第一篇:单片机,双机通信实验报告
洛阳理工学院实验报告
系别 计算机系 班级 B140504 学号 B14050414 姓名 史锦峰 课程名称 单片机原理及组成 实验日期 2016.04.28 实验名称 双机通信及 PCB 设计过程 成绩
实验目的:掌握串行口通信工作原理,熟悉单片机电路的 PCB 设计过程 实验条件:计算机、Keil uVision4、ISIS 7 Professional、实验箱 实验内容:
1.掌握串行通信原理和中断法通信软件编程; 2.完成实验的 C51 语言编程;
3.学习使用 ARES 软件,完成实验 61#机电路;
实验电路图
仿真运行效果
图一:
图二:
源程序:
#include
unsigned int j=0;
for(;time>0;time--)
for(j=0;j<125;j++);
}
void main(void){
uchar counter=0;
P2=0x3f;
TMOD=0x20;
TH1=TL1=0xf4;
PCON=0;
SCON=0x50;
TR1=1;
while(1){
SBUF=counter;
while(TI==0);
TI=0;
while(RI==0);
RI=0;
if(SBUF==counter){
P2=counter;
if(++counter>15)counter=0;
delay(500);
}
} }
#include
while(RI==1){
RI=0;
receiv=SBUF;
SBUF= receiv;
while(TI==0)
TI=0;
P2=receiv;
}
}
}
实验总结:一直不能正确显示同步的信号,询问老师后才知道是实验箱烧写程序时用了两台电脑,但是进行通讯时不在一台机子上。这是一个很重要的店。
第二篇:单片机实验三 双机通信实验程序
实验三 双机通信实验
一、实验目的
UART 串行通信接口技术应用
二、实验实现的功能
用两片核心板之间实现串行通信,将按键信息互发到对方数码管显示。
三、系统硬件设计
实验所需硬件:电脑一台;
开发板一块;
串口通信线一根; USB线一根;
四、系统软件设计
实验所需软件:编译软件:keil uvision3;
程序下载软件:STC_ISP_V480; 试验程序:
#include
L1=1;L2=1;L3=1;
H1=0;if(L1==0)
return 1;else if(L2==0)
return 2;else if(L3==0)
return 3;
H1=1;H2=0;if(L1==0)
return 4;else if(L2==0)
return 5;else if(L3==0)
return 6;H2=1;return 0;
} unsigned char keyscan(){ static unsigned int ct=0;static unsigned char lastkey=0;unsigned char key;key=getkey();
if(key==lastkey){
ct++;
if(ct==900)
{
ct=0;
lastkey=0;
return key;
} } else {
第三篇:单片机数据采集与双机通信系统的设计任务书
智能仪器设计实习
设 计 任 务 书
题目单片机数据采集系统的设计专业、班级学号姓名主要内容、基本要求、主要参考资料等:
主要内容:
功能要求:完成单片机数据采集系统
1)使用单片机采集数据。
2)将采集到的数据送上微机显示、处理。
上述内容为基本要求,可按照自己的理解增加功能使之更完善。
基本要求:
明确设计任务,复习与查阅有关资料。
设计所用硬件芯片按给定使用。
按要求对设计进行简要说明,总体设计方案,各部分的详细设计。
写出体会和总结。
要求全部使用A4纸打印稿,不少于5000字。
主要参考资料:
李朝青编.《单片机原理及接口技术》(简明修订版).北京航空航天大学出版社,1998 冯克.《MCS-51单片机实用子程序及其应用实例》.黑龙江科学技术出版社,1990 杨欣荣等.《智能仪器原理、设计与发展》.中南大学出版社,2003 孙传友等.《感测技术基础》. 电子工业出版社,2001
王福瑞等.《单片微机测控系统设计大全》.北京航空航天大学出版社,1999 科技期刊:《单片机与嵌入式系统应用》、《实用测试技术》、《自动化仪表》、《传感器世界》、《测控技术》、《电子技术应用》等2001年以后各期。
完成期限: 2013年12月16日
指导教师签名:
2013年 12月16日
第四篇:单片机实验报告
目录
第一章单片机简介....................................................2 第二章
