基于质谱蛋白质鉴定,第1节:蛋白质鉴定技术简介[大全5篇]

时间:2020-10-31 12:20:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《基于质谱蛋白质鉴定,第1节:蛋白质鉴定技术简介》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《基于质谱蛋白质鉴定,第1节:蛋白质鉴定技术简介》。

第一篇:基于质谱蛋白质鉴定,第1节:蛋白质鉴定技术简介

基于质谱的蛋白质鉴定,第 1 节:蛋白质鉴定技术简介

蛋白质组学(Proteomics)的分析一般可分为四类分析方法:(i)快速而简单的分析方法,用于从复杂混合物中纯化少量蛋白质;(ii)快速而灵敏的方法,可从目标蛋白质中获取少量但足够的结构信息(iii)获取拓展的蛋白质或 DNA 序列数据库,以及(iv)能够通过计算机算法将DNA 序列信息与各种类型的蛋白质结构信息结合起来,例如 N 末端蛋白质或内部肽序列,氨基酸组成,肽质量指纹图,MS 片段图谱或所选肽的序列标签。

高分辨率凝胶电泳(2-D 凝胶电泳是目前最有效的蛋白质分离方法),自 70 年代后期就已经被用作分析工具。但一直到蛋白质样品制备方法和测序工具得到了相当大的改进之后,二维凝胶电泳才发展成为制备性的蛋白质纯化程序。蛋白质能够通过电印迹法转到化学惰性的膜上,可能是蛋白质微量样品制备中最重要的步骤之一,因为它将高分辨率凝胶电泳(纯化步骤)和气体色谱(分析步骤)直接联系在了一起。电印迹法又可以结合基于膜的埃德曼化学法形成 N 末端或内部肽序列。这种组合技术现在通常称为微测序,因为与早期技术相比,它使样品制备的灵敏度提高了至少 100 倍,从而可以分析低至 pmole 或 μg 级别的蛋白质。这项技术在 80 年代后期开始流行,当时聚二氟乙烯(PVDF)印迹膜已经成功商业化。同一时期,第一个 2-D 凝胶蛋白序列数据库(实际蛋白质组学的祖先)也诞生了。但是,由于当时已知的蛋白质或 DNA序列数量很少,这些数据库中的信息非常有限。因此,微测序法更常被用作 cDNA 克隆的起始点,而不是用于通过同源性进行蛋白质鉴定。

随着蛋白质,DNA 和表达序列标签(EST)等数据库信息在 90 年代以来的迅速增长。从头测序变得不再那么常见,而重测序或通过比较法进行测序变得更加重要。这是生物质谱(MS)技术进入测序领域的正确时机。质谱 MS 是非常快速灵敏的技术方法,即使到了现在,MS 技术的分析速度和灵敏度仍未达到其极限。MS 技术的两大主要领域是:基质辅助激光解吸电离/飞行时间(MALDI-TOF)质谱和电喷雾电离(ESI)质谱,这两种方法的区别在于其电离分析物的方法,相关的样品制备程序也不同。因此 ESI 主要与液相色谱仪器相结合,而 MALDI-TOF更适合于高通量检测,更适合于大规模的蛋白质组学分析。随着快速蛋白质鉴定技术的发展,对高度可重复的,可比较的,大规模二维凝胶电泳方法的需求稳步增长,也通过引入可固定的pH 梯度法得以实现。

最后,还需要将所有的数据结合起来。氨基酸序列,肽质量指纹或肽 MS 片段数据需要被翻译为带注释或无注释基因组序列数据库中的 DNA 序列。每个 DNA 序列可以从两端和三个不同的开放阅读框进行读取。在某些表达序列标签(EST)中,经常会出现错误,使得搜索变得困难。而计算机算法可以成功地解决遇到的这些挑战,可以匹配到最接近MS 分析获取的结构信息对应的蛋白质或 DNA 序列片段。

基于质谱的蛋白质鉴定系列总结,将主要集中在两个部分:(i)如何从凝胶纯化的蛋白质样品中获得必要的结构信息,(ii)以及如何使用此类信息鉴定蛋白质。第 2 节简要介绍了基于常规Edman 的 N 末端或内部肽测序的方法。

在第二部分中,我们重点介绍基于 MALDI-TOF 的蛋白质分析方法,并简要回顾将 MS 生成的数据与数据库中存储的序列进行匹配的算法。

本文由百泰派克生物科技整理编辑。未经许可,不得转载。

北京百泰派克公司采用高分辨率质谱平台技术,包括 Thermo Fisher 的 Q Exactive 质谱仪,LTQ Orbitrap Velos 质谱仪,以及 AB SCIEX 的 6500 Q TRAP 质谱仪,结合 Nano-LC 高通量液相色谱技术,能够对 SDS-PAGE 蛋白条带、2D 蛋白胶点等样品中的蛋白质进行高效精准鉴定。胶条、胶点蛋白质谱鉴定服务可保证 100%的鉴定率,否则不收任何费用。

文献参考:Protein identification methods in proteomics.Electrophoresis, 2000.

第二篇:可溶性还原糖脂肪蛋白质的鉴定

学案六实验一可溶性还原糖脂肪蛋白质的鉴定

一、解读两纲

1.识记鉴定实验所用的材料,懂得选材的要求。

2.掌握实验原理、步骤,理解实验目的、方法。

3.学会制备生物组织样液,正确选用鉴定试剂,并能按规范的要求操作,独立完成鉴定工作。

4.明确观察对象,正确说出鉴定过程中样液的颜色变化,并能用准确的语言解释实验现象,作出实验结论。

5.能熟练制作徒手切片,临时装片和使用低倍显微镜,了解高倍显微镜的使用方法。

6.具备验证相关生物学事实的能力,并能对实验现象和结果进行解释、分析和处理;能对一些生物学问题进行初步的探究性研究。

二、高考热线

1.题型以选择题为主,也可能以简答题出现,重点是以对比的方式考查相关实验的异同点。

2.以教材实验为依据,设置实验设计题是今后考查的重点,如“设计实验证明淀粉酶是蛋白质”,就是依据教材中的实验3的原理和步骤。

三、学法指点

1.运用对比的方法认识三种物质的鉴定原理、过程及注意事项。

2.对比三种物质鉴定过程中的相同点和不同点,重点掌握试剂使用上的区别。

3.根据所学的原理鉴定类似物质,设计相应的实验程序。

四、教材梳理

(一)实验原理

生物组织中含有可溶性还原糖(如_______、_______、________)、脂肪、蛋白质等化学成分,可分别与某些化学试剂作用产生特定的_____________。

(1)可溶性还原糖+__________试剂—→砖红色沉淀

可溶性还原糖+班氏糖定性试剂—→__________

(2)脂肪+__________________染液—→染成橘黄色

脂肪+苏丹Ⅳ染液———————→染成______

(3)蛋白质+________________试剂—→溶液呈紫色

(二)实验目的1.初步掌握鉴定可溶性还原糖、脂肪、蛋白质的基本方法。

(三)实验材料

(四)方法步骤

1.可溶性还原糖的鉴定

(1)制备组织样液:苹果切块、研磨、________。

(2)鉴定组织样液:1 支试管+2mL_____________+2mL________________,振荡试管,(溶液_______色?),________2min左右,观察溶液颜色变化。(________色→棕色→_________色)。

2.脂肪的鉴定

(1)切片制作:用花生子叶作徒手切片。

(2)染色:1块载玻片+切片+ 3滴________染液,3min后吸去染液+ 2滴50%________溶液去浮色,吸去后+ 2滴__________,盖盖玻片。

(3)镜检鉴定:先用低倍镜观察,找到子叶最薄处,再用高倍镜观察。(圆形的脂肪颗粒为_____色)。

3.蛋白质的鉴定

(1)制备样液:大豆切片、________、_______。

(2)鉴定:1 支试管+2mL黄豆组织样液+2mL________________,振荡试管(溶液_____色),+4滴______________,________试管,观察溶液颜色变化。(______色→______色→_______色)。

(五)结论与讨论

1.结论:从斐林试剂与苹果样液作用、苏丹III染液与花生种子作用、双缩脲试剂与大豆样液作用

1的颜色变化可以得出:___________________________________________________________。

2.讨论鉴定依据。因为某些化学试剂与生物组织中的有关_________发生一定的化学反应,产生有固定颜色的新化合物。故可根据待检物与某些化学试剂反应的____________,如橘黄色、_________色、______色等,鉴定生物组织中含有_______、可溶还原糖和___________。

五、疑难精析

1.生物组织中的还原糖是指分子结构中含有还原性基团(如游离醛基或酮基)的糖,如葡萄糖、麦芽糖、果糖,淀粉、蔗糖不具有还原性,斐林试剂只能检验可溶性还原糖的存在,而不能鉴定可溶性非还原糖或不溶性糖。

2.可溶性还原糖鉴定实验的选材原则。选用可溶性还原糖含量较高的生物组织,而且组织的颜色较浅,或近于白色。常用的植物组织是:苹果、梨、白色甘蓝叶、白萝卜。双子叶植物光合作用的主要产物为淀粉,其叶不理想。有些单子叶植物,如韭菜、鸢尾等,其叶内含有大量的可溶性单糖,但由于叶片中叶绿素颜色较深,影响鉴定时实验现象的观察,也不宜作实验材料。

3.可溶性还原糖鉴定实验的关键性的步骤在于斐林试剂现用现配及用量。很不稳定,故应将组成斐林试剂的甲液(0.1g/mL的NaOH溶液)和乙液(0.05g/mL的CuS04溶液)分别配制、储存;使用时,再临时配制,将4~5滴乙液滴入2mL甲液中,配完混合均匀后[得到淡蓝色的Cu(OH)2沉淀的悬浊液]立即使用。如果过早混合会产生Cu(OH)2沉淀,加入到组织样液中并加热时会产生黑色CuO沉淀。而临时混合所得斐林试剂立即用于实验,即可使新制的Cu(OH)2作氧化剂与可溶性还原糖发生氧化-还原反应,生成砖红色的Cu2O沉淀。溶液的变化过程:淡蓝色→棕色→砖红色沉淀。

4.在可溶性还原糖的鉴定中,在对盛有组织样液与斐林试剂混合物的试管直接用酒精灯加热易破,因为试管受热不均匀,若要避免此现象产生应改用水浴加热。此时试管底部不要触及烧杯底部,试管口不要朝向实验者,以免溶液沸腾时冲出试管造成烫伤。

5.双缩脲试剂并不是双缩脲分子。所谓双缩脲是由两分子尿素经脱氨缩合而成的化合物。该化合物在碱性溶液中能与CuSO4反应产生紫色络合物,此反应称双缩脲反应。蛋白质分子中含有许多与双缩脲结构相似的肽键,因此也能起双缩脲反应。特别要提醒学生的是实验桌上两瓶不同浓度的CuS04溶液,避免拿错。

6.蛋白质鉴定实验中,最好选用富含蛋白质的生物组织,植物材料常用的是大豆,动物材料常用的是鸡蛋。其关键性步骤在于先加双缩脲试剂A(0.1g/mLNaOH溶液)再加双缩脲试剂B(0.01g/mLCuSO4溶液)。如果用鸡蛋白稀释液,则浓度不宜过大,以免实验后粘住试管壁,不易洗净。

7.脂肪的鉴定实验中,实验材料最好选用富含脂肪的种子,其关键性步骤在于子叶要削成理想薄片。为了作好徒手切片,种子浸泡的时间不宜过长。也可改成刮取种子子叶泥制作临时装片,易做,效果又好。

8.填表比较实验1和3:

9.本实验为验证性实验,也用注意对照。如在鉴定可溶性还原糖和蛋白质时,鉴定之前需留一部分样液,以便与鉴定后样液颜色变化作对比。

例1 用下列实验材料做特定实验,从理论上讲能否成功?说明依据的道理。

(1)用韭菜叶片做可溶性还原糖的鉴定实验;

(2)用蓖麻种子做脂肪鉴定实验;

(3)用卵白做蛋白质鉴定实验。

[解析] 此题是要求根据课本实验原理进行拓展和应用,这也是近几年高考的一个趋势。韭菜在进行光合作用时并不能将光合作用的产物葡萄糖转变成淀粉,因此叶内含有大量的可溶性还原糖,但是,由于叶片中叶绿素含量较多,绿色较深,对于鉴定时的颜色反应起着掩盖作用,导致实验现象不明显,因此不宜用这些单子叶植物作此实验材料;后两个实验材料从理论上说是可行的。

答案:(1)用韭菜叶片做还原糖实验不能成功,因为叶片内虽然含有大量可溶性还原糖,但叶片中叶绿素含量较多,颜色较深,对鉴定时的颜色反应起着遮盖作用;(2)若用蓖麻种子做脂肪鉴定实验,从理论上说可以成功,因为该种子含较多的脂肪,种子也比较大,便于进行徒手切片;(3)由于卵白中含有大量的蛋白质,从理论上讲做蛋白质鉴定实验是会成功的。

六、趁热打铁

(一)选择题

1.将面团包在纱布中在清水中搓洗,鉴定黏留在纱布上的黏稠物质和洗出的白浆用的试剂分别是

()

A.碘液、苏丹Ⅲ溶液B.双缩脲试剂、碘液

C.亚甲基蓝溶液、苏丹ⅢD.碘液、斐林试剂

2.蛋白质的鉴定时,事先留出一些黄豆组织样液的目的是()

