力的合成教学设计通用
【教学目标】
1、知识与技能
(1)能够从力的“效果”角度理解合力与分力的概念;
(2)掌握力的平行四边形定则,知道它是合成力的基本定则,学会初步运用平行四边形定则求合力;
(3)会用作图法求解两个共点力的合力;并能意识到其合力随夹角是变化的。
2、过程与方法
(1)能够通过实验探究归纳出互成角度的两个共点力的合成遵循平行四边形定则;
(2)体会等效代替的思想方法,参与实验探究过程,培养学生动手操作能力和协作能力;
(3)培养学生设计实验、观察实验现象、探索规律以及归纳总结问题的能力。
3、情感、态度与价值观
(1)培养学生的物理思维能力和科学研究的态度。
(2)培养学生热爱生活、事实求是的科学态度,激发学生探索与创新的意识。
(3)培养学生合作、交流、互助的精神。
(4)让学生树立科学探究中大胆猜测,严谨求证的科学思想。
【重点难点】
重点:渗透“等效替代”的物理思想,促使力的平行四边形定则的发现与深刻的理解。
难点:
①实验的设计;
②平行四边形关系的发现;
③从“代数和”思维到“矢量和”思维的跨越。
突破方法:让学生自己动手实验,自己将结论得出。
【教学方法】
为了体现新课程所倡导的教学理念,在教法上,采取以学生为主体,以问题为中心,以教师为引导,以小组的合作为主要方式,让学生进行简单的实验设计,亲身体验科学实验探究的过程。为了让学生更好地体验科学研究的方法和过程,发展自主学习能力,培养良好的思维品质,强化小组交流与合作意识,淡化机械式训练,摒弃灌输式教学;教师一定要把握好自己的角色,是适时适度地“引导”和“参与”,决不能搞型式化的探究。在以往的教学中,课堂教学实施往往过于注重知识传授倾向,学生被动地接受,很难从多方面培养学生的综合素质。
【教具准备】
多媒体课件、电子白板,弹簧秤,橡皮条,刻度尺,细线等。
【课时设计】
本节课计划用两课时学完。本节为第一课时
【教学环节】
新课的引入
[教师活动]多媒体展示简单的问题1+1在什么情况下不等于2,激发学生学习的激情,之后再讲“曹冲秤象”的故事,提水问题。引出等效思想的理论。
[学生活动]让学生自己分别用一只手和两只手拿桌子上的物体感受等效的思想。
[教师活动]引导学生理解合力与分力等效代替的关系,得出合力和分力的概念。并复习提问初中学过的同一直线上求两个力的合力的问题:(两种情形,分力同向和反向时)并引导学生用“等效替代”的思想去理解这两种情形,然后再抛出“两个互成角度的分力与其合力有什么样的关系呢?”“合力是否等于两分力大小之和或之差呢?”也可以让学猜测“合力的大小在什么范围内?”。引导学生设计实验用“等效替代”的思想靠测量的方法先去找到两分力与合力,并将它们表示出来,然后再探究它们之间的关系。
指导学生实验设计中应注意的一些问题
(1)问题的提出:两个互成角度的共点力与其合力有什么样的关系?
(2)设计实验时应注意的问题:
①用什么方法找分力与合力,实验中应怎样实现分力与其合力产生的作用效果相同?
②如何知道力的大小?如何确定力的方向?
③实验中需要记录哪些数据?怎样可以更直观简洁地同时描述力的大小和方向?
④该实验中可能出现误差的原因有哪些?你该如何处理?