实验要求..................................................3 第三章实验设备......................................................3 第四章实验安排......................................................4 第五章实验内容......................................................4
LED灯实验.......................................................4 步进马达试验....................................................5 独立按键控制LED实验............................................7 矩阵键盘实验....................................................9 静态数码管实验.................................................12 动态数码管实验.................................................14 NE555脉冲发生器实验(定时/计数器).............................16 RS232串口通信实验(接收与发送)..................................21 第六章收获体会.....................................................25
单片机实验报告
第一章单片机简介
单片机也被称为微控制器(Microcontroller),是因为它最早被用在工业控制领域。单片机由芯片内仅有CPU的专用处理器发展而来。最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。单片机是靠程序运行的,并且可以修改。通过不同的程序实现不同的功能,尤其是特殊的独特的一些功能,这是别的器件需要费很大力气才能做到的,有些则是花大力气也很难做到的。一个不是很复杂的功能要是用美国50年代开发的74系列,或者60年代的CD4000系列这些纯硬件来搞定的话,电路一定是一块大PCB板!但是如果要是用美国70年代成功投放市场的系列单片机,结果就会有天壤之别!只因为单片机的通过你编写的程序可以实现高智能,高效率,以及高可靠性!
单片机诞生于20世纪70年代末,经历了SCM、MCU、SoC三大阶段。
1.SCM即单片微型计算机(Single Chip Microcomputer)阶段,主要是寻求最佳的单片形态嵌入式系统的最佳体系结构。“创新模式”获得成功,奠定了SCM与通用计算机完全不同的发展道路。在开创嵌入式系统独立发展道路上,Intel公司功不可没。
2.MCU即微控制器(Micro Controller Unit)阶段,主要的技术发展方向是:不断扩展满足嵌入式应用时,对象系统要求的各种外围电路与接口电路,突显其对象的智能化控制能力。它所涉及的领域都与对象系统相关,因此,发展MCU的重任不可避免地落在电气、电子技术厂家。从这一角度来看,Intel逐渐淡出MCU的发展也有其客观因素。在发展MCU方面,最著名的厂家当数Philips公司。
Philips公司以其在嵌入式应用方面的巨大优势,将MCS-51从单片微型计算机迅速发展到微控制器。因此,当我们回顾嵌入式系统发展道路时,不要忘记Intel和Philips的历史功绩。
3.单片机是嵌入式系统的独立发展之路,向MCU阶段发展的重要因素,就是寻求
单片机实验报告
应用系统在芯片上的最大化解决;因此,专用单片机的发展自然形成了SoC化趋势。随着微电子技术、IC设计、EDA工具的发展,基于SoC的单片机应用系统设计会有较大的发展。因此,对单片机的理解可以从单片微型计算机、单片微控制器延伸到单片应用系统。
MCS51系列微控制器应用广泛,在家电、汽车甚至航空等领域都有其活跃的身影。然而,普通51系列微控制器内部资源有限,像我用Proteus构建微控制器虚拟实验室选用的AT89C52只有三个定时器、一个全双工的串行口和中断控制,并且其数据处理能力有限,不适合对大量数据进行复杂分析和运算。
因此,在不重新选型(可选用SoC)的前提下,为实现我们所需要的功能,就需要进行外围扩展。针对微控制器的特点,我们首先考虑串行扩展,因为微控制器的I/O引脚有限,并行扩展一则外围芯片面积比较大,二则对抑制EMI不利。
第二章 实验要求
1.学习Keil C51集成开发工具的操作及调试程序的方法,包括:仿真调试与脱机运行间的切换方法
2.熟悉TD-51单片机系统板及实验系统的结构及使用
3.进行MCS51单片机指令系统软件编程设计与硬件接口功能设
4. 学习并掌握Keil C51软件联机进行单片机接口电路的设计与编程调试
5.完成指定MCS51单片机综合设计题
第三章实验设备
1.HC600S-51单片机开发板 2.Keil C51 3.普中自动下载软件