A.与反应后混合液的颜色做对比B.失败后重做一遍

C.鉴定可溶性还原糖用D.留下次实验用

3.用斐林试剂鉴定可溶性还原糖时,溶液的颜色变化过程为()

A.浅蓝色→棕色→砖红色B.无色→浅蓝色→棕色

C.砖红色→浅蓝色→棕色D.棕色→绿色→无色

4.在鉴定可溶性糖的实验中,对试管中的溶液进行加热时,操作不正确的是()

A.将这支试管放进盛开水的大烧杯中B.试管底部不要触及烧杯底部

C.试管口不要朝向实验者D.试管底部紧贴烧杯底部

5.现有如下实验材料:①西瓜汁②菜籽③豆浆④草莓果实⑤花生仁 ⑥鸡蛋清,它们与斐林试剂作用呈砖红色、与苏丹Ⅲ试剂作用呈橘黄色、与双缩脲试剂作用呈紫色的实验材料分别为()

A.①④、②⑤、⑤⑥B.①④、②⑤、③⑥

C.①④、②③、⑤⑥D.②④、③⑤、③⑥

6.青苹果汁遇碘液显兰色,熟苹果汁能与斐林试剂作用产生砖红色沉淀,这说明()

A.青苹果汁含有淀粉,不含有糖类B.熟苹果汁含有糖类,不含有淀粉

C.苹果成熟时,淀粉水解成单糖D.苹果成熟时,单糖合成淀粉

7.下列关于生物组织中三大有机物的鉴定操作步骤,正确的是()

A.用于鉴定可溶性还原糖的斐林试剂,可直接用于蛋白质的鉴定

B.脂肪的鉴定需要用显微镜才能看到被染成橘黄色脂肪滴

C.鉴定可溶性还原糖时,要加入斐林试剂甲液摇均后再加入乙液

D.用于鉴定蛋白质的双缩脲试剂A液与B液要混合均匀后,再加入含样品的试管中,且必须现配现用

8.某同学在显微镜下观察被苏丹Ⅲ染液染色后的花生种子子叶切片,当转动细准焦螺旋调焦距时,有一部分细胞看得很清楚,另一部分细胞较模糊,这是由于()

A.反光镜没调好B.标本切得厚薄不均匀

C.显微镜物镜损坏D.细准焦螺旋未调好

9.可溶性还原糖的鉴定中,制备生物组织样液时加入少许石英砂,其目的是()

A.研磨充分B.防止糖被破坏C.防止反应D.无作用

10.在过氧化氢酶溶液中加入双缩脲试剂,其结果应是()

A.产生气泡B.溶液呈紫色C.溶液呈蓝色D.产生砖红色沉淀

11.双缩脲试剂可以鉴定蛋白质是因为()

A.蛋白质都有肽键B.蛋白质都有氨基酸

C.蛋白质都有羧基D.蛋白质都有氨基

12.(多选)下列物质用斐林试剂检测时可能出现砖红色沉淀的是()

A.葡萄糖B.果糖C.麦芽糖D.淀粉

13.(多选)下列各组中前项为所鉴定的物质,中项为所使用试剂,后项为所产生的颜色。正确的是

()

A.葡萄糖、斐林试剂、橘黄色B.脂肪、苏丹Ⅲ染液、砖红色

C.蛋白质、双缩脲试剂、紫色D.淀粉、碘液、蓝色

二、非选择题

14.做“生物组织中可溶性还原糖、脂肪、蛋白质的鉴定”实验时,需根据实验需要选择不同的实验材料。请根据下表所列各种材料回答问题:

(1)其中适合于鉴定糖的是_______,理由是_____________________________________________。

(2)小麦种子不如花生种子更适合用来鉴定脂肪,这是因为________________________________。但小麦种子中糖类化合物___________含量很高,却不适合用来鉴定________,这是因为__________ __________________________________。

15.在做“可溶性还原糖的鉴定”实验时:

(1)所用斐林试剂甲液的质量浓度为____g/mL,乙液的质量浓度为____g/mL,如何用这两种溶液配制斐林试剂(简要步骤)__________________________________________________。

(2)斐林试剂甲液与乙液混合后产生_________色沉淀,它与葡萄糖在加热条件下发生化学反应,产生_________色沉淀。

(3)请解释为什么斐林试剂要现配现用,不能放置太久____________________________________。

(4)做此实验时,试管直接用酒精灯加热易破,其原因是____________,若要避免此现象产生应改用_________________。

16.用苹果和黄豆做实验材料时,都需将其研磨碎,在研磨时加入少量石英砂的作用是___________;在研磨后二者都需要对研磨液进行过滤,过滤的目的是除去_________________,在过滤中为什么只用一层纱布,不用滤纸?______________________________________________________________________。

17.(设计实验,论证结论)请根据下列材料和实验原理,设计一个证明淀粉酶是蛋白质的实验。

(1)实验器材:鸡蛋、人的唾液、清水、0.1g/mLNaOH溶液、0.01g/mLCuSO4溶液、小烧杯、玻璃棒、试管和滴瓶。

(2)实验原理:鸡蛋的蛋清主要成分是蛋白质,在碱性条件下,蛋白质与CuSO4反应产生紫色物质,即双缩脲反应。如通过实验再证明淀粉酶能发生双缩脲反应,即可证明淀粉酶是蛋白质。

(3)实验步骤:

第一步:制备蛋清液。取鸡蛋一个,打破蛋壳(不破坏蛋黄),取少许蛋清注入小烧杯中,加入30mL清水,用玻璃棒搅拌均匀备用。

第二步:_____________________________________________________________________________ _________________________________________________________________________________________。

第三步:_____________________________________________________________________________ _________________________________________________________________________________________。

(4)实验结果:_______________________________________________________________________。

(5)结果分析:_______________________________________________________________________ _________________________________________________________________________________________。

第三篇:蛋白质-配基相互作用的鉴定

10.蛋白质-配基相互作用的鉴定

Timothy Palzkill 张晓君、毛跃建、李旻、张晶、赵琴丽、徐灵筠译;申剑初校;张晓君修校

10.1 前言

基因组测序计划已鉴定了大量的以前未知的基因。然而,甚至对于已被深入研究的模式生物,如大肠杆菌和酿酒酵母,大约三分之一的基因的功能仍未知。了解基因组中所有基因的功能的挑战促进了高通量实验技术的发展,并因此推动了大规模描绘蛋白质-蛋白质以及蛋白质-配基的相互作用。

蛋白质-蛋白质相互作用在功能性细胞内扮演着重要的角色。在基因组规模上确定蛋白质的相互作用可建立蛋白质相互作用网络,这种网络可为基因产物的功能提供重要的线索。例如,如果一个未知功能的蛋白可与已知功能的一族蛋白相互作用,说明这个蛋白与它们具有相同的功能(Schwikowski等,2000)。蛋白质-蛋白质相互作用的鉴定可以通过提供它们与复合体的结合模式为生物学过程的机制的了解提供新观点。例如,即使知道一类蛋白参与某个生物学过程,我们也不知道这些蛋白是否或怎样与复合体相互作用以实现它们的功能。蛋白质-蛋白质作用谱图提供了蛋白质相互作用的详细信息因此提供复合体组织的精确信息。

本章综述了在基因组规模上蛋白质相互作用的研究方法。包括如酵母双杂交系统的在体方法和一些体外方法,如质谱、噬菌体展示和蛋白芯片等。10.2 开放阅读框的高通量克隆

测定基因组规模的蛋白功能的功能基因组研究依赖于开放阅读框的高效克隆。开放阅读框必须被克隆到可以大规模表达或便利地对编码蛋白进行功能性分析的质粒载体。由于所有蛋白不可能在一个系统中得到一样好的表达,对所感兴趣的基因应构建到多个蛋白表达系统。例如,用各种细菌的启动子测定可以确定哪个系统最适合表达。此外,对于功能分析,将感兴趣的基因插入载体用于噬菌体展示、双杂交分析或谷胱苷肽S转移酶(GST)融合。如果我们使用传统的采用限制性内切酶和DNA连接酶的克隆技术,构建这样一套载体所用的时间和费用将是不可想象的。但是,替代的新方法已可以便利地快速克隆PCR产物。10.2.1 λ噬菌体att重组克隆 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 λ噬菌体位点专一重组系统已被用于创建有效的克隆系统。λ噬菌体具有裂解和溶源循环。在溶源循环,噬菌体不复制而将DNA整合到宿主的染色体上(Ptashne,1992)。一旦λ噬菌体感染后,溶源过程马上开始,λDNA环化、Int蛋白启动环状DNA整合入染色体。Int蛋白催化λ噬菌体结合位点(aatP)和E.coli结合位点(aatB)的位点专一的重组。一个称为整合宿主因子(IHF)的E.coli宿主蛋白对λDNA的整合也是必需的(Landy,1989)。整合反应具有高度的序列专一性,没有任何核苷酸的冗余与缺少。这个位点专一的重组并非同源重组,因为attB和attP有很大差异。这个位点有15个碱基对的核心序列5'-GCTTTTTTATACTAA。由于同源的区域很小,在没有Int蛋白时重组无法进行。attB和attP 重组后的位点称为attL和attR(图10.1)(Landy,1989).λ噬菌体DNA 保持为前噬菌体状态直到宿主细胞被损坏(Ptashne,1992)。DNA损伤引发λint和xis基因的表达。Int和Xis表达产物催化细菌染色体上λDNA的剪切。在aatL和aatR位点的剪切产生aatB和aatP位点。剪切反应并非整合反应的简单的逆向反应,除了Int和IHF蛋白还需要Xis蛋白(Landy,1989)。所以,利用适当的重组蛋白可以控制重组反应的方向。

λ重组克隆系统方法就是将两端带有att重组位点的DNA和载体与整合蛋白一起保温使DNA片段插入载体(Hartley等,2000)。这个系统被称为重组克隆(RC)(Hartley等,2000)。此系统可被用于直接将PCR片段克隆到载体而无需DNA连接酶。插入PCR片段的反应是attB+attP>attL+attR,与λ噬菌体插入相似也是被另加的Int和IHF蛋白催化。反应底物是带有attB位点的PCR片段和两端带有attP的选择性标记的质粒(图10.1)。与λ噬菌体插入不同的是,此反应用了两个attB 和两个attP,此外,att位点被突变使attB1只能与attP1而非attP2重组。att位点的改造使得PCR片段可以直接克隆到载体(图10.1)(Hartley等,2000)。

以RC法克隆PCR片段的最后结果是载体带有两端含attL位点的标记基因。此质粒被称为起始克隆(Entry clone),因为它可以通过重组反应来产生各种功能载体(Hartley等,2000)。用于载体转换的反应是attL+attR>attB+attP, 类似于λ噬菌体被Int、Xis和IHF蛋白剪切(Landy,1989)。通过对两种载体和Int、Xis及IHF蛋白的共同温育,起始克隆的基因被转到带转录启动子和蛋白标签的60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 目的载体。该反应不同于λDNA从染色体的切除,因为起始克隆带两个attL位点且目的载体带两个attR位点(Hartley等,2000)。att位点被突变以保证只在attL1和attR1 及attL2与attR2之间发生重组。重组反应通过形成一个复合体来进行,而且最终将形成一个带有感兴趣的基因及启动子和标签序列的目的载体图10.1)。

RC 系统最近被用于几个大规模克隆工程。例如,从Caenorhabditis elegans中克隆基因以酵母双杂交系统构建用于蛋白质表达和分析蛋白质相互作用的载体(walhout等,2000)。到最近为止已用此系统克隆了超过12000个C.elegans的基因(Reboul等,2003)。此外,大于100个人cDNA已用此法克隆创建了一套起始克隆。这些克隆以适合的载体转为GFP融合载体,测定了这些cDNA表达的蛋白的细胞定位(Simpson等,2000)。10.2.2 拓扑异构酶法克隆

痘病毒拓扑异构酶I载体

另一条避免DNA连接酶的克隆途径是拓扑异构酶介导的克隆。此法利用痘病毒DNA拓扑异构酶I以很高的序列专一性切断和连接DNA链(Shuman,1992a,b)。反应时,酶识别5’-CCCTT序列并在末尾的T切开,在断开链的3’磷酸基团与酶分子的酪氨酸残基之间形成共价键(图10.2)。共价复合物可以与带5’羧基并与复合物的尾部互补的异源受体DNA形成重组分子(Shuman,1994)。

拓扑异构酶I克隆利用上述的反应将DNA片段连接到带5’羧基并可与拓扑异构酶共价结合的受体质粒。反应只在有自由的5’羧基的DNA存在时才会发生,这很有利于克隆PCR产物,因为当用不带5’磷酸的引物扩增的产物都不带5’磷酸基团(Shuman,1994)。最近这个方法被用于从酿酒酵母克隆了6035个开放读码框到一个酵母蛋白表达质粒和一个哺乳动物表达载体(Heyman等,1999)。原始的拓扑异构酶克隆方法的缺点是PCR产物可以任意方向插入。克隆系统最近被改进可以对PCR产物进行定向克隆(图10.2)。该系统仅需要在设计引物时在引物的5’末端加入5’CACC。5’CACC序列与质粒-拓扑异构酶复合体的5’端互补,由此控制PCR产物的插入方向(图10.2)。此系统被用于从梅毒病源Treponema pallidum的基因组克隆了99%的开放读码框(McKevitt等,2003)。拓扑异构酶I克隆方法提高了克隆的效率,可以将大量的开放读码框插入到质粒89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 载体。