进行实验
[学生活动]
四个或六个学生为一小组进行分组实验。
[教师活动]
在旁巡查,适时加以指导,实验时要分布引导学生注意以上4个问题。引导学生按书中的建议把合力的箭头和两分力的箭头连接起来,再看看这些图形有什么共同点和不同点。引导学生利用现有的实验结果大胆地提出科学合理的猜想──满足平行四边形定则,再让学生变化角度实验,验证猜测。
对实验结果进行分析与评估并归纳得出结论
[学生活动]
学生通过实验探究确定了两个分力与合力,并且用力的图示将它们表示出来后,到讲台上展示交流实验中得到的图形,并思考归纳、总结本实验探究的结论。学生探究到的合力与分力之间的关系可能只是一个近似的平行四边形,也可能是一些其他图形。
[教师活动]
总结说明:多数组得到了平行四边形这很好,对于没有得到平行四边形的,也要尊重实验,实事求是。教师要特别说明:即使今天我们所有组都得到了平行四边形规律,就一定能说明分力和合力满足平行四边形定则吗?在科学探究中这样做可吗?(学生能意识到这样做不妥)
[教师活动]
总结说明:因为我们只做了有限的几组实验,就得出结论。这当然不可取!科学探究往往要通过不同情况下的对大量实验数据的分析论证才能得出具有普遍意义的科学规律,有时还需要通过理论证明才能加以推广。而我们这节课只做了有限的实验,其实两分力和合力的关系满足平行四边形定则,早就被科学家证实了,大多数同学得到这个结论,而少数同学未能得到,那是因为实验中出现了问题,可能是实验误差(读数误差、作图误差、系统误差),甚至是操作上的错误。请学生下课后分析造成的原因。事实证明不仅力的合成满足平行四边形定则,所有的矢量合成都满足。让学生返回到前面学习位移时的几个问题,用平行四边形定则重新看待那些问题。
例题分析
教科书中的例题比较简单,但学生在作图时常常不规范,教师要强调学生注意
1.合力,分力要共起点,虚线,实线要分清。
2.合力,分力标度要相同,作图要准确。
3.对角线要找准,不要忘了方向。
让学生再思考
思考分力一定时,随着夹角的增大合力如何变化?提出引体向上的例子,然后观看动画,让学生总结得出合力与分力间夹角θ关系:
学生讨论以后通过多媒体动画演示,让学生总结得出以下结论:
合力与分力间夹角θ关系:
①θ=0°时,即F1、F2共线同方向:
F合=F1+F2?合力方向与两个力的方向相同
②θ=180°时,即F1、F2共线反方向:
F合=|F1-F2|合力方向与分力F1、F2中较大的方向相同。
③夹角θ越大,合力就越小:
F合随F1和F2的夹角增大而减小
④合力的取值范围:|F1-F2|≤ F合≤ F1+F2
⑤ F合可能大于、等于、小于F1、F2
小结
先让学生自己小结,老师在黑板上出示小结提示,补充和纠正学生的不足之处。
【布置作业】
课后练习1,2小题。
【板书设计】
5.1力的合成
一、合力、分力、共点力
1.合力、分力、共点力的概念
二、力的合成
1.求几个分力的合力叫力的合成
2.同一直线上的两个力的合成
同方向:合力的大小等于两分力大小之和,合力的方向与任意一个分力方向相同。
反方向:合力的大小等于两分力大小之差,合力的方向与较大的分力方向相同。
3.互成角度的两个力的合成满足平行四边形定则,即以表示这两个力的有向线段为邻边作出平行四边形,这两个邻边之间所夹的对角线就代表合力的大小和方向。
《力的合成》教学设计
教材分析:
1、合力与分力。
力的合成是为以后综合受力分析准备的一节课。求解力的合成所采用的是等效替换的方法。要通过多个实例来分析说明一个力的作用效果可以和多个力的作用效果相同,一个力与作用效果相同的多个力是可以等效代换的。
合力与分力的等效代换的关系学生不易理解,是个教学难点。应该让学生知道,在力的合成中,分力是实际存在的,每个分力都应该有施力物体,而合力则是设想的但有实际意义的力。
2、力的平行四边形定则
在第一章的学习中学生已初步接触了位移矢量合成问题。教学中应该在复习同一直线力的合成的基础上,再转入互成角度力的合成问题。力的平行四边形定则是在学生式实验的基础上总结出来的,因此,指导学生做好实验并得出结果,这是教学的重点。教师要指导学生通过设计好的实验做实验,用力的图示法画出合力、分力,比较合力、分力的大小和方向关系,让学生清楚看到合力不等于分力的代数和。教师再让学生根据合力、分力的图示,猜想合力、分力的关系。在得出合力、两分力间的关系符合平行四边形定则的猜想后,让每一位同学都做出平行四边形,看合力是否与平行四边形的对角线是否重合,并展示同学的实验结果,逐步建立力的合成的平行四边形定则。
由于学生对矢量运算的平行四边形定则理解不深,容易按照标量运算来想问题。如:可能认为合力一定大于分力或合力至少大于一个分力,求合力也容易忘记方向。因此教师采用相应的计算机课件来动态模拟两个分力大小一定时,合力的大小和方向如何随分力夹角的变化而变化。