第四章 实验安排
1.LED灯实验
单片机实验报告
2.步进马达试验
3.独立按键控制LED实验 4.矩阵键盘实验 5.静态数码管实验 6.动态数码管实验
7.NE555脉冲发生器实验(定时/计数器)8.RS232串口通信实验(接收与发送)
第五章 实验内容
一、LED灯实验
1.基本要求
利用位移循环指令实现LED灯的闪烁 2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线图
4.电路原理图
单片机实验报告
5.程序
#include
main(){unsigned int i;while(1)
{for(i=0,P0=1;i<4;i++){d(500);P0=(P0<<2);}}}
二、步进马达试验
1.基本要求
编程实现马达的正反转,调速等功能 2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线图(图一)
单片机实验报告
图一 图二
4.电路原理图
上图图二 5.程序
#include “reg52.h” #define speed 2 sbit PH1 = P1^0;
//定义管脚 sbit PH2 = P1^1;sbit I01 = P1^2;sbit I11 = P1^3;sbit I02 = P1^4;sbit I12 = P1^5;
void delay(int time);
void Go(){ //A
PH1 = 0;//PH1为0 则A线圈为反向电流
I01 = 0;I11 = 0;
//以最大电流输出
PH2 = 0;//PH2为0 则B线圈为反向电流
I02 = 1;I12 = 1;
//输出0 delay(speed);//圈为反向电流
I01 = 1;//输出0 I11 = 1;
PH2 = 1;//PH2为1 则B线圈为正向电流
I02 = 0;//以最大电流输出
I12 = 0;
delay(speed);//B PH1 = 1;
//PH1为1 则A线圈为
正向电流
I01 = 0;
//以最大电流输出
I11 = 0;
PH2 = 1;//PH2为1 则B线圈为正
向电流
I02 = 1;//输出0 I12 = 1;
delay(speed);
PH1 = 1;
//PH1为1 则A线圈为正向电流
I01 = 1;I11 = 1;
PH2 = 0;
//PH2为0 则B线圈为反向电流
I02 = 0;I12 = 0;delay(speed);}
void delay(int time){
int i,j;
for(j=0;j <= time;j++)
for(i =0;i <= 120;i++);}
void main(){
while(1)
{
Go();//步进电机运行
} }
单片机实验报告
三、独立按键控制LED实验
1.基本要求
通过编程控制8个独立按键分别控制8个LED灯的开关 2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线图(图一)
图一 图二
4.电路原理图 上图图二 5.程序
#include
P1口
#define uchar unsigned char #define uint unsigned int
void Delayms(unsigned int c);
//延时10ms uchar Key_Scan();void main(void){
unsigned char ledValue, keyNum;
ledValue = 0x01;
while(1)
{
keyNum = Key_Scan();//扫描键
盘
switch(keyNum)
{
case(0xFE):
//返回按
键K1的数据
ledValue = 0x01;
break;
单片机实验报告
case(0xFD):
ledValue = 0x02;
break;case(0xFB):
ledValue = 0x04;
break;case(0xF7):
ledValue = 0x08;
break;case(0xEF):
ledValue = 0x10;
break;case(0xDF):
ledValue = 0x20;
break;case(0xBF):
ledValue = 0x40;
break;case(0x7F):
ledValue = 0x80;
//返回按键K2的数据
//返回按键K3的数据
//返回按键K4的数据
//返回按键K5的数据
//返回按键K6的数据
//返回按键K7的数据
//返回按键K8的数据
break;default:
break;
}
GPIO_LED = ledValue;//点亮LED灯
}
}
uchar Key_Scan(void)//键盘扫描函数 { uchar i,n=0xff;
if(P1==0xff)goto Scan_r;//无键按
下,返回