10.2.3 酵母的在体重组克隆

通过转化克隆

上述的λ重组克隆系统利用体外重组然后转化到E.coli细胞。替代的体内方法利用酵母高效的同源重组机制克隆了大于99%的酿酒酵母基因(~6000)(Uetz等,2000)。这用两步PCR完成,首先,一套大约6000个引物对从酿酒酵母中扩增它的开放读码框,每个正向引物有特定开放读码框的序列和5’端22碱基的所有引物相同的序列,反向引物有特定开放读码框序列和20碱基的共有序列(图10.3)。6000个开放读码框随后被分别扩增得到一套PCR产物。第二套PCR反应引物以第一套PCR所用引物中的共有序列为基础。正向引物取22碱基共有序列,反向引物取20碱基共有序列,另外还带有50碱基与作为受体质粒的酵母载体克隆位点两侧的序列同源的序列(Hudson等,1997;Uetz等,2000)。PCR产物将在两端各带有70碱基的序列,它们与受体载体的克隆位点两侧的70碱基同源。

每个PCR产物与被限制性内切酶在克隆位点切开而线性化的受体载体一起转化到酵母(图10.3)。在PCR产物的两端70碱基的同源序列足以使酵母的同源重组系统将PCR插入到载体中(Hudson等,1997;Ma等1987)。10.2.4 重组克隆系统的优缺点

每个重组克隆方法都是将PCR产物克隆入期望的载体序列的有效手段。拓扑异构酶克隆的主要优点是对扩增每个ORF所用的引物的5’端所需要的额外序列最小。只需要在正向引物5’端加四个碱基即可有效地进行定向克隆,而不需在反向引物添加额外核苷酸。但以λ重组克隆系统克隆PCR产物却需要在正向和反向引物都加25个额外的核苷酸(Hartley等,2000)。

以酵母重组克隆PCR产物的主要优点是简单易行。但是由于需要在PCR产物的两端带有至少50bp的与载体的序列同源的序列,因此需要进行两轮的PCR反应。多轮PCR反应会增加PCR产物的序列发生突变的可能性。此外,第一轮PCR反应的引物在每个ORF之外又额外增加了20到22个碱基序列,这将会增加引物合成的成本。

总之,重组的克隆方法极大地便利了大量的开放读码框的高通量克隆。而这又使下面讨论的功能基因组实验变得可行。118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 10.3 酵母双杂交选择系统

酵母双杂交系统是研究蛋白质相互作用的有力工具。它是基于位点专一的转录激活子的模块特性(Fields和Song,1989)。杂交蛋白由蛋白X 与DNA结合域的融合及蛋白Y与转录激活域的融合组成。如果蛋白X和蛋白Y发生相互作用,将会重建转录因子并导致报告基因的表达(图10.4)。DNA结合域常被称为“诱饵”,而激活域被称为“陷阱”。

数个不同版本的双杂交系统被广泛地使用。大多使用DNA结合域与Gal4转录因子的融合。另一个版本利用将E.coli LexA的DNA结合域融合到感兴趣的蛋白的氨基端来创建‘陷阱’。这个系统需要在报告基因的上游设置一个LexA结合位点。陷阱由Gal4激活域或另外的酸性激活域组成,如E.coli序列的B42。这个陷阱可以与Gal4或LexA的DNA结合域“诱饵”搭配(Brent和Finley,1997)。各种诱饵的常用的报告基因是E.coli的lacZ基因,它编码半乳糖苷酶。Gal4或LexA的结合位点设置于lacZ基因的上游。蛋白的相互作用以激活域与DNA结合域共同激活lacZ基因的转录进行检测(Fields和Song,1989)。基因激活可通过β半乳糖苷酶的产物使克隆在X-Gal平板上显蓝色来检测。

使用双杂交系统的难点在于消除假阳性。假阳性克隆来自于诱饵和陷阱蛋白的非专一的结合所导致的报告基因的转录的激活。例如,任何诱饵蛋白的自我激活转录就会导致假阳性。但自我激活转录可以通过用构建的诱饵克隆筛选报告基因的激活而消除。某些报告系统具有很高的假阳性背景(James等,1996)。为克服这些问题,新版的双杂交系统使用多个表型的报告基因检测基因的激活。在一个新的版本中,使用了HIS3、ADE2和lacZ为报告基因(James等,1996)。此外,此系统利用不同的Gal4启动子,使HIS3处于Gal1的启动子的控制之下,ADE2处于Gal2启动子控制,LacZ处于Gal7启动子控制。蛋白质相互作用以酵母在缺乏组氨酸的平板上的生长来鉴定。假阳性通过用克隆颜色筛选来评定腺嘌呤和lacZ标记来消除(James等,1996)。使用受不同启动子控制的多报告基因可以提供高灵敏度和低假阳性背景值(Brent和Finley,1997;James等,1996)。双杂交法最流行的用途就是从与LexA和Gal4的融合诱饵作用的激活域文库中分离新蛋白。激活域文库可由从插在激活域C末端的cDNA或基因组DNA片段组成。新的相互作用蛋白通过将激活域文库引入含有融合到DNA结合域的感兴147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 趣的蛋白的酵母株中并以上述的报告系统分离克隆来进行鉴定(Bai和Elledge,1997)。许多实验室使用了此方法并鉴定了很多新的相互作用蛋白(Schwikowski等,2000)。

10.3.1 酵母中基因组范围的蛋白质相互作用分析

高通量酵母双杂交筛选

酿酒酵母全基因组序列的公布推动了在基因组范围用双杂交方法和从所有酵母ORF扩增克隆的基因来绘制蛋白质相互作用谱(Hudson等,1997;Uetz等,2000)。已大规模实施了两类双杂交实验。用芯片法,融合到Gal4的DNA结合域或激活域的每个ORF被排列到芯片上,与其作用的反向融合分别以芯片进行筛选以鉴定相互作用克隆。而复杂的文库筛选方法用一套克隆的ORF创建融合文库,每个ORF融合与文库杂交来鉴定相互作用克隆。

在第一个大规模芯片实验中,一套大约6000个基因分别被克隆融合到GAL4激活域(Hudson等,1997)并转化入双杂交报告株。每个菌株分别接入384孔板的一个孔内,16个这种板装有大约6000株克隆并组成了一个活的蛋白矩阵(Uetz等,2000)。一套192个酵母基因分别被融合到Gal4 DNA结合域并转化到相反杂交型的报告株,以此作为激活域克隆系列。192个诱饵株的每一个与约6000个陷阱株分别在芯片上进行交配以系统地筛选蛋白质相互作用(Uetz等,2000)(图10.5)。发现192个DNA结合域融合中有87个参与了蛋白质相互作用,一共有281个作用对。

最早实施的复杂文库筛选将6000个克隆的Gal4激活域融合分别地收集入单个的池(pool)(Uetz等,2000)。然后6000个酵母基因分别融合入Gal4 DNA 结合域。成组的激活域融合与6000个Gal4 DNA 结合蛋白融合分别进行杂交(图10.5)。可能的相互作用以报告基因鉴定,12个产生相互作用的克隆测定了序列以对激活域融合进行鉴定。在692个蛋白质相互作用对中共发现817个ORF参与(Uetz等,2000)。有趣的是,192个蛋白中的45%在蛋白芯片实验中发生相互作用,而5345个可能的ORF中只有8%在用6000个陷阱高通量筛选时发现了相互作用。因此,尽管芯片筛选为低通量,它可产生相对更多的相互作用子。这可能是由于在高通量实验当中,把所有的激活域克隆都用于筛选相互作用时,其中也包括了生长迟缓和交配能力降低的细胞(Uetz等,2000)。结果表明,两176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 种方法筛选鉴定得到的相互作用系列有所不同,具有方法上的差异性。Ito和他的同事(2001)提出一个高通量复杂文库筛选方法。构建了酵母6000个ORF的DNA结合域融合和激活域融合(图10.6)。DNA结合域和激活域融合转化到相反交配型的酵母受体株并组成62套每套96个ORF的融合。为测定可能的相互作用,在DNA激活域和结合域间实施了3844个(62×62)交配反应。交配后,包含相互作用的蛋白的二倍体以多个报告基因进行筛选。PCR扩增DNA结合域与激活域融合的插入片段,测序后鉴定相互作用的克隆。结果总共发现了3268个酵母蛋白参与了4549对相互作用(Ito等,2001)。当作者只考虑那些至少出现三次的相互作用时,构成一个由797个蛋白和806对相互作用对的核心群组(Ito等,2001)。

对上述的高通量文库筛选法鉴定的相互作用的比较显示惊人的少的重复。只有大约20%的相互作用是相同的(Ito等,2001;Uetz等,2000)。缺乏重复说明文库的筛选实验方法还不成熟。所选择的克隆组不能发现高比例的潜在的相互作用,这并不奇怪。要筛选所有可能的ORF间的相互作用需要测试6000×6000=36×107对组合。即使我们已知很多蛋白具有多个相互作用,实际的相互作用的数目可能还要远大于此。

计算机辅助的双杂交筛选

仅通过鉴定盘绕的蛋白线团介导的相互作用的计算机辅助筛选进一步证明酵母基因组双杂交筛选低估了总的相互作用(Newman等,2000)。盘绕的线团是一种由两个或更多α螺旋相互盘绕组成的蛋白质相互作用(Cohen和Parry,1994)。可以形成无规线团的序列以简单的重复模式为特征,由此设计了可以通过蛋白序列的一级结构鉴定无规线团的电脑程序(Berger等,1995;Wolf等,1997)。以这些程序在酵母ORF中鉴定无规线团,发现基因组编码的大约300个蛋白为两条链的无规线团,另250个蛋白有三条链的无规线团(Newman等,2000)。也即大约每11个酵母蛋白中有一个就有无规线团。Newman和他同事(2000)用双杂交系统检查了162个预测的无规线团区之间的相互作用。总共16×16=26244对测试鉴定出来自77个不同蛋白的213对相互作用,其中100对为无规线团。

奇怪的是用无规线团方法鉴定的相互作用无一可用前述的双杂交实验发现。此结果说明双杂交筛选存在很高的假阳性。这个结果与前述的结果相似,当用激活域205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 文库克隆进行配对双杂交筛选实验时发现相互作用的频率很高(Uetz等,2000)。除配对筛选外,由于只有酵母蛋白的无规线团区被用于筛选,无规线团实验可能也鉴定出更多的相互作用子。双杂交实验使用全长蛋白可能掩盖一些只有用蛋白质片段才能发现的相互作用子。例如,全长蛋白可能包含被遮蔽的相互作用位点,只有当发生构象变化时才可以暴露出来(Hu,2000)。总之,实验表明只用双杂交测定的酵母相互作用子是被低估了的。而计算机辅助筛选,如无规线团筛选可能提供文库筛选得不到的信息。

酵母蛋白质相互作用网络

将双杂交方法在基因组规模测定的酵母蛋白质相互作用的分析结果与生物化学方法测定的相互作用结合起来可显示出整个蛋白组的更复杂的相互作用谱。Schwikowki及其同事(2000)分析了2709个已发表且可在公共数据库和大规模双杂交实验中获得的相互作用,其中包括2039个酵母蛋白。他们发现了一个包括1548个蛋白构成的2358对相互作用的大网络及几个小网络(Schwikowki等,2000)。

相互作用蛋白网络有很多有趣的特性。首先,相似功能的蛋白在网络内趋于聚为簇。例如,89%的已注释为染色质相关的蛋白都定位在染色质相关的蛋白簇内(Schwikowki等,2000)。总计63%的相互作用发生在一般常用功能蛋白之间。其次,一般亚细胞定位的蛋白在网络内趋于聚为簇(Schwikowki等,2000)。第三,相互作用网络揭示一些相互作用与细胞过程关联,这揭示了细胞组件之间的互作。例如,细胞周期控制蛋白展示了大部分的细胞过程之间的相互连接。测定了细胞周期控制簇的蛋白、有丝分裂相关蛋白、蛋白降解、交配反应、DNA合成、转录、信号转导及其它过程相关的蛋白的相互作用(Schwikowki等,2000)。这些相互联系反应了细胞周期控制蛋白在调节细胞其它过程中的作用。最后,网络还提供了一些未知功能的蛋白质的信息。网络方法进行功能预测,如鉴定未知蛋白的相互作用伙伴的最一般功能、假定感兴趣的蛋白具有相同或相关的功能(Mayer和Hieter,2000;Schwikowki等,2000)。确定相互作用伙伴的蛋白功能的限制性因素是缺少基因组内蛋白功能的知识。例如,Schwikowki及其同事(2000)发现的大网络中未知功能的554个蛋白中只有69个有2或多个已知功能的伙伴。当对某机体的蛋白质功能的认识提高后,可以从相互作用网络分析得到的蛋白功能将会随之增加。234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 蛋白质网络的组织