本节课的教学难点和重点应该是实验的操作过程,一定让学生在动手实验的基础上得出力的合成法则——即平行四边形定则,这样才能使学生在掌握这个问题上能够深刻地理解并能够在实验中锻炼能力。实验中可能有的学生不能的出正确结果,应该鼓励学生并在课后帮助学生寻找原因,提高学生实验的积极性和信心。
3、共点力。
共点力的教学重点是利用实例让学生区分共点力和非共点力,在此基础上建立共点力图景。教学目标:
一、知识与技能
1、理解合力、分力、力的合成、共点力的概念。
2、掌握平行四边形定则,会用平行四边形定则求合力。
3、理解力的合成的本质是从作用效果相等的角度进行力的等效替代。
二、过程与方法
1、通过学习合力和分力的概念,了解物理学常用的方法——等效替代法。
2、通过探索性实验,初步认识科学探索的基本过程和意义。
3、让学生在寻求规律的过程中体会到学习的乐趣。
三、情感态度和价值观
1、培养学生动手操作的能力和实验能力。
2、培养学生交流合作的精神,在交流合作中发展能力,并形成良好的学习习惯和学习方法。
3、通过力的等效替代,培养学生的物理思维能力,同时领会科学探究严谨、务实的精神和态度。教学重点:
1、合力和分力的关系。
2、平行四边形定则及其应用。教学难点:
1、合力和分力的等效替代关系。
2、通过探索性实验,归纳互成角度的两个力的合成遵循平行四边形定则。教具准备:
多媒体课件 投影仪 学生分组实验器材:木板 白纸 图钉 橡皮筋 弹簧秤(两只)三角板 铅笔
课时安排:1课时 教学过程设计:
一、引入教学 [复习与回顾] 回顾什么是力的作用效果。举出力的作用效果相同的事例。回顾同一直线上两个力的合力的大小与方向与分力的关系。[演示实验] 将橡皮筋一端固定在M点,用互成角度的两个力F1,F2共同作用,将橡皮筋一端拉到O点如图所示;用一个力F将橡皮筋拉到点O如图所示。两次力的作用效果相同。
引导学生得出一个力F产生的效果与两个力F1、F2共同产生的效果相同,这个力F就叫做那两个力F1、F2的合力,而那两个力F1、F2叫做这个力F的合力。求两个力的合力叫力的合成。
与初中不同的是,不在同一直线上而是互成角度的。
同一直线上两个力的合力的大小与方向,与两个分力的大小、方向两个因素有关。那么互成角度的两个力的合力跟两个分力的哪些因素有关呢?
二、新课教学
(一)力的合成
通过实验来完成这个问题。
让学生明确如何确定两个分力与合力的大小与方向(弹簧秤测量力的大小,力沿细绳的方向)[指导学生进行实验]
1、弹簧秤的正确使用。
2、明确实验时两个人的分工。
3、确定合力和分力的大小、方向。
4、让学生明确如何才能使合力与分力的作用效果。[视察学生的实验情况] [数据处理]
1、用力的图示法分别表示合力和分力。(强调力的图示的注意事项)
用投影仪展示一些学生的结果。让学生明白,互成角度的两个力的合成,不是简单的相加减的关系。
2、引导学生猜想合力与分力到底有什么样的关系。
学生回猜想好像与平行四边形有关,合力好像是平行四边形的对角线。
3、教师指导学生用三角板做出平行四边形,来证实自己的猜想是否正确。用投影仪展示一些学生的结果。
4、比较平行四边形的对角线和合力,发现对角线和合力很接近。
5、教师说明:经过前人的多次精确实验确认,对角线的长度、方向跟合力的大小、方向一致,即对角线与合力重合,也就是说对角线就表示合力。
可见求互成角度两个力的合力,不是简单的将两个力相加减,而是用表示两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向,这就是力的平行四边形定则。[练习] 用平行四边形定则求合力。例题(略)[电脑演示]
1、合力与两个分力的大小关系。
2、合力与两个分力的夹角关系。[学生思考]
1、如果两个分力的大小分别为F1、F2,两个分力间的夹角为θ,当θ=00时,它们的合力为多少?当θ=1800时,它们的合力又为多少?合力的大小范围为多少?
2、如果是三个力或三个以上的力,如何求合力?
(二)、共点力
指导学生阅读课本上有关共点力的知识,阅读时注意以下的问题:
1、什么是共点力?
2、掌握共点力的概念时应该注意什么问题?
3、力的合成的平行四边形定则有没有适用条件,如果有,适用条件是什么?(这部分知识相对简单,可以通过自学提高学生的自学能力和阅读能力)
三、布置作业(略)
四、板书设计
1、一个力F产生的效果与两个力F1、F2共同产生的效果相同,这个力F就叫做那两个力F1、F2的合力,而那两个力F1、F2叫做这个力F的合力。求两个力的合力叫力的合成。
2、用表示两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向,这就是力的平行四边形定则。