goto Scan_r;Scan_1:
while(P1!=0xff);//等待键释放
Delayms(10);Scan_r:
return n;}
void Delayms(uint x){
uint n;
for(;x>0;x--)
{
for(n=0;n<123;n++)
{;}
} }
四、矩阵键盘实验
1.基本要求
编程由16个矩阵按键控制数码管显示相应的数值 2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。
3.接线图
单片机实验报告
见下图图一
图一 图二
4.电路原理图
见上图图二 5.程序
#include
uchar ScanKey(void);void Delayms(uint x);main(){ unsigned char ledValue;uchar i;ledValue = 0x01;loop: i = ScanKey();
switch(i)
{ case 0xee:
ledValue = ~0x3F;
break;
case 0xde:
ledValue = ~0x06;
break;
case 0xbe:
ledValue = ~0x5B;
break;
case 0x7e:
ledValue = ~0x4F;
break;
case 0xed:
ledValue = ~0x66;
break;
case 0xdd:
ledValue = ~0x6D;
break;
单片机实验报告
case 0xbd:
ledValue = ~0x7D;
break;
case 0x7d:
ledValue = ~0x07;
break;
case 0xeb:
ledValue = ~0x7F;
break;
case 0xdb:
ledValue = ~0x6F;
break;
case 0xbb:
ledValue = ~0x77;
break;
case 0x7b:
ledValue = ~0x7C;
break;
case 0xe7:
ledValue = ~0x39;
break;
case 0xd7:
ledValue = ~0x5E;
break;
case 0xb7:
ledValue = ~0x79;
break;
case 0x77:
ledValue = ~0x71;
break;
}
GPIO_LED = ledValue;i=0;goto loop;}
void Delayms(uint x){uint n;for(;x > 0;x--)
{ for(n=0;n<123;n++)
{;}
} }
uchar ScanKey(void)//键盘扫描函数 { uchar i,n=0xff;
P1=0xf0;
if(P1==0xf0)goto Scan_r;//无键按下,返回
for(i=0,P1=0xfe;i<4;i++)
{ if((P1&0xf0)!=0xf0)
{ Delayms(10);
if((P1&0xf0)!=0xf0)
{ n=
P1;
goto
Scan_1;}
}
P1=(P1<<1)+1;
//扫描下
一行
} goto Scan_r;Scan_1:
单片机实验报告
P1=0xf0;while((P1&0xf0)!=0xf0);//等待键
释放
Delayms(10);
Scan_r:
P1=0xff;return n;} }
五、静态数码管实验
1.基本要求
编程使数码管显示字符0-F 2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线框图(图一)
图一
单片机实验报告
图二
4.电路原理图
见上图图二 5.程序
#include
{~0x3F,~0x06,~0x5B,~0x4F,~0x66,~0x6D, ~0x7D,~0x07,~0x7F,~0x6F,~0x77,~0x7C,~0x39,~0x5E,~0x79,~0x71};main(){
unsigned int LedNumVal;//定义变量 while(1)
{
// 将字模送到P0口显示
LedNumVal++;
P0 = LED7Code[LedNumVal%16];
Delayms(1000);
//调用延时程序
}
}
单片机实验报告
void Delayms(uint x){uint n;for(;x > 0;x--)
{ for(n=0;n<123;n++)
{;}
} }
六、动态数码管实验
1.基本要求
编程实现8个数码管的动态扫描。通过P22、P23、P24控制3-8译码器来对数码管进行位选,通过P0口经过573的驱动控制数码管的段选,通过P13控制573的使能端,为低电平时573才会有输出。2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线图(图一)
图一 图二
单片机实验报告
图三
4.电路原理图
见上图图
二、图三 5.程序