酵母蛋白质相互作用的大网络的组织已有详细的研究(Jeong等,2001;Maslov and Sneppen,2002)。已分析的网络由大于1500个蛋白组成并由大于2000个相互作用联结在一起。这些研究的一个目的是测定网络的结构是否可由一致指数拓扑学(Uniform exponential topology)(即所有蛋白都与其它蛋白具有相同数目的连接)或异质无标度拓扑学(蛋白质连接显示出极大的差异)来描述。相互作用的可能性的分析表明了一个高度异源的无极网络,少数高度连接的蛋白在介导大量的低连接蛋白间的相互作用中发挥重要的作用(Jeong等,2001)。这种网络结构正如其它复杂的系统(如互联网和代谢网络)一样,都遵循能量分布规律(Barabasi和Albert,1999;Jeong等,2000)。蛋白网络的另一个特性是高度连接的蛋白主要都与低连接性的蛋白连接在一起(Maslov和Sneppen,2002)。这种组织方式降低了细胞不同功能模块间的相互对话的可能性,而通过定位有害突变的效应增加了网络的稳固性(Maslov和Sneppen,2002)。

网络的结构表明它们可以允许随机的突变,因为大部分的伤害可以发生在与其它蛋白没有太多联系的蛋白上(Jeong等,2001)。然而,位于节点的高连接蛋白一旦突变这个网络将异常脆弱。此想法通过用根据所有相互作用蛋白所具有的连接数确定的级别,并将它们的级别与从基因组删除相应基因的表型效应进行关联(Jeong等,2001)。从系统的酵母基因删除实验获得的大规模数据表明了它们的相关性(Ross-Macdonald 等,1999;Winzeler等,1999)。实验表明蛋白质去除对细胞的致死的可能性是与该蛋白具有的连接数相关的(Jeong等,2001)。例如,93%的酵母蛋白是具有5个或更少相互作用的蛋白质,我们有它们的基因去除数据,只有21%的蛋白是必需的。相反,只有0.7%的酵母蛋白具有15个以上的连接,但其中62%的蛋白的去除对细胞是致死的(Jeong等,2001)。因此,在网络结构中高连接的蛋白比连接较少的蛋白更为关键。10.3.2 对其他生物基因组范围的酵母双杂交分析

病毒系统中蛋白质-蛋白质相互作用的双杂交分析

已经利用病毒、细菌和动物基因组的ORFs(开放阅读框)对双杂交实验进行了全面、广泛的演示(Bartel et al.,1996;McCraith et al.,2000;Rain et al.,2001;Walhout et al.,2000)。在病毒系统中,T7噬菌体和牛痘病毒的基因组已经被检测过了。使用病毒基因组263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 的好处是可以系统的检测所有可能的两两相互作用。例如,一组266个来自牛痘病毒的潜在ORFs与Gal4的激活区域及DNA结合区域分别融合后进行了克隆(McCraith et al.,2000)。利用每个与DNA结合区域的相连的融合子与由266个与激活区域相连的融合子芯片进行配对,来检验蛋白间70756种两两结合的所有可能。总共只检测到37个蛋白质-蛋白质的相互作用,其中有28个是以前所未知的(McCraith et al.,2000)。正如McCraith及他的同事所指出的那样,这些作用可能只是病毒感染过程中的一小部分。这种低数量的相互作用的一个理由可能是大量的牛痘蛋白都是膜相关蛋白。这些蛋白质都是以全长的ORFs表达的,因此不可能到达酵母的核中来参与双杂交作用(McCraith et al.,2000)。全长ORFs的表达可能也屏蔽了某些特定的作用,导致了高几率的假阴性反应(Hu,2000)。从这些实验中获得的重要信息是即使一个膜上所有的蛋白质-蛋白质两两相互结合已经饱和,仅使用双杂交筛选很难把其中很大比例的相互作用检测出来。细菌中蛋白质-蛋白质相互作用的双杂交分析

幽门螺杆菌的基因组的大小为2Mb,它编码了1742个ORFs。用这些ORFs进行双杂交获得的文库和上面所说的酵母实验不同,在那个实验中所使用的GAL4激活区域文库包含超过1千万个随机的基因组片断(Rain et al.,2001)。因此,降低了全长的ORFs屏蔽蛋白质-蛋白质作用的潜在问题。总共用了261个ORFs来和GAL4的DNA结合区域进行融合来作为饵。这些ORFs的选择都避开那些无法进入酵母核内的疏水性蛋白(Rain et al.,2001)。261个含DNA结合区域的融合子激活结构域的文库进行配对来检测蛋白间的相互作用。总共鉴定了1200个相互作用,将近是基因组的50%。这个方法似乎可以非常有效的防止ORF配对筛选中出现的问题。另外,从激活结构域文库中检测到的反应子中的片断序列的数据积累起来了。片断的配对使得我们可以定位蛋白质的作用区域(Rain et al.,2001)。

线虫中蛋白质-蛋白质相互作用的双杂交分析

相对于病毒和细菌系统,线虫的基因组比较大,大概编码了20000个预测的ORFs。这些所有的ORFs的两两配对需要4×108次匹配,这在目前的技术条件下是不可行的。然而,已做过一个直接的检测,使用了27个已知的参与vulval发展过程的蛋白质与GAL4的DNA结合域融合,线虫的cDNA文库与GAL4 的292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 激活域融合(Walhout et al.,2000)。这个双杂交鉴定了包含124个不同蛋白的148个相互作用。为了测定已鉴定的相互作用的生物学关系,作者从其他生物中搜寻同源蛋白中的保守相互作用。这样的保守相互作用用interlogs标记,这代表了一种增加相互作用有效性和可信度的新方法。另外,Walhout和他的同事还用了一个系统的聚类分析来搜寻形成闭合环的网状的相互作用,说明在这个环中的ORFs在生物学重要相互作用中有更高的相似性(Walhout et al.,2000)。

从来自几个生物的大量的数据可以明显的看出双杂交是一种高效自动的、也是高通量的在基因组范围内检测蛋白质-蛋白质相互作用的有效的方法。然而,高比例的假阳性和假阴性也始终难以避免。事实上,以功能无关的蛋白和来自细胞不同部分的蛋白的关联频率来评估,估计目前所有的高通量的相互作用预测方法的预测结果都有超过一半是假的(von Mering et al.,2002)。因此,其他鉴定蛋白质-蛋白质相互作用的方法都要求同时做双杂交数据的有效性分析和新的相互作用的鉴定。

10.4 使用噬菌体展示来检测蛋白质-配体的相互作用 10.4.1 在M13纤维状噬菌体中展示蛋白

噬菌体展示已成为一种强大的蛋白质-蛋白质相互作用和蛋白质-配体相互作用研究的工具(reviewed in Smith and Petrenko,1997)。这个方法最基本的操作是把肽链或蛋白质融合到纤维状噬菌体的外壳蛋白上。肽链和蛋白质一般都是融合到噬菌体的III或VIII蛋白的N末端的(Smith,1985)。III蛋白是一个低拷贝的外壳蛋白(大约3~5个拷贝),它位于噬菌体的顶部,负责噬菌体感染细菌的过程中使噬菌体吸附到F菌毛上(Riechmann and Holliger,1997)。VIII蛋白是一种主要外壳蛋白,每个噬菌体微粒大概有2700个拷贝(Rasched and Oberer,1986)。因为基因编码的融合蛋白是包装在同一个噬菌体微粒上的,所以各种表现型(也就是展示蛋白和这个展示蛋白的基因序列的配体结合特征)之间具有直接的联系。这就允许随机氨基酸序列的多肽的大文库能够快速筛选特定的配体结合特征(Fig.10.7)(Smith,1985)。另外,也可以从大量展示蛋白的突变体中筛选配体结合特征发生改变的突变体(Katz,1997)。

噬菌体展示的一个重要应用是绘制蛋白质-蛋白质相互作用的位点。例如,随机的多肽文库用来鉴定单克隆抗体的抗原决定簇和多克隆抗体(Felici et 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 al.,1993;Folgori et al.,1994;Yao et al.,1995)。根据他们结合抗体的能力,从随机序列的噬菌体展示多肽中进行选择,选择的多肽通过DNA测序进行鉴定。经常会发现一些序列和一些感兴趣的抗原区域结合。这种方法的一个变种是利用DNAseI对感兴趣的蛋白的基因随机酶切后构建多肽的文库,然后用霰弹法(shotgun)把这些小片段基因克隆到噬菌体展示载体上(Petersen et al.,1995)。这个方法的优点是如果结合的多肽是已知的,它们就会结合到我们感兴趣的蛋白区域。这个方法已经用来绘制除了抗体-抗原以外其他的一些相互作用了。例如,用来定位β内酰胺酶抑制蛋白的结合决定区,这个区域对结合到β内酰胺酶上非常重要(Rudgers and Palzkill,2001)。另外,已经发现在某些时候这个方法可以以构象特征鉴定结合域(Williamson et al.,1998)。

用Shotgun克隆打断的基因到噬菌体展示载体中已经扩展到了细菌的全基因组(Jacobsson and Frykberg,1995,1996;Jacobsson et al.,1997)。在检测实验中,Staphylococcus aureus的全基因组DNA用超声波破碎后克隆到了基因III和基因VIII的噬菌体展示载体上。这个方法的潜力在实验中得到了验证,通过固定的IgG蛋白的结合富集噬菌体从Staphylococcus aureus基因组文库中选择编码蛋白A的基因片段(Jacobsson and Frykberg,1995,1996)。这个系统也已经被用来从Staphylococcus epidermidis中克隆纤维蛋白结合蛋白(Nilsson et al.,1998),还有来自结合α巨球蛋白、血清蛋白和IgG的C群链球菌的表面蛋白(Jacobsson et al.,1997)。这个方法的一个局限性是DNA的随机片断必须在信号序列和基因III编码的蛋白(g3p)或基因VIII编码的蛋白(g8p)间克隆。因此,只有1/18的克隆将含有一个有正确方向的融合子及同时含有信号序列和噬菌体外壳蛋白。标准的噬菌体展示系统也不合适用来构建真核生物cDNA文库,因为在cDNA中基因编码末端的终止子的存在排除了它与外壳蛋白的结合的可能。这个问题利用在裂解噬菌体的外壳蛋白上展示蛋白或片段就可以避免。10.4.2 T7噬菌体的蛋白展示

使用裂解噬菌体载体,如λ(Maruyama et al.,1994;Santini et al.,1998),T4(Ren et al.,1996),T7(Rosenberg et al.,1996)的噬菌体展示系统的发展已经提供了一种不依赖E.coli分泌机制的替代法。所有这些系统的额外的优点是克隆的蛋白是融合在噬菌体外壳蛋白的C端的,这样方便了基因组和cDNA文库的350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 构建。在T7 上展示cDNA文库最近已经被用来鉴定信号蛋白在EFG-受体信号通路中的作用了(Zozulya et al.,1999)。另外,利用cDNA文库,T7系统已经被用来鉴定蛋白质和小分子间的相互作用。这些研究说明噬菌体展示可以用作高通量的蛋白质-蛋白质相互作用的研究。

基因组或cDNA噬菌体展示文库的一个优势是同一个文库可以用来分离很多不同配体的结合蛋白。另外,用来扫描的配体并不局限于其它蛋白,任何可以被固定的分子都可能作为一个测试的目标。这使得文库能用来搜索那些可以结合DNA、RNA、蛋白质、糖、氨基酸或其他小分子物质的蛋白质。多肽噬菌体展示文库甚至已经被用来探索活的动物的脉管系统(Pasqualini and Ruoslahti,1996)。这就是把噬菌体库注射到小鼠的循环系统中,等一段时间后收集感兴趣的器官和组织,利用匀浆混合物感染E.coli来扩增结合在这些组织上的噬菌体(Pasqualini and Ruoslahti,1996)。这个方法已经被用来鉴定对不同组织和肿瘤的脉管系统特异性的多肽(Arap et al.,2002;Pasqualini and Ruoslahti,1996;Rajotte et al.,1998)。结果表明大部分组织的脉管系统表现出组织特有的标记。利用来自病原微生物的基因组或cDNA文库来做这个体内噬菌体展示实验,以检查由微生物的ORFs介导的目标组织将是非常有意思的。

鉴定很多种配体的结合蛋白的能力将使噬菌体展示成为蛋白质组学的一个有用的工具。基因组测序已经鉴定很多没有功能的开放阅读框。基因组噬菌体展示文库可以被用来利用结合功能对ORFs进行分类。例如,基因组DNA可以被固定到小珠上,就可以从基因组噬菌体展示文库中筛选出一组DNA结合蛋白。使用不同类型的配体就可能根据结合能力把大量的ORFs进行分门别类。10.4.3 酵母双杂交和噬菌体展示相结合

