2O+大量能量
3、无氧呼吸产生酒精:C6H12O62C2H5OH+2CO2+少量能量 发生生物:大部分植物,酵母菌 产生乳酸:C6H12O62乳酸+少量能量
发生生物:动物,乳酸菌,马铃薯块茎,玉米胚
反应场所:细胞质基质注意:无机物的无氧呼吸也叫发酵,生成乳酸的叫乳酸发酵,生成酒精的叫酒精发酵 讨论:
1有氧呼吸及无氧呼吸的能量去路
有氧呼吸:所释放的能量一部分用于生成ATP,大部分以热能形式散失了。无氧呼吸:能量小部分用于生成ATP,大部分储存于乳酸或酒精中 2有氧呼吸过程中氧气的去路:氧气用于和[H]生成水 第四节能量之源--光与光合作用
一、捕获光能的色素 叶绿素a(蓝绿色)
叶绿素叶绿素b(黄绿色)
绿叶中的色素胡萝卜素(橙黄色)类胡萝卜素 叶黄素(黄色)
叶绿素主要吸收红光和蓝紫光,类胡萝卜素主要吸收蓝紫光。白光下光合作用最强,其次是红光和蓝紫光,绿光下最弱。
二、实验--绿叶中色素的提取和分离
1实验原理:绿叶中的色素都能溶解在层析液中,且他们在层析液中的溶解度不同,溶解度高的随层析液在滤纸上扩散得快,绿叶中的色素随着层析液在滤纸上的扩散而分离开。2方法步骤中需要注意的问题:(步骤要记准确)(1)研磨时加入二氧化硅和碳酸钙的作用是什么?
二氧化硅有助于研磨得充分,碳酸钙可防止研磨中的色素被破坏。
(2)实验为何要在通风的条件下进行?为何要用培养皿盖住小烧杯?用棉塞塞紧试管口? 因为层析液中的丙酮是一种有挥发性的有毒物质。(3)滤纸上的滤液细线为什么不能触及层析液? 防止细线中的色素被层析液溶解
(4)滤纸条上有几条不同颜色的色带?其排序怎样?宽窄如何?
有四条色带,自上而下依次是橙黄色的胡萝卜素,黄色的叶黄素,蓝绿色的叶绿素a,黄绿色的叶绿素b。最宽的是叶绿素a,最窄的是胡萝卜素。
三、捕获光能的结构--叶绿体
结构:外膜,内膜,基质,基粒(由类囊体构成)与光合作用有关的酶分布于基粒的类囊体及基质中。光合作用色素分布于类囊体的薄膜上。
四、光合作用的原理
1、光合作用的探究历程:(略)
2、光合作用的过程:(熟练掌握课本P103下方的图)总反应式:CO2+H2O(CH2O)+O2 其中,(CH2O)表示糖类。
根据是否需要光能,可将其分为光反应和暗反应两个阶段。光反应阶段:必须有光才能进行 场所:类囊体薄膜上
反应式:水的光解:H2OO2+2[H];ATP形成:ADP+Pi+光能ATP 光反应中,光能转化为ATP中活跃的化学能 暗反应阶段:有光无光都能进行 场所:叶绿体基质
CO2的固定:CO2+C52C3 C3的还原:2C3+[H]+ATP(CH2O)+C5+ADP+Pi 暗反应中,ATP中活跃的化学能转化为(CH2O)中稳定的化学能 联系:
光反应为暗反应提供ATP和[H],暗反应为光反应提供合成ATP的原料ADP和Pi
五、影响光合作用的因素及在生产实践中的应用(1)光对光合作用的影响 ①光的波长
叶绿体中色素的吸收光波主要在红光和蓝紫光。
②光照强度
植物的光合作用强度在一定范围内随着光照强度的增加而增加,但光照强度达到一定时,光合作用的强度不再随着光照强度的增加而增加
③光照时间
光照时间长,光合作用时间长,有利于植物的生长发育。
(2)温度
温度低,光和速率低。随着温度升高,光合速率加快,温度过高时会影响酶的活性,光和速率降低。
生产上白天升温,增强光合作用,晚上降低室温,抑制呼吸作用,以积累有机物。
(3)CO2浓度
在一定范围内,植物光合作用强度随着CO2浓度的增加而增加,但达到一定浓度后,光合作用强度不再增加。
生产上使田间通风良好,供应充足的CO2(4)水分的供应当植物叶片缺水时,气孔会关闭,减少水分的散失,同时影响CO2进入叶内,暗反应受阻,光合作用下降。
生产上应适时灌溉,保证植物生长所需要的水分。
六、化能合成作用
概念:自然界中少数种类的细菌,虽然细胞内没有叶绿素,不能进行光合作用,但是能够利用体外环境中的某些无机物氧化时所释放的能量来制造有机物,这种合成作用,叫做化能合成作用,这些细菌也属于自养生物。
如:硝化细菌,不能利用光能,但能将土壤中的NH3氧化成HNO2,进而将HNO2氧化成HNO3。
硝化细菌能利用这两个化学反应中释放出来的化学能,将CO2和水合成为糖类,这些糖类可供硝化细菌维持自身的生命活动.第6章细胞的生命历程
第1节细胞的增殖
一、限制细胞长大的原因
①细胞表面积与体积的比。②细胞的核质比
二、细胞增殖
1.细胞增殖的意义:生物体生长、发育、繁殖和遗传的基础 2.真核细胞分裂的方式:有丝分裂、无丝分裂、减数分裂(一)细胞周期(1)概念:
指连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止。(2)两个阶段:
分裂间期:从细胞在一次分裂结束之后到下一次分裂之前 分裂期:分为前期、中期、后期、末期(3)特点:分裂间期所占时间长。
(二)植物细胞有丝分裂各期的主要特点: 1.分裂间期
特点:完成DNA的复制和有关蛋白质的合成
结果:每个染色体都形成两个姐妹染色单体,呈染色质形态 2.前期
特点:①出现染色体、出现纺锤体②核膜、核仁消失
染色体特点:
1、染色体散乱地分布在细胞中心附近。
2、每个染色体都有两条姐妹染色单体 3.中期
特点:①所有染色体的着丝点都排列在赤道板上②染色体的形态和数目最清晰
染色体特点:染色体的形态比较固定,数目比较清晰。故中期是进行染色体观察及计数的最佳时机。4.后期
特点:①着丝点一分为二,姐妹染色单体分开,成为两条子染色体。并分别向两极移动。②纺锤丝牵引着子染色体分别向细胞的两极移动。这时细胞核内的全部染色体就平均分配到了细胞两极 染色体特点:染色单体消失,染色体数目加倍。5.末期
特点:①染色体变成染色质,纺锤体消失。②核膜、核仁重现。③在赤道板位置出现细胞板,并扩展成分隔两个子细胞的细胞壁
前期:膜仁消失显两体。中期:形定数晰赤道齐。后期:点裂数加均两极。末期:膜仁重现失两体。
四、植物与动物细胞的有丝分裂的比较
相同点:
1、都有间期和分裂期。分裂期都有前、中、后、末四个阶段。
2、分裂产生的两个子细胞的染色体数目和组成完全相同且与母细胞完全相同。染色体在各期的变化也完全相同。
3、有丝分裂过程中染色体、DNA分子数目的变化规律。动物细胞和植物细胞完全相同。不同点:
植物细胞动物细胞
前期纺锤体的来源由两极发出的纺锤丝直接产生由中心体周围产生的星射线形成。
末期细胞质的分裂细胞中部出现细胞板形成新细胞壁将细胞隔开。细胞中部的细胞膜向内凹陷使细胞缢裂
五、有丝分裂的意义:
将亲代细胞的染色体经过复制以后,精确地平均分配到两个子细胞中去。从而保持生物的亲代和子代之间的遗传性状的稳定性。
六、无丝分裂:
特点:在分裂过程中没有出现纺锤丝和染色体的变化。第二节细胞的分化
一、细胞的分化
(1)概念:在个体发育中,相同细胞的后代,在形态、结构和生理功能上发生稳定性差异的过程。(2)过程:受精卵增殖为多细胞分化为组织、器官、系统发育为生物体(3)特点:持久性、稳定不可逆转性
二、细胞全能性:(1)体细胞具有全能性的原因;由于体细胞一般是通过有丝分裂增殖而来的,一般已分化的细胞都有一整套和受精卵相同的DNA分子,因此,分化的细胞具有发育成完整新个体的潜能。
(2)植物细胞全能性高度分化的植物细胞仍然具有全能性。例如:胡萝卜跟根组织的细胞可以发育成完整的新植株
(3)动物细胞全能性
高度特化的动物细胞,从整个细胞来说,全能性受到限制。但是,细胞核仍然保持着全能性。例如:克隆羊多莉
(4)全能性大小:受精卵>生殖细胞>体细胞
第三节细胞的衰老和凋亡
一、细胞的衰老
1、个体衰老与细胞衰老的关系
单细胞生物体,细胞的衰老或死亡就是个体的衰老或死亡。
多细胞生物体,个体衰老的过程就是组成个体的细胞普遍衰老的过程。
2、衰老细胞的主要特征:
1)在衰老的细胞内水分。
2)衰老的细胞内有些酶的活性。
3)细胞内的会随着细胞的衰老而逐渐积累。
4)衰老的细胞内速度减慢,细胞核体积增大,固缩,染色加深。
5)通透性功能改变,使物质运输功能降低。
3、细胞衰老的原因:(1)自由基学说(2)端粒学说
二、细胞的凋亡
1、概念:由基因所决定的细胞自动结束生命的过程。
由于细胞凋亡受到严格的由遗传机制决定的程序性调控,所以也常常被称为细胞编程性死亡
2、意义:完成正常发育,维持内部环境的稳定,抵御外界各种因素的干扰。
3、与细胞坏死的区别:细胞坏死是在种种不利因素影响下,由于细胞正常代谢活动受损或中断引起的细胞损伤和死亡。
细胞凋亡是一种正常的自然现象。
第4节细胞的癌变
1.癌细胞:细胞由于受到的作用,不能正常地完成细胞分化,而形成了不受有机体控制的、连续进行分裂的细胞,这种细胞就是癌细胞。
2.癌细胞的特征:
(1)能够无限。(2)癌细胞的发生了变化。(3)癌细胞的表面也发生了变化。癌细胞容易在有机体内分散转移的原因____________________________________ 3.致癌因子的种类有三类:、、。
4.细胞癌变的原因:致癌因子使细胞的原癌基因从状态变为状态。正常细胞转化为。