#define uint unsigned int void Dsplay();void Delayms(uint x);uchar mDS[6];uchar code cDsCode[]=
{0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xf8,0x80,0x90};
void main(){ uchar i;
for(i=0;i<6;i++)mDS[i]=i+1;
loop:
Dsplay();
goto loop;}
void Dsplay()//动态扫描显示
{uchar i;
for(i=0,P2=0x01;i<6;i++)
{ P1=cDsCode[mDS[i]];//输出段
Delayms(1000);
P2=P2<<1;
//选通下一位
}
P2=0x00;
//关闭位选通 }
void Delayms(uint x){uint n;for(;x > 0;x--)
{ for(n=0;n<123;n++)
{;}
} }
七、NE555脉冲发生器实验(定时/计数器)
1.基本要求
2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线图
4.电路原理图
5.程序
#include
CYMOMETER
”};uchar code EN_CHAR2[16]={“FREQ:
HZ”};
单片机实验报告
void TIMER_Configuration();//初始化定时器 ulong Freq;
//用来存放要显示的频率值 ulong TimeCount;//用于计算1S钟的
void main(){ uchar i, freqValue[6];
LcdInit();TIMER_Configuration();for(i=0;i<16;i++){
LcdWriteData(EN_CHAR1[i]);}
LcdWriteCom(0xc0);//第二行显示
for(i=0;i<16;i++){
LcdWriteData(EN_CHAR2[i]);}
while(1){
if(TR0==0)
//当计数器停下的时候,表明计数完毕
{
Freq = Freq + TL1;
//读取TL的值
Freq = Freq +(TH1 * 256);//读取TH的值
LcdWriteCom(0xc8);
//--求频率的个十百千万十万位--//
freqValue[0]='0'+Freq%1000000/100000;
freqValue[1]='0'+Freq%100000/10000;
freqValue[2]='0'+Freq%10000/1000;
freqValue[3]='0'+Freq%1000/100;
freqValue[4]='0'+Freq%100/10;
freqValue[5]='0'+Freq%10;
for(i=0;i<5;i++)//从最高位开始查找不为0的数开始显示(最低位为0显示0)
{
if(freqValue[i]==0x30)
{
freqValue[i]=0x20;//若为0则赋值空格键
}
else
单片机实验报告
{
break;
}
}
for(i=0;i<6;i++)
{
LcdWriteData(freqValue[i]);
}
Freq=0;//将计算的频率清零
TH1=0;//将计数器的值清零
TL1=0;
TR0=1;//开启定时器
TR1=1;//开启计数器
} } }
void TIMER_Configuration(){ TMOD=0x51;TH0=0x3C;TL0=0xB0;ET0=1;ET1=1;EA=1;TR0=1;TR1=1;} void Timer0()interrupt 1 { TimeCount++;if(TimeCount==20)//计时到1S {
TR0=0;
TR1=0;
TimeCount=0;
}
//--12MHZ设置定时50ms的初值--// TH0=0x3C;TL0=0xB0;} void Timer1()interrupt 3 {
单片机实验报告
//--进入一次中断,表明计数到了65536--// Freq=Freq+65536;
}
#include“lcd.h”
void Lcd1602_Delay1ms(uint c)
//误差 0us {
uchar a,b;for(;c>0;c--){
for(b=199;b>0;b--)
{
for(a=1;a>0;a--);
}
}
} #ifndef LCD1602_4PINS //当没有定义这个LCD1602_4PINS时 void LcdWriteCom(uchar com)
//写入命令 { LCD1602_E = 0;
//使能
LCD1602_RS = 0;
//选择发送命令
LCD1602_RW = 0;
//选择写入
LCD1602_DATAPINS = com;
//放入命令