酵母双杂交和噬菌体展示系统都共同具有的一个缺点是都产生高比例的假阳性数据。因为这两个技术相当不同,即酵母双杂交系统是一个体内的分析,而噬菌体展示是体外的,因此结合这两种方法可能会产生更有用的生物学数据。该途径的强大能力最近已经被含有SH3结构域的酵母蛋白的研究很好的阐明了(Tone et al.,2003)。SH3结构域是蛋白质识别分子,它介导很多参与特殊生物学功能的蛋白质-蛋白质的相互作用(Pawson and Scott,1997)。为了鉴定和酵母中发现的SH3结构域发生作用的蛋白质,总共在E.coli中表达了24个和谷胱甘肽硫转移379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 酶融合并以可溶状态出现的SH3结构域(Tone et al.,2002)。这些蛋白被用作噬菌体展示的目标来从随机氨基酸序列的九肽文库中选择SH3结构域的配体。在多方面富集多肽配体之后,对阳性克隆进行测序,分析了20个不同的SH3结构域的结合配体的一致序列(Tone et al.,2002)。这些相同的序列就被用来搜寻酵母蛋白组中潜在的天然SH3配体。发现含有天然SH3 结合位点的蛋白质形成了一个网状的相互作用。为了证明这个发现,以18个不同的SH3结构域和几个富含脯氨酸的目标为饵进行一系列的双杂交后建立了第二个蛋白质-蛋白质作用网络(Tone et al.,2002)。最后,利用噬菌体展示和酵母双杂交相互作用网络中的交叉点找到了它们的共有组分。总共有59个噬菌体展示网络中的相互作用在酵母双杂交相互作用网也得到印证(Tone et al.,2002)。其中的一些作用已经用免疫共沉淀在体内进行了证明。利用来自多种试验方法得到的多组试验数据是一种评估一种特定办法的产生偏差的有用的办法。10.5 在蛋白片段互补实验中检验相互作用 10.5.1 简介

蛋白片段互补实验是以酶的重装配策略为基础的:蛋白质-蛋白质的相互作用能促进有效的再折叠和酶片段互补来恢复成为活性酶。这个方法起初是用复原的泛素作为蛋白质-蛋白质相互作用传感器。泛素是一种由76个氨基酸组成的蛋白质,独立或与其它蛋白共价连接存在于细胞中(Johnsson and Varshavsky,1994)。泛素与其他蛋白的融合蛋白会很快的被泛素特异性蛋白酶降解,这个酶识别泛素的折叠构象。如果泛素和一个报告蛋白一起融合表达,那么降解反应后就能在体内释放报告子(Johnsson and Varshavsky,1994)。然而,泛素的C末端片段与报告子的融合蛋白和泛素的N末端片段在同一个细胞中分别表达,这种降解将不会发生。如果两个相互作用的蛋白质分别与泛素的C端片段和N端片段融合,并在同一细胞表达,则完整的泛素将会被复原,降解效应将发生(Fig.10.8)。因此蛋白质的相互作用可以在体内把他们分别融合到泛素的C端片段和N端片段并测定报告蛋白的释放来检测。就像下面讨论的那样,这个方法已经被扩展到了其他系统,现在已经成为酵母双杂交和噬菌体展示的可行的替代方法在体内检测蛋白质-蛋白质的相互作用。

10.5.2 利用二氢叶酸还原酶的蛋白片段的互补 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 二氢叶酸还原酶参与了一碳化合物的代谢,是原核细胞和真核细胞生存所必须的。这个酶催化从二氢叶酸到四氢叶酸还原反应,这个过程是丝氨酸、蛋氨酸、嘌呤、胸苷酸生物合成所必须的。老鼠的二氢叶酸还原酶(mDHFR)是一个较小的(21KD)单体酶,它和E.coli中的酶同源性很高(29%的序列一致性)(Pelletier et al.,1998)。DHFR的三位结构说明它由F[1]、F[2]、F[3]三个结构片段组成(Gegg et al.,1997)。

E.coli的DHFR被抗生素甲氧苄氨嘧啶选择性抑止。mDHFR和甲氧苄氨嘧啶的亲和系数要比细菌的DHFR小12000倍。因此表达mDHFR的E.coli能在存在甲氧苄氨嘧啶时生长。已经发现mDHFR的F[1,2]、F[3]三个结构域与寡聚亮氨酸拉链融合后分别表达,在体内的重组导致了甲氧苄氨嘧啶抗性的E.coli细胞的产生(Pelletier et al.,1998)。该重组是由于亮氨酸拉链序列的相互作用拉近了mDHFR的F[1,2]、F[3]的片段使它们能够折叠成单个有功能的酶。潜在蛋白质-蛋白质的相互作用可以用下述方法来检测:把一个蛋白与F[1,2]域融合并让该蛋白的已知结合伙伴与F[3]融合,然后测试包含融合结构的E.coli细胞的甲氧苄氨嘧啶抗性。这个系统与上面所描述的泛素系统比较类似。

mDHFR蛋白片段互补实验的使用已经扩展到了哺乳动物细胞中。哺乳动物细胞培养中的mDHFR活性的恢复用缺少DHFR的细胞在缺失核苷酸中的生长来检测(Remy and Michnick,1999)。这些细胞的生长必须要有一个有活性的mDHFR酶,因为DHFR的活性是合成嘌呤和嘧啶所必须的(Remy and Michnick,1999)。第二种在细胞培养中检测mDHFR重组的方法是以荧光实验为基础的,检测在体内荧光标记的甲氨蝶呤(fMTX)结合到重组的mDHFR上。这个实验的基础是当mDHFR在细胞内发生重组,它就会以高亲和力与fMTX结合生成1:1的复合物。结合了的fMTX会停留在细胞中,未结合的则排出细胞外。因此重组的mDHFR存在与否可以利用荧光显微镜、FACS或光谱进行检测(Remy and Michnick,1999)。

mDHFR蛋白互补实验已经被用来绘制原核生物翻译起始的信号传导网络(Remy and Michnick,2001)。总共分析了35对全长的蛋白质,利用细胞在缺少核苷酸时存活的选择性鉴定了14个相互作用。另外,利用fMTX试剂结合荧光显微镜来定位蛋白复合物在细胞中的位置(Remy and Michnick,2001)。mDHFR437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 蛋白互补系统相对于酵母双杂交系统在检测蛋白质-蛋白质相互作用中有潜在的优势。例如,mDHFR系统可以在E.coli或哺乳动物细胞中使用(Pelletier et al.,1998;Remy and Michnick,1999)。当试验哺乳动物蛋白相互作用时,可能使用阴性系统更为有利。另外利用MTX试剂结合荧光显微镜在细胞中定位相互作用的能力提供了酵母双杂交系统所无法提供的重要信息。因此,这种技术可能会在未来的蛋白组学研究中有很广泛的应用。

10.5.3 用β-半乳糖苷酶互补来检测蛋白质的相互作用

β-半乳糖苷酶广泛的被用作基因表达的报告子,因为它降解产色底物5-溴-4-氯-3-吲哚-β-D-半乳糖苷(X-Gal)来产生蓝色产物的能力。以经典的内部顺反子互补的细菌基因表型为基础,发展出了蛋白质-蛋白质相互作用实验(Mohler and Blau,1996)。在E.coli中去掉lacZ的N端或C端会产生一个没有活性的酶,但是缺少不同末端的无活性酶共表达后互补。利用把缺失片段装配到一个稳定的八聚蛋白中产生互补,这个蛋白含有野生型所有的必须的结构域(Mohler and Blau,1996)。参与互补的存在于突变体中的N端和C端结构域就是我们所知的а和ω区域。相互作用的实验是基于这样一个基础上的,即当缺少а结构域(△а)和ω结构域(△ω)的β-半乳糖苷酶共表达时互补产生有活性酶的效率是很高的(Mohler and Blau,1996)。当△а和△ω的β-半乳糖苷酶突变体分别和相互作用的蛋白质融合时,有利于△а和△ω片段的靠近,这样就能产生高效的互补作用。因此,潜在的蛋白质-蛋白质相互作用可以利用把感兴趣的蛋白质分别融合到△а和△ω的β-半乳糖苷酶突变体上,然后检测酶利用X-Gal的活性(Mohler and Blau,1996;Rossi et al.,2000)。

β-半乳糖苷酶互补作用实验已经被应用到了哺乳动物细胞(Rossi et al.,1997)。荧光标记的β-半乳糖苷酶的底物使得能够用荧光显微镜和FACS来分析表达感兴趣的融合蛋白的哺乳动物细胞。因此,类似于mDHFR系统,β-半乳糖苷酶互补实验可能会发展成为在基因组范围内研究哺乳动物细胞中蛋白质-蛋白质相互作用的有用的工具。

10.6利用质谱仪研究蛋白质-蛋白相互作用的图谱 10.6.1概论

蛋白质的快速鉴定可以通过直接搜索蛋白质和核酸数据库中的数据来获得,466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 这些数据库是由质谱仪所产生的多肽质量数据构成的。鉴定蛋白复合物的组成是质谱在蛋白-蛋白相互作用图谱中最普遍的应用。这些实验可以通过应用亲和方法来分离完整的蛋白复合体来实现(图.10.9)。而这通常需要了解蛋白质复合物中至少一个蛋白的特性。这个蛋白可以通过亲和处理来标记,比如谷胱甘肽S-转移酶、多聚组氨酸重复或者抗体的抗原决定簇如Flag 标记。标记蛋白可以在细胞中过量表达,在非变性条件下进行亲和纯化过程中与标记蛋白相互作用的蛋白也一同被纯化。复合物进行洗提,蛋白组分用SDS-PAGE分离,条带从凝胶中切割下来并进行蛋白酶解,肽的精确的质量可由质谱仪来确定。搜索肽质量数据库,进行比对可以鉴定复合物中的蛋白。这种常规的方法文献中已有很多例子,包括研究核孔复合体、酵母Arp2/3复合体、TATA-结合蛋白关联因子、酵母纺锤体复合物、剪切体组份以及结合到分子伴侣 GroEL的蛋白等。10.6.2 鉴定E.coli 的GroEL作用底物

分子伴侣 GroEL和它的辅因子GroES是E.coli生长所必须的。GroEL的作用是通过限制聚合作用来促进折叠。GroEL是一个由14个亚单位构成的有2个大空穴的圆柱形的同源低聚体,底物蛋白通过GroEL复合物疏水表面结合在圆柱体空穴中间。GroES随后结合在圆柱体的顶点表面上使底物被捕获在阻止聚合作用的空穴内。细胞中大概10%的新的翻译的蛋白可以与GroEL相互作用,这一点是明确的,但是这些底物蛋白的身份知之甚少。

GroEL首选底物可通过脉冲-追踪标记生长的E.coli细胞来鉴定的。在不同的追踪时间,GroEL-底物复合物可以用 anti-GroEL 抗体免疫沉淀反应分离出。沉淀下来的蛋白可通过双向聚丙烯酰胺凝胶电泳分离,通过胰酶对斑点进行消化,随后用MALLDA-TOF质谱仪分析肽-质量指纹就可以实现对蛋白的鉴定。利用这种方法,总共鉴定出了52个不同的GroEL的底物蛋白。分析这些蛋白与GroEL的相互作用为基础的共同结构模块。发现GroEL底物比其它E.coli蛋白多具有几个αβ域。这些试验说明质谱方法可以来确定蛋白-蛋白的相互作用。10.6.3啤酒酵母蛋白复合物的鉴定

质谱仪最近用来系统分析酵母中蛋白-蛋白相互作用。这些研究与上述的双杂交实验类似,很重要的不同在于质谱仪是研究蛋白复合物,而双杂交方法是来检测两者间的相互作用。在一个实验中,TAP用来纯化589个蛋白复合物。TAP495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 方法利用两个亲和标记的结合来纯化蛋白复合物。复合物在单向SDS-PAGE中分离,单个蛋白用MALDI-TOF质谱仪来鉴定。589个纯化的TAP标记蛋白中,78%存在与之相结合的蛋白,表明这种方法可以有效纯化复合物。总共245个纯化复合物与酵母中98个已知的蛋白复合物是一致的,这证明了此方法的可靠性。另外242个纯化复合物中鉴定出了134新的复合物。这些数据表明两种不同的纯化方法检测到相同蛋白的可能性大概为70%。因此30% 的结果可能是有问题的。.酵母中的蛋白复合物第二个系统研究是在饵蛋白上应用单亲和标记来纯化感兴趣的复合物。在这些实验中,752种蛋白标记为饵,相关的复合物被纯化。复合物中的蛋白在SDS-PAGE中分离,从凝胶中挖出,用胰蛋白酶消化,然后利用串联质谱仪来鉴定。研究鉴定了1578个不同相互作用的蛋白,它们代表了25%的酵母蛋白质组。

一个重要的问题是数据的获得是否是从高通量质谱仪实验和利用双杂交试验相交合的数据中获得的。研究利用TAP标记产生的数据,只有7%是与双杂交是重叠的。用两种试验来检测相互作用的类型表明是互补的。双杂交方法不适用于检测蛋白的复合物,它仅鉴定二元的作用。然而双杂交试验对于鉴定两者间的作用以及低亲和力很有用。

10.7蛋白表达谱以及相互作用中的蛋白质芯片

蛋白质芯片分析是另外一个新出现的热点,针对检测蛋白表达及相互作用的高通量技术。可以具有不同的方式的蛋白质芯片,如一套抗体可以排列于滤光器或者载玻片上,用来检测蛋白表达的水平。另外一种方法包括来源于组织的蛋白直接放于玻璃载片、尼龙滤网或者微量滴定孔。这个方法可以用来定位蛋白-蛋白相互作用或者蛋白催化作用。

蛋白质芯片试验的难点在于蛋白不如核酸那样的均一。蛋白功能依赖于精确的脆弱的三维结构,这在试验中很难保持。另外相互作用的强度和稳定性不如核酸那样标准。每个蛋白-蛋白相互反应是专一的可以呈现一个宽范围的亲和力。目前蛋白表达的分析几乎完全依赖双向电泳以及质谱仪。然而蛋白试验的发展,需要另外有力方法以便在更广的基因范围内研究蛋白表达和蛋白-蛋白相互作用。524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 10.7.1蛋白表达图谱抗体试验