Lcd1602_Delay1ms(1);//等待数据稳定
LCD1602_E = 1;
//写入时序
Lcd1602_Delay1ms(5);
//保持时间
LCD1602_E = 0;} #else
void LcdWriteCom(uchar com)
//写入命令 { LCD1602_E = 0;//使能清零
LCD1602_RS = 0;//选择写入命令
LCD1602_RW = 0;//选择写入
LCD1602_DATAPINS = com;// Lcd1602_Delay1ms(1);LCD1602_E = 1;//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;Lcd1602_Delay1ms(1);
单片机实验报告
LCD1602_DATAPINS = com << 4;//发送低四位
Lcd1602_Delay1ms(1);
LCD1602_E = 1;//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;} #endif #ifndef LCD1602_4PINS
void LcdWriteData(uchar dat)
//写入数据 { LCD1602_E = 0;//使能清零
LCD1602_RS = 1;//选择输入数据
LCD1602_RW = 0;//选择写入
LCD1602_DATAPINS = dat;//写入数据
Lcd1602_Delay1ms(1);
LCD1602_E = 1;
//写入时序
Lcd1602_Delay1ms(5);
//保持时间
LCD1602_E = 0;} #else void LcdWriteData(uchar dat)
//写入数据 { LCD1602_E = 0;//使能清零
LCD1602_RS = 1;
//选择写入数据
LCD1602_RW = 0;
//选择写入
LCD1602_DATAPINS = dat;
Lcd1602_Delay1ms(1);LCD1602_E = 1;//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;LCD1602_DATAPINS = dat << 4;//写入低四位
Lcd1602_Delay1ms(1);LCD1602_E = 1;//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;} #endif #ifndef LCD1602_4PINS void LcdInit()
//LCD初始化子程序 { LcdWriteCom(0x38);//开显示
单片机实验报告
LcdWriteCom(0x0c);//开显示不显示光标
LcdWriteCom(0x06);//写一个指针加1 LcdWriteCom(0x01);//清屏
LcdWriteCom(0x80);//设置数据指针起点 } #else void LcdInit()
//LCD初始化子程序 { LcdWriteCom(0x32);//将8位总线转为4位总线
LcdWriteCom(0x28);//在四位线下的初始化
LcdWriteCom(0x0c);//开显示不显示光标
LcdWriteCom(0x06);//写一个指针加1 LcdWriteCom(0x01);//清屏
LcdWriteCom(0x80);//设置数据指针起点 } #endif
八、RS232串口通信实验(接收与发送)
1.基本要求
a.通过实验了解串口的基本原理及使用,理解并掌握对串口进行初始化; b.使用串口调试助手(Baud 9600、数据位
8、停止位
1、效验位无)做为上位机来做收发试验;
c.利用串口调试助手中字符串输入进行数据发送,接受窗口显示收到的数据。2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线图
单片机实验报告
4.电路原理图
5.程序
#include
LcdWriteData(ChCode[i]);} UsartConfiguration();while(1){
if(RI == 1)
//查看是否接收到数据
{
receiveData = SBUF;//读取数据
单片机实验报告
RI = 0;
//清除标志位
LcdWriteCom(0xC0);
LcdWriteData('0' +(receiveData / 100));
// 百位
LcdWriteData('0' +(receiveData % 100 / 10));// 十位
LcdWriteData('0' +(receiveData % 10));
// 个位
} } } void UsartConfiguration(){ SCON=0X50;
//设置为工作方式1 TMOD=0X20;//设置计数器工作方式2 PCON=0X80;
//波特率加倍
TH1=0XF3;
//计数器初始值设置,注意波特率是4800的TL1=0XF3;TR1=1;
//打开计数器 }
#include“lcd.h”
void Lcd1602_Delay1ms(uint c)
//误差 0us {
uchar a,b;for(;c>0;c--){
for(b=199;b>0;b--)
{
for(a=1;a>0;a--);
}
}
} #ifndef LCD1602_4PINS //当没有定义这个LCD1602_4PINS时 void LcdWriteCom(uchar com)
//写入命令 { LCD1602_E = 0;
//使能
LCD1602_RS = 0;
//选择发送命令
LCD1602_RW = 0;
//选择写入
LCD1602_DATAPINS = com;
//放入命令
Lcd1602_Delay1ms(1);//等待数据稳定
LCD1602_E = 1;
//写入时序
单片机实验报告
Lcd1602_Delay1ms(5);
//保持时间
LCD1602_E = 0;} #else
void LcdWriteCom(uchar com)
//写入命令 { LCD1602_E = 0;//使能清零
LCD1602_RS = 0;//选择写入命令
LCD1602_RW = 0;//选择写入
LCD1602_DATAPINS = com;Lcd1602_Delay1ms(1);LCD1602_E = 1;//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;Lcd1602_Delay1ms(1);LCD1602_DATAPINS = com << 4;//发送低四位
Lcd1602_Delay1ms(1);LCD1602_E = 1;//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;} #endif
#ifndef LCD1602_4PINS
void LcdWriteData(uchar dat)
//写入数据 { LCD1602_E = 0;//使能清零
LCD1602_RS = 1;//选择输入数据
LCD1602_RW = 0;//选择写入
LCD1602_DATAPINS = dat;//写入数据
Lcd1602_Delay1ms(1);LCD1602_E = 1;
//写入时序
Lcd1602_Delay1ms(5);
//保持时间
LCD1602_E = 0;} #else void LcdWriteData(uchar dat)
//写入数据 { LCD1602_E = 0;
//使能清零
LCD1602_RS = 1;
//选择写入数据
LCD1602_RW = 0;//选择写入
LCD1602_DATAPINS = dat;
Lcd1602_Delay1ms(1);LCD1602_E = 1;
//写入时序
Lcd1602_Delay1ms(5);
单片机实验报告
LCD1602_E = 0;LCD1602_DATAPINS = dat << 4;//写入低四位
Lcd1602_Delay1ms(1);LCD1602_E = 1;
//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;} #endif
#ifndef LCD1602_4PINS void LcdInit()
//LCD初始化子程序 { LcdWriteCom(0x38);//开显示
LcdWriteCom(0x0c);//开显示不显示光标
LcdWriteCom(0x06);//写一个指针加1 LcdWriteCom(0x01);//清屏
LcdWriteCom(0x80);//设置数据指针起点 } #else void LcdInit()
//LCD初始化子程序 { LcdWriteCom(0x32);//将8位总线转为4位总线
LcdWriteCom(0x28);//在四位线下的初始化
LcdWriteCom(0x0c);//开显示不显示光标
LcdWriteCom(0x06);//写一个指针加1 LcdWriteCom(0x01);//清屏
LcdWriteCom(0x80);//设置数据指针起点 } #endif
单片机实验报告
第六章 收获体会
本次微控制器综合设计基本上使用了所选微控制器的所有资源,进一步熟悉和加深了对中断、定时器和串行通信的理解和使用。我觉得软件实验就是让我们初学者熟悉keil的使用,然后复习下汇编的思想和掌握程序的流程,所以软件实验可以很快的完成,并且慢慢熟悉调试的强大功能。硬件设计中,仿真让我很有感触,感觉蛮好玩的,可以摒弃麻烦的实验硬件自己在寝室玩而且不受硬件状态的限制,即便出错了也不会损坏。当然更重要的是这种好习惯,仿真完后再去在实验板上验证会比直接要来的确切而且便捷,至少不要老是去插拔线。在做实验中在同学指导下我试用C语言来编写程序,确实发现比汇编语言容易编写也容易理解,以前的实验还是有参考资料的习惯,现在什么都开始自己写感觉还是很有成就感的,当然这是基于程序本身就那么几行很容易编写,也不是说参考不好。总而言之,这学期的单片机实验还是收获颇丰的。相信在以后的实验学习实践工作中都会有个潜移默化的作用的。