蛋白组学的一个目标是检测组织之内或者之间蛋白表达水平。长期以来抗体被用来检测蛋白,如western杂交和ELISA等方法。然而检测成千上万的蛋白用这种方法就很麻烦。一个替代的方法是抗体的芯片,待测组织中每种蛋白的专一抗体被置于滤膜或者玻片上。蛋白表达测定首先通过在目的组织中获得天然蛋白裂解物并将蛋白用荧光标记。蛋白混合物结合抗体芯片,目的组织中表达的蛋白在芯片上结合他们的同类抗体。将非特异的蛋白洗掉,通过测定结合蛋白荧光来检测结合蛋白类型。这个方法本质上是高通量 ELISA试验。这个试验的优点在于芯片结合之前不需要天然蛋白的分馏。另外可以实现应用自动化程序对多种样品进行平行检测。显然这种方法的限制是需要对每一个蛋白专一抗体的研究。

对于大量的蛋白利用免疫处理动物并纯化蛋白来获得抗体可能会比较困难且费用昂贵。一个替代的方法是利用噬菌体展示库分离专一的抗体。抗体的噬菌体展示库已经广泛的运用于筛选单克隆抗体而不需要传统的杂交技术。从单个噬菌体展示库中众多蛋白中分离专一抗体的技术已可以自动化,因此在更广的基因组范围的项目中有很大的潜力来提供抗体。10.7.2 运用肽、蛋白质和小分子芯片进行功能分析

蛋白质芯片技术的目的之一是将基因组翻译的所有蛋白排成芯片用于功能研究。对于蛋白质功能的全局分析,过去已经通过文库筛选方法有所研究了。对于cDNA表达文库等文库筛选,可以成批地对某一种期望的生物学特性进行检测。例如,从λ噬菌体的噬菌斑中筛选出表达蛋白已经被运用了很多年了(Young and Davis,1983)。在这些实验中,一个cDNA文库插入到一个λ噬菌体载体中,这样编码的蛋白以一个与E.coli β-半乳糖苷酶融合蛋白的形式表达出来。噬菌体文库感染E.coli后,在琼脂平板上形成λ噬菌斑。每一个λ噬菌斑表达一种不同的融合蛋白,然后运用这些蛋白质特异抗体探查出这些噬菌斑中特异蛋白的存在(Young and Davis,1983)。挑出确定的阳性噬菌斑,检测插入片段的DNA序列从而确定相关的基因。通过这种方法,基于抗体-抗原的相互作用筛选并克隆基因成为可能。

蛋白质芯片比文库方法可能会有更多的优点。芯片方式提供了一种精确的,空间定向的格子,允许芯片上的所有蛋白质能够并行的对比从而筛选出来。这种553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 空间结构也能够确定出芯片中的一个克隆,该克隆是根据芯片中其所在的位点测试出为阳性的。因此,这种方法确定蛋白质相互作用中的一个蛋白质比文库筛选要省力。但是,蛋白质芯片也有一个缺点,即与文库(~109)相比,所能排列和筛选的蛋白质较少(~104)。同样,纯化所要排列的成千上百个单个蛋白质种类也是一个技术上的挑战。因此,可以有效测定的蛋白数目限制了蛋白质芯片的应用。

肽芯片

最早应用芯片形式的是肽芯片。例如,合成肽的大头针式方法就是在一个96微孔板内平行合成肽。运用Fluoenylmethoxycarbonyl(Fmoc)标记氨基酸保护机制,肽在直径为4mm的经氨活化的聚乙烯大头针上合成(Geysen et al,1984,1986)。每一个合成循环中,这些大头针被浸入一种氨基酸溶液中。因为肽是在固体支持相上合成的,因此在循环之间未反应的多余氨基酸可以被完全洗脱下来,增加最后结果的纯度。这种方法起初被用于检测口蹄疫病毒VP1衣壳蛋白的抗原决定簇的结构图谱。存在于有218个氨基酸的VP1序列中的所有208种可能的重复的六肽通过与抗体的相互作用被合成并制成芯片。该方法中检测出一个免疫结构域,进而通过将单核苷酸依次替代肽所在的区域产生较好的图谱。这是第一个使用高通量方法确定蛋白与蛋白之间的关系。

SPOT合成方法是另一种同时的、平行的在固相支持上合成肽的方法。这种方法运用Fmoc化学保护法,但使用在纤维素膜上的羟基作为合成的固相支持(Frank,1992)。当一小滴液体渗入多孔膜时,液体就会被吸收,形成一个圆点。通过使用一种包含合适反应物的低挥发的溶剂,那么在逐步添加活性氨基酸至固定在支持膜上的化学基团时每一个点就会形成一个开放的反应器(Frank,1992)。通过一个αN-Fmoc保护的氨基酸与纤维素膜上的羟基之间的酯化作用及随后的Fmoc切除来为完成肽的组装提供锚点(Frank and Overwin,1996)。Fmoc-β-丙氨酸是最常用的膜上的反应物。去保护之后,β-丙氨酸游离的氨基部分可以作为肽芯片合成的模板(Frank,1992;Gausepohl et al,1992)。这种方法已经被广泛应用于描绘抗体-抗原的相互作用,同时也用于蛋白-DNA,蛋白-金属,其他蛋白-蛋白之间的相互关系(Reineke et al,2001)。582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610

SPOT合成法最多的应用是为确定线性B细胞抗原决定簇而制备肽芯片。如果抗原蛋白已知,那么包含整个序列的一系列重复的肽就可以很容易的合成并通过结合抗体进行测定(Reineke et al,1999a)。对于结合起关键作用的单个残基可以通过肽的SPOT合成法及氨基酸替代而被确定。该方法曾用于检测抗李斯特菌细胞溶解素(listeriolysin)产生的六个单克隆抗体(MAbs)的抗原决定簇结合位点,李斯特菌细胞溶解素是由病原菌Listeria monocytogenes产生的一种毒素(Darji et al,1996)。MAbs的结合位点通过SPOT合成法产生重复的肽而确定,这些肽可以覆盖李斯特菌细胞溶解素分子的整个氨基酸序列。一共有166个肽,每个肽含12个氨基酸及一条含3个氨基酸的支链,在芯片中以点的形式合成(Darji et al,1996)。通过将一个MAb与固定化的肽孵育并用过氧化物酶连接的二抗检测抗体的方法来检测肽的结合。纤维素膜在洗脱掉结合抗体后可以重复使用数次。通过这种方法,六个MAb中的每一个含6~8个氨基酸的结合位点就可以被定位了(Darji et al,1996)。除此之外,有报道通过将抗体与每个MAb上已确定的结合位点相关的可溶的肽进行预培养的方法,可以阻断MAbs与膜的结合。

SPOT合成法也用于为绘制抗原决定簇图谱,建立组合的肽文库。例如,可以通过组合文库确定被鼠抗p24的HIV-1单克隆IgG2a抗体CB4-1识别的肽抗原决定簇(Kramer et al,1997)。对于这些实验,需要合成一个由68590个肽的混合物组成的复杂组合肽文库XXXX[B1,B2,B3,B3,X1,X2,X3]XXXX。这个库由10个含有不同六肽核心的亚库组成,六肽核心分别为[XXB1B2B3XX],[XB1XB2B3X],[XB1B2XB3X],[XB1XXB2B3],[XB1XB2XB3], [XB1B2XXB3],[B1XXXB2B3],[B1XXB2XB3],[B1XB2XXB3],[B1B2XXXB3],这些核心对应于三个确定位点所有可能的距离模式(Kramer et al,1997)。根据与CB4-1的结合筛选纤维素结合位点筛选组合文库,结果从68590个点上检测到225个肽的混合物。将筛选出来的肽混合物去掉其随机化的位点,确定了一条与p24有关的序列的肽段,同时还确定了三条完全不同的肽段(Kramer et al,1997)。肽结合的亲和力及竞争力实验显示所有的肽可以结合到单克隆抗体的同一位点,但是亲和力各有不同。另外,每一个肽段的替代分析清楚的显示抗体识别的分子基础对每一个确定的肽段是特异且唯一的(Kramer et al,1997)。这种替代分析611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 也被用于确定supertope序列,该方法建立在氨基酸替代的基础上,替代的氨基酸与p24单克隆抗体的结合位点相一致。例如,其中一条肽段的序列是GATPEDLNQKLAGN, 但是使用SPOT合成法进行系统的氨基酸替代得到的的supertope序列为XXXXX[DE]L[HKNR]XX[IL]XXX, X为任意氨基酸(Kramer et al,1997)。与supertope一致的序列与SWISSPROT蛋白质数据库比对后,发现5517个配对的蛋白质。其中一些已确定的蛋白质纯化后可与p24 单克隆抗体结合。这些实验证实了P24MAb的多特异性,表明SPOT合成法也可以用于产生及寻找无偏的组合随机序列文库。

绘制非连续的抗原决定簇的结构图更要困难,因为抗体结合到来自抗原蛋白的不同区域的肽的亲和力较低。SPOT合成法的一个有趣的应用是绘制与IL-10结合的中性抗IL-10抗体即CB/RS/1结合位点的图谱(Reineke et al,1999b)。IL-10序列上一段重复的肽段通过将一段15mer的肽段上的一个氨基酸替换掉而得到。肽芯片通过使用CB/RS/1抗体进行探测,而结合抗体可以通过使用鼠IgG过氧化物酶标记抗体而检测到。发现CB/RS/1抗体与代表着蛋白质两个不同区域的肽段结合,这两个区域在一级结构中是分开的,而在高级结构中是连续的(Reineke et al,1999b)。那些结合在抗体上的肽段上的氨基酸残基位点随后被系统的一一替换,并通过点合成而排成芯片。对于与CB/RS/1抗体的结合很重要的肽段上的各个位点又可以通过检测而确定。大量的替代可以增加抗体的结合。展示抗体结合能力的两个区域位于同一条肽链,并且这条单个肽链与替代增加结合能力相适应。然后用半胱氨酸替换这条单个肽链上的氨基酸形成二硫键,二硫键可能通过降低肽链的空间构象而增加结合能力。这些多点合成实验的最终结果是得到一个在IL-10与CB/RS/1抗体之间的非连续结合位点上的紧密结合的32氨基酸的虚拟肽段(Reineke et al,1999b)。这个研究也证明了SPOT合成法对于快速构建及测试肽芯片的巨大作用。

SPOT合成法还用于其他很多研究蛋白质与蛋白质的相互作用上。这些相互作用包括与信号传导有关的蛋白质之间的作用,如PDZ结构域(Schultz等,1998)、SH3域(Cestra等,1999)和肿瘤坏死因子受体相关因子(TRAFs)(Pullen等,1999)。此外,该法被用于确定细菌伴侣蛋白SecB的底物专一性(Knoblauch等,1999)。此研究极其有趣,因为伴侣蛋白具有宽松的底物结合专一性,因此640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 与大量的蛋白结合。SecB通过在翻译中或翻译后与新合成的前体蛋白联系,协助前体蛋白穿过细菌细胞质膜,因而使这些前体蛋白保持一种可以转移的状态。但是SecB的底物特异性的决定因子还未确定(Knoblauch et al,1999)。为了解决这个问题,合成并筛选出与SecB结合的来自23种不同蛋白质的总数为2688条肽链(Knoblauch et al,1999)。这一系列蛋白质包括已知的SecB的底物以及很多未知的蛋白。这个大的数据库可以对被SecB识别的底物模体进行可靠的统计分析。所有被筛选出来的肽链根据它们与SecB的亲和力(高、中度、低、无亲和力)被分为四组。亲和力由合成的点的强度来决定(Knoblauch et al,1999)。与SecB结合和不与SecB结合的肽链其氨基酸分布存在着很大的差异。高亲和力SecB结合肽富含基本氨基酸残基(Arg和Lys)以及芳香族残基(Phe,Tyr,Trp),而酸性残基(Asp,Glu)却非常少(Knoblauch et al,1999)。该结果可用于鉴定识别模块,它又能够准确的预测SecB结合肽。这些实验代表了SPOT合成法的应用向蛋白组范围上筛选结合特异性迈进了一步。包含一个细菌的蛋白组所有重复的肽的SPOT芯片很快也将产生。这种芯片将会成为在蛋白组学水平上研究抗体-抗原及蛋白质-蛋白质相互作用的强有力的工具。

最近,SPOT法被推广到产生一个包含837个不同的hYAP WW蛋白功能域的肽芯片(Toepert et al,2001)。之所以选择WW结构域作为模型,是因为它只有大约40个氨基酸长度。WW结构域在很多具有不同功能的蛋白质中发现,例如酵母、线虫、哺乳动物的结构蛋白、调节蛋白及信号蛋白中(Chen et al,1997a)。WW结构域与富含脯氨酸序列的短片段结合来介导蛋白质与蛋白质之间的相互作用。WW结构域的结构是已知的,一些定点突变实验已经发现并证实了对其结构和功能重要的残基(Chen et al,1997)。WW结构域的44个残基的每一个逐一被19个L-氨基酸所替代(Toepert et al,2001)。结果与早先的突变实验结果相一致,该结果是建立在结构域的结构基础上,应该是合理的。固相合成44个氨基酸的肽链有一个值得担忧的是,一个点内合成的肽链中有很大部分是不完全的产物。可以使用质谱来确认已合成的肽段的大小(Toepert et al,2001)。另外,所有可能的单个氨基酸的缺失都被合成在芯片中,与含有各种不同的全长的肽段的突变体芯片不同,几乎所有的缺失都是无活性的。这些结果提示在一个点里合成的大部分肽链都是全长的(Toepert et al,2001)。该研究结合蛋白质化学669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 合成的快速发展,提示着SPOT法将会成为使用固相合成产生蛋白质芯片的一种方法。

尽管SPOT合成法具有很大的实用性,但是滤膜上点的密度与DNA芯片或玻璃板上列的顺序不同(Brown and Botstein,1999)。但是,有结果表明影印照相术可大大增加芯片上肽的密度(Fodor,1991)。这种方法与构建高密度寡核苷酸芯片方法相似。光敏保护基团被用于肽的合成。通过使用只允许光照射那些只加某种氨基酸的肽链的过滤罩,这样肽链可以被选择性的去保护。通过这种技术,肽的密度可达到250000/cm2(Fodor,1991)。上述所说的芯片可以通过直接在固体支持相上合成肽链而构建。目前,由于产物纯化以及连接效率的困难,使得SPOT法局限于合成30~40个氨基酸的肽链(Molina et al,1996)。因此,通过直接合成构建蛋白质芯片是不可能的。相反,蛋白质必须在芯片中表达、纯化随后使用。重组蛋白能够在E.coli或S.cerevisiae 等一些有机体内表达,或者通过组织培养得到。蛋白质也可以选择在体外转录、翻译产生。这些方法的困难是获得用于芯片上的稳定高级结构的蛋白质。不正确的折叠及聚合是重组蛋白在异源系统内表达存在的普遍问题。另外,蛋白质体外表达缺乏特异的伴侣蛋白,也会导致一些不正确的折叠结构的形成。这个问题是蛋白质芯片不同于DNA或寡核苷酸芯片的一个主要因素。所以,蛋白质芯片发展的进程一直以来都比DNA芯片慢。但无论如何,近年来的发展提示蛋白质芯片还是可行的。

归组的重组蛋白芯片

蛋白芯片发展中的第一个难题就是由生物体开放阅读框编码的蛋白质的大规模表达和纯化。关于S.cerevisiae(Martzen et al., 1999)的工作表明了这种方法的可行性。在这些实验中,建立起一个由6,144个酵母菌株组成的芯片,每个菌株都包含一个质粒,该质粒在Pcup1启动子的转录控制下表达不同的GST-ORF融合。因为纯化6,144单个蛋白相当困难,所以菌株被集中在64个组(pool),每个组有96个不同的GST融合菌株。每个组的GST融合蛋白用谷胱甘肽琼脂糖树脂为分离介质进行分批亲和层析纯化(Martzen et al., 1999)。然后这些组用作蛋白质功能的生化测定。举例来说,GST融合组的测试证明了酵母中两个预先知道的tRNA剪接反应中的每一个只会基于ORF数量在预期组中出现。当某组监测出具有某种生化功能时,这个单独的导致反应的菌株需要进行测定,699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 由适当的96孔板中制备和测定GST融合蛋白(Martzen et al., 1999)。运用此法,生化检验定出三个先前未知基因编码的蛋白质的假定功能,包括两种涉及tRNA处理的环磷酸二酯酶和一个可修饰细胞色素c的转甲基酶(Martzen et al., 1999)。原则上,如果我们假定融合蛋白是可溶的、折叠的和功能性的,成组的GST融合蛋白能用来识别任何生化反应相关的蛋白。这个方法有个独到的优势,那就是一旦GST融合克隆建立起来,这就是一项快速的技术。Martzen和同事宣称只要两周就能纯化64个组,同时检验工作一天就能完成(Martzen et al., 1999)。此外,这个方法也是很灵敏的,因为一次只有96个重组蛋白被测定而相比之下,用细胞溶解产物的话,溶液中会有成千上万的蛋白质。这个方法使得每个蛋白有更高的浓度,因此大大地促进生化反应的检测(Martzen et al., 1999)。

成组GST融合蛋白方法的强大能力可以推出新生化反应剂和测定方法。生物过程的化学探针(又称化学生物学)的开发是一个快速发展的领域。例如,化学合成一种活性位点指向的探针,可以用来识别丝氨酸水解酶家族成员,近来已经有人描述过此过程了(Liu et al,1999)。探针的活性由丝氨酸水解酶的有效抑制和不可逆抑制决定的,抑制剂为荧光磷酸(FP)衍生物,如比二异丙基荧光磷酸。这个探针组成有一个生物素化的长链荧光磷酸,称作FP-生物素(Liu et al.,1999)。FP-生物素已在来自各种大鼠器官的粗组织提取物上试验过了。这些实验显示此试剂能与粗提取物中的大量丝氨酸水解物反应,也能探测飞摩尔级(10-15 mol)的酶(Liu et al.,1999)。显然,FP-生物素之类试剂将能与成组GST融合物更好地反应,因为成组GST融合物的蛋白浓度高于粗提取物的蛋白浓度(Martzen et al.,1999)。此类化学探针很可能将在今后几年内得到发展。

蛋白微芯片 成组GST融合蛋白的运用使得生化反应的测试成为可能,但也不仅限于蛋白-蛋白或蛋白-小分子交互作用的识别。因为此目的,有必要固定蛋白于固体支撑基质上,使得非结合蛋白能够被洗去。同时也有必要让蛋白连接到固体支撑基质上后仍能保留它的折叠构象。

已经有一种方法可以高空间密度连接蛋白到玻片上(MacBeath and Schreiber,2000)。这样的微芯片制做系统使用高精准自动机械臂来传递纳升体积的样品到玻片上,密度达到每平方厘米1,600个点。用含醛硅烷试剂预处理玻728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 片蛋白质才能共价连接其上(MacBeath and Schreiber,2000)。醛很容易与赖氨酸残基以及蛋白质N端的a氨基酸等主链胺反应。因为赖氨酸通常会出现在蛋白质表面的多个位点,所以该蛋白能以多个方位连接。

高密度蛋白芯片是用来检验蛋白-蛋白交互作用,三个已知会相互反应的蛋白作用对被使用:蛋白G和IgG;p50和IkBa;以及FKBP12雷帕霉素结合域(FRB)和FKBP12(MacBeath and Schreiber,2000)。每一个此类实验,两结合蛋白中的一个被固定了,而另一个蛋白则用荧光标记,可以结合到玻片上。清洗以后,被结合的蛋白可以通过滞留的荧光标记检测出(MacBeath and Schreiber,2000)。这些实验证实微芯片能用来有效地检测极小样品量的蛋白-蛋白交互作用。固化的蛋白以每毫升100ug的浓度分布。因为结合反应在纳升体积中发生,所以需要检测结合的溶液相蛋白的数量是很小的。例如,特定的结合能用pg量的FKBP12检测FRB-FKBP12的相互作用(MacBeath and Schreiber,2000)。MacBeath和Schreiber(2000)提到,因为结合所必要的溶液相蛋白的浓度相当低,所以有可能在细胞溶解产物中用荧光标签标记蛋白,也可以用芯片来定量溶解物中特定蛋白的总量。因此,蛋白芯片能够用作蛋白表达作图和检测蛋白-蛋白相互作用(MacBeath and Schreiber,2000)。通过相似的方法,研究显示微芯片上小分子与蛋白的结合能被有效的检测出。但是固定化的蛋白组分有多少还保留折叠结构,对此仍不很清楚,但是基于预实验的判断,蛋白微芯片在高通量蛋白测定方面很有应用潜力。

蛋白微芯片也被用作研究蛋白-蛋白相互作用的特异性(Newman and Keating,2003)。bZIP转录因子是真核生物中DNA结合蛋白的重要一类,其中无规线团的二聚化作用在结合特异性方面起着重要的作用。人基因组中编码了大量的bZIP无规线团,我们使用蛋白芯片分析了这些模块的组合结合特异性。这些实验通过表达和纯化每个结构域以及连接蛋白到一个醛包被的玻璃平板上,构造出由49个人bZIP无规线团结构域组成的亮氨酸拉链芯片(Newman and Keating,2003)。然后49个蛋白中的每一个都用荧光标记,每一个都单独用作探针结合到芯片上去。用这种方法,总共有492个反应能迅速评估出来。这些实验的重要特点就是交互实验>90%的一致性,也就是说,一个结构域固定化或作为溶液探针结合了相同的一套结构域(Newman and Keating,2003)。这项结果预示了因为蛋白会在固757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 体支持物和其他表面化学人工合成物上去折叠,而这样的人工合成物不会成为此法的主要限制因素。这个方法也适用于检验其他蛋白家族中二元交互作用组。蛋白芯片在蛋白质组尺度范围内的应用,由构建的含有代表93.5%的酵母蛋白质组的5,800种不同酵母蛋白芯片所展现(Zhu et al.,2001)。该研究中5,800个酵母ORF被克隆到一个酵母高拷贝表达载体,融合了谷胱甘肽S转移酶和多组氨酸(polyhistidine)(GST-HisX6)(Zhu et al.,2001)。蛋白在酵母中表达以促进适当的折叠和整合一些修饰作用。依照96孔板规格,一次纯化了1,152个样品,所有5,800个蛋白纯化以后,样品以高密度分散点在镍包被的玻片上(Zhu el al.,2001)。蛋白微芯片通过用生物素化的钙调蛋白(钙离子存在的条件下)探测玻片,来测试蛋白-蛋白交互作用。钙调蛋白是一种高度保守的钙结合蛋白,这种蛋白涉及到很多钙调控的细胞过程,同时也有很多已知的配合物(Hook and Means,2001)。这些实验分辨出六种已知钙调蛋白的靶蛋白还有另外33个潜在的结合伙伴(Zhu et al.,2001)。因为与钙调蛋白的相互作用需要精确的三级结构,研究表明玻片上大部分的蛋白质折叠呈功能状态。

酵母蛋白组微芯片也被用来测试不能被体内方式检测的相互作用。特别是,蛋白质-脂质相互作用也能用磷酸肌醇(PI)结合蛋白筛选法检测(Zhu et al.,2001)。PI是重要的细胞膜组成成分,也作为第二信使广泛地调控细胞过程。蛋白芯片用脂质体探测,这些脂质体包括了5种不同类型的PI,还有含脂质体的卵磷脂(PC)。每个脂质体也含有一个生物素化的脂,这种脂用来探测连接到微芯片上蛋白质的脂质体(Zhu et al.,2001)。这六种脂质体辨识出总共150种不同蛋白靶体,该靶体产生的信号远高于背景(Zhu et al.,2001)。这些蛋白中52个为非特性蛋白质。剩下蛋白中,45个与膜有关,包括整合膜蛋白和脂修饰蛋白(Zhu et al.,2001)。另外,很多激酶连接到脂分子上。为了确认芯片上的相互作用,几个蛋白以不同的浓度固定到硝化纤维素滤膜上,显示出对脂的结合具有浓度依赖性(Zhu et al.,2001)。

酵母蛋白组芯片研究表明蛋白芯片比其他鉴别蛋白-脂相互作用的方法方面有一定的优势。例如,采用酵母双杂交方法,核内能检测到的相互作用数目有限。反过来,因为蛋白芯片结合实验能在体外做,蛋白的本地化限制就不是一个问题了。体外检测相互作用的另外一个优势是可以检测很多不同类型的配体。因786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 此,诸如蛋白-脂、蛋白-小分子、或者蛋白-核酸酸性相互作用能被检测出来。小分子芯片 遗传学对生物学的进步贡献很大。它借助突变等位基因来增加对有兴趣的途径的认识。在化学遗传学方面,小分子而不是遗传变异,被用作有条件地或临时地调控蛋白质的功能,因此许多生物学过程才得以发现(Mitchison,1994)。这些方法有使用秋水仙碱发现了微管蛋白(Borisy and Taylor,1967);河豚毒素的发现,使得动作电位的解剖成为可能(Narahashi et al.,1964);过氧化物酶体增殖活化受体γ拮抗剂的辨识,增进了对脂肪生成调节的理解(Lehmann et al.,1995)。发展化学遗传学作为一项技术的关键点就是高效的合成大量的多样的小分子和简单地筛选大量的小分子的方法。合成多样化小分子的重要过程可通过以下方法:多样性定向合成(Schreiber,2000)、固相纯化(Merrifield,1963)和分离池合成策略(Furka et al.,1991)。近来,描绘了一个具有分离池和以高容量微球为单个反应器的多样化定向合成的技术平台(Blackwell et al.,2001)。每个微球传送大约5mM合成储液到测定板做化合物解离和重悬浮(Blackwell et al.,2001)。这个产物量足以做大量生物学检验。化学遗传学的另一重要方法就是有效的筛选影响感兴趣的过程的分子。表型的和蛋白质结合的测试被成功的利用。例如,基于双表型筛选的组合,有一个是基于特定转录后修饰,另一个是可视的微管和染色质,被用来筛选影响有丝分裂的化合物(Mayer et al.,1999)。其中一个化合物monastrol通过与有丝分裂的驱动蛋白Eg5相互作用,阻止了哺乳动物的有丝分裂。Monastrol是第一个被识别的不通过结合微管蛋白而影响有丝分裂的化合物。