第五篇:单片机实验报告
单片机实验报告
一、实验目的
1.熟练使用Keil、Protues两款软件 2.通过上机操作,增强个人动手实践能力 3.加深对理论知识的理解
4.培养运用汇编语言进行初步编写程序的能力
二、实验内容
1.将片外RAM3050-306FH中数据转移至片内70-8FH中。
要求:可以从Keil或Protues上看到RAM的数据转移结果。2.设计一个外部中断触发流水灯系统:当外部中断来临时,启动流水灯,即令P2口的LED轮流循环点亮。
要求:开发板或Prrotues演示
3.将片内存储器80H中存放的BCD码转换为ASCII码,要求使用表格查询技术。
要求:在Keil或Protues上看到数据转换结果。
4.各使用中断方式和查询方式设计一个方波发生器,频率为50HZ。
要求:Protues使软件间示波器显示方波。
三、实验程序
1.将片外RAM3050-306FH中数据转移至片内70-8FH中
ORG 0000H AJMP MAIN 上电,转向主程序
ORG 0030H 主程序入口
MAIN: MOV DPTR,#3050H 数据指针指向地址3050H MOV A,#04H 将立即数04H送A寄存器
MOV R0,#20H NEXT: MOVX @DPTR,A INC DPTR 数据指针DPTR自加一
DJNZ R0,NEXT 判断是否跳转到NEXT或继续向下执行
MOV DPTR,#3050H MOV R0,#70H MOV R2,#20H NEXT1: MOVX A,@DPTR MOV @R0,A INC DPTR INC R0 DJNZ R2,NEXT1
SJMP $ 等待
END 2.设计一个外部中断触发流水灯系统:当外部中断来临时,启动流水灯,即令P2口的LED轮流循环点亮 ORG 0000H SJMP MAIN 上电,转向主程序
ORG 0003H 外部中断0向量入口
AJMP INSER ORG 0030H 主程序入口
MAIN: SETB EX0 SETB IT0
SETB EA CPUHERE: SJMP HERE ORG 0200H INSER: MOV R2,#08H MOV A,#01H NEXT: MOV P2,A LCALL DELAY RL A DJNZ R2,NEXT NEXT或继续向下执行
RETI DELAY: MOV R3,#0FFH DEL2: MOV R4,#0FFH DEL1: NOP
允许外部中断0中断 选择边沿触发方式 开中断 等待中断 设置循环次数 赋初值,设置高电平亮 将初值送往P2口 延时 左移一位
判断循环次数,是否跳转到中断返回 延时程序 DJNZ R4,DEL1 DJNZ R3,DEL2 RET END 3.将片内存储器80H中存放的BCD码转换为ASCII码,要求使用表格查询技术 ORG 0000H LJMP MAIN ORG 0030H主程序起始地址 MAIN: MOV 80H,#05H 将立即数50H转送内存单元80H MOV A,80H 将内存单元80H中的内容送寄存器A MOV DPTR,#TAB MOVC A,@A+DPTR A寄存器内容加指针偏移量后送A寄存器 MOV 80H,A RET TAB: DB 30H,31H,32H,33H,34H DB 35H,36H,37H,38H,39H 4.1中断方式产生50HZ方波
ORG 0000H
AJMP MAIN
ORG 0030H 主程序入口 MAIN: MOV TMOD,#10H 设置定时器工作模式为模式1 MOV TH1,#0D8H 装入T1计数初值
MOV TL1,#0F0H
SETB ET1 开中断
SETB EA CPU开中断
SETB TR1 启动定时器T1 HERE: SJMP HERE 等待中断 ORG 001BH T1中断向量地址
CLR TF1 将TF1清零
CPL P2.0 P2.0取反输出
MOV TH1,#0D8H 重装初值
MOV TH0,#0F0H
RETI;中断返回
END 4.2 查询方式产生50HZ方波
ORG 0000H
AJMP MAIN
ORG 0030H 主程序入口
MAIN: MOV TMOD,#10H 设置定时器的工作模式为模式1 SETB TR1 启动定时器T1 LOOP: MOV TH1,#0D8H 装入T1计数初值
MOV TH0,#0F0H JNB TF1,$ T1没有溢出则等待
CLR TF1
产生溢出,清标志位
CPL P2.0 P2.0取反输出
SJMP LOOP 循环
END
四、实验结果截图
1.2
3.4.1
4.2