基于蛋白质结合分析的小分子筛选是有意义的,因为它有可能发展成高通量筛选。蛋白质结合分析能从不同的蛋白质筛选大量的小分子,从而有效地识别有用的小分子。已有报道用硫醇捕获反应建立由含硫醇的小分子组成的芯片(MacBeath et al.,1999),和通过亚硫酰二氯活化的玻璃载玻片表面制作含乙醇的小分子微芯片(Hergenrother et al.,2000)。这个方法被用来制作一种高密度的微芯片,此芯片有3,780结构复杂的产生自多样化定向的合成的1,3-二氧六环小分子(Kuruvilla el al.,2002)。此类微芯片的应用包括用荧光标记的酵母蛋白Ure2p作为芯片的探针。这个蛋白是酵母氮代谢系列基因的中心抑制物。一个结合到Ure2p的化合物uretupamine,被识别出来用做干扰葡萄糖敏感转录过815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 程,这个过程在Ure2p形成的下游过程出现(Kuruvilla et al.,2002)。新信息表明,因为uretupamine只调控部分Ure2p功能,因此它的功效比单纯URE2基因的敲除更专一。研究表明小分子微芯片提供了一种系统化的方法,获得能调控不同方面蛋白功能的小分子探针,由此使破坏特定蛋白参与的生物学过程更容易。

以上描述的SPOT合成方法,往往用在合成某种芯片模式的膜结合肽链。然而,此方法广泛运用于高效合成膜表面的小型有机分子的芯片(Scharn et al.,2000)。Trisamino-和amino-oxy-1,3,5-triazine需要通过应用SPOT技术平行连接到纤维素膜和聚丙烯膜。完成这个过程需要用氨基酸和酚盐离子作为结构单元,还需一个以三氟乙酸蒸汽裂解的连接系统(Scharn et al.,2000)。为了识别抗原决定簇类似物,总共合成了8,000个纤维素结合的1,3,5-三嗪,连接到抗变形生长因子-α单克隆抗体Tab2,做成平行探针(Scharn et al.,2000)。这些研究预示了SPOT合成也是一种创建小分子芯片的有效方法。因此,小分子芯片很可能成为将来蛋白组学研究的重要工具,用来探测生物学过程的蛋白质功能。蛋白芯片和质谱 MALDI-TOF质谱结合蛋白质芯片的方法曾用在分析组织培养细胞分泌的淀粉样蛋白β肽链变体(Davis et al.,1999)。在Alzheimer症病人的脑组织中常见的老年斑中具有4-kDa淀粉样β肽链的聚集态(Selkoe,1998)。临床药品中识别出大量肽链的变体,因此很需要有效识别变体的方法。为此,以在芯片表面封固淀粉样β肽链的抗体的方法构建了蛋白芯片(Davies et al.,1999)。芯片表面上放1μl介质来捕获培养细胞分泌的淀粉样β肽链变体,然后清洗芯片,结合肽链被抽提出来用于MALDI-TOF质谱分析(Davies et al.,1999)。质谱的高敏感性和高精确度使数种淀粉样β肽链蛋白可以被精确识别。此外,一种对照的牛IgG固定到芯片上不同位置,结果显示淀粉样肽链的抗体有捕获介质中的变体的能力(Davies et al.,1999)。这项研究证明了结合蛋白质芯片与质谱是识别组成上细微差别的肽链的有效方法。

蛋白芯片-质谱方法已被扩大到很多感兴趣的分子的固定化平台。因此,分子能为亲和方法所捕获,例如抗体或其他有阴离子交换、阳离子交换、金属亲和和反相色谱等色谱特性的芯片表面(Fung et al.,2001)。这类芯片能被用来将蛋白质的复杂混合物纯化成具有共同特性的一组蛋白,然后用于质谱分析。从概念上讲,这个方法与液相色谱(LC)和第九章介绍的串联质谱方法相似(Link et 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 al.,1999)。两个方法的目的都是为了降低蛋白质的复杂度,变成一些能准确检测的蛋白。给定色谱分离方法所给出的蛋白谱,代表了蛋白抽提出来时细胞状态的指纹印记。举例来说,蛋白质芯片方法被用来研究正常状态下和癌症前期的样品的蛋白质表达的概貌,通过该方法可以发现疾病状态的蛋白质标记特征(Wright et al.,2000)。商业化蛋白质芯片-质谱平台业已开发出来,也发表了一些应用(Fung et al.,2001的评论)。

使用DNA芯片研究蛋白质功能 DNA芯片通过测量mRNA的水平广泛用于研究基因表达(Brown and Botstein,1999)。一个有趣的额外功能是用这些芯片研究转录因子蛋白的DNA结合特异性。已发展了基于DNA芯片对特征化DNA序列专一性的锌指蛋白识别的方法(Bulyk et al.,2001)。说到序列特异性DNA结合,锌指转录因子是最好理解的家族之一。小鼠Zif268转录因子被用做这些研究的模型系统。这个实验需要在M13线性噬菌体表面上展示Zif268蛋白,通过诱变和噬菌体展示筛选技术,利用不同的结合特异性分离一些变体。野生型和变异型Zif268蛋白的结合特异性就这样运用DNA微芯片确定下来。

Zif268蛋白包含三种锌指(F1,F2,F3),每种锌指与三碱基对序列相互作用(Pavletich和Pabo,1991)。F2指中的氨基酸通过噬菌体展示技术诱变和筛选,来分离结合的变体。有人建立起了一个包含所有64种可能的F2锌指3碱基对结合区的组合并在侧翼具有野生型F1和F3识别序列的DNA芯片(Bulyk et al.,2001)(图10.13)。让噬菌体展示的野生型或者变异型Zif268蛋白去与芯片上的DNA序列结合;非结合物质都给冲洗走了,结合的噬菌体能用包含荧光标记抗M13抗体探测到(Bulyk et al.2001)。结合测定是高度平行的,因此,一个芯片试验就有可能全面描述每个突变体的结合特异性。

如果改进DNA芯片结合实验,就可以用来进行转录因子结合位点的整个基因组分析。Bulyk和其同事们用12,000个 1-kb序列的可以包容Saccharomyces cerevisiae 基因组的芯片来描述S.cerevisiae 转录因子的序列特异性(Bulyk et al.,2001)。这些芯片也可以预测从未描述过的转录因子的功能和发现新的调控网络(Bulyk et al.,2001)。

10.8 表面胞质基因组共振生物传感器分析

表面胞质基因组共振(SPR)生物传感器已确定为测定分子间相互作用的方法。873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 SPR生物传感器实验包括在表面固定一个反应物并监测它与溶液中的其它分子的相互作用。SPR描述的是复杂的合成与分解过程导致表面附近的溶液光折射系数发生改变时测到的光现象(Jonsson et al.,1991)(图 10.14)。SPR信号表达为共振单位(RU),它与溶液中和固定配体相互作用的分子质量成比例。所以标准的实验包括固定低分子量的配体和探测配对分子不停地流过固相表面时信号的改变(Schuck,1997)。SPR的一个优势是可以实时监测结合反应,而不需要标记配体。因此,SPR可以用来研究蛋白、碳水化合物、核酸、脂肪和小分子之间的相互作用。

10.8.1用SPR探测生物分子的相互作用

关于用SPR生物感应大分子之间相互作用的数百篇论文已在不同的领域发表(Rich 和Myszka,2000)。许多研究关注于探测和定量蛋白-蛋白相互作用。典型的实验是将一种蛋白共价结合到传感器表面。已有许多表面材料在市场上供应,如羧甲基葡聚糖,羧甲基葡聚糖衍生后给出许多功能基团可用于固定化(Schuck,1997)。其他表面还有捕获生物素化的streptavidin分子和捕获组氨酸标记蛋白的镍鳌合物表面等(Rich and Myszka,2000)。可溶性蛋白结合到固相蛋白给出的SPR信号是实时的,可以用来监测结合动力学。无蛋白的缓冲液流过结合体可以探测分解动力学。通过动力学数据(Ka,Kd)得到平衡常数(KD)(Morton and Myszka,1998)。近年来SPR仪器的发展已有可能实现蛋白间相互作用的高通量分析。例如,BIACORE已发展了分析96孔板上的样品的仪器。所以,SPR可能对基因组水平的蛋白-蛋白相互作用的描述作出重大贡献。

固相表面的发展使SPR传感器可用于监测蛋白与脂质表面及膜相关蛋白之间的作用。商业化(BIACORE)的疏水亲脂的传感器表面已可构建稳定的膜表面。已有显示这种疏水传感器表面可以用来形成脂质单层(Evans and MacKenzie,1999)。这个单层表面又可以用来检测蛋白-脂质相互作用。例如,有一生物传感器被用来检测Src同源域与磷脂双层上的磷脂肌醇的结合(Surdo et al.,1999)。另外,亲脂的传感器表面被用来捕获脂质体和形成像生物膜一样的脂质双层。

疏水传感器表面上脂质单层的一个有意思的应用是主要组织相容性复合物(MHC)以特定的方向结合到表面(Celia et al.,1999)。这是因为脂质体在极性902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 一端连接了一个经化学修饰的带有镍盐的脂质的作用(Celia et al.,1999)。含有镍脂质的脂质体包被疏水传感器表面形成单脂层。实验用的重组MHC分子在跨膜区域含多组氨酸标记。电子显微镜显示组氨酸标记的MHC分子结合到脂质体的表面。SPR度量显示组氨酸标记的MHC分子特异性结合到脂质双层的表面(Celia et al.,1999)。更进一步,SPR实验表明MHC蛋白与单脂层在特定的方向上相互作用。观察到MHC分子与抗微球 抗体结合却不与抗组氨酸标记抗体结合的现象可以推断上述结论(Celia et al.,1999)。抗组氨酸标记抗体不与MHC分子结合可能因为空间位阻,因为组氨酸标记在单脂层表面上结合了镍脂质。最后,Celia和同事们通过将荧光标记的脂质结合到单脂层,发现脂质在单脂层里横向流动(Celia et al.,1999)。这样,精密的SPR应用发展起来用于模拟体外膜蛋白的相互作用。膜及传感器表面膜蛋白构建技术的进步对蛋白组学的研究将会做出重大贡献。基因组中将近三分之一的开放阅读框被认为是编码膜相关蛋白的。所以,测定和定量膜内蛋白之间相互作用的能力对在基因组水平研究蛋白-蛋白相互作用的蛋白组学起关键性作用。10.8.2 SPR生物传感器与质谱的联合

正如上面讲到的,SPR生物传感器被用来监测和定量蛋白-蛋白相互作用而不需要标记任何一方结合物。此方法还用于探测来自包括细胞溶解物和条件媒介物在内的复杂混合物的蛋白作用。称为配基钓鱼的方法是将已知蛋白固定作为功能鱼饵,钓出复杂混合物中的未知的结合伙伴(Lackman et al.,1996;Nelson et al.,2000)。困难在于当潜在的结合物从复杂混合物中钓出来后,在氨基酸测序以确定身份之前必须用标准的生物化学方法将该蛋白纯化(Lackman et al.,1996)。生物传感器联合质谱能更直接地鉴定结合伙伴。生物传感器为质谱和蛋白鉴定提供了微量纯化的平台(Williams and Addona,2000)。从SPR生物传感器表面回收的蛋白量非常少(毫微摩尔),但用灵敏的MALDI-TOF或随机质谱方法鉴定已足够了(Nelson et al.,2000;Williams and Addona,2000)。

SPR与质谱联用的潜力曾被谷胱甘肽S-转移酶(GST)和抗-GST抗体模型系统证实(Nelson et al.,1997)。在这个实验中,抗-GST抗体联结到羧甲基葡聚糖芯片,GST注入芯片与抗体结合。反应结束后,芯片从仪器上移开,以基质材料包被含有结合蛋白的芯片区域并用于MALDI分析(Nelson et al.,1997)。接931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 着用MALDI-TOF质谱仪分析此芯片,质谱图显示结果与GST蛋白质量相一致。这个方法又经改进,包括了以单个芯片上多流细胞的方法进行样品的蛋白水解消化。如抗人白细胞介素α(anti-IL-1α)抗体固定在传感器芯片上的流动池1中,胃蛋白酶固定在流动池2(Nelson et al.,2000)。含IL-1α的溶液进入到流动池1,在那里,SPR测量仪显示IL-1α结合到抗IL-1α抗体的情况。洗去非特异性结合的蛋白,然后从表面洗脱IL-1α,IL-1α再从流动池1进入流动池2。经足够时间的固定化胃蛋白酶的蛋白水解消化后,MALDI-TOF质谱分析仪分析流动池2的表面。结果肽质量谱清楚地反映IL-1α的存在(Nelson et al.,2000)。

上述试验表明联结SPR和质谱的技术是可行的。这些方法对蛋白相互作用的描述是有用的。例如,固定蛋白被用作饵,在活体条件下钓出复杂蛋白混合物中的相应的蛋白结合物。复合技术的使用不仅能快速鉴别蛋白相互作用,而且提供了作用的动力学参数信息。此方法可以作为体内技术比如酵母双杂交系统的绝佳的辅助手段。10.9总结

有效的高通量的蛋白-蛋白和蛋白-配体相互作用的检测对蛋白组研究起着越来越重要的作用。鉴别结合伙伴的最常用的方法是酵母双杂交系统。这是依赖于通过由蛋白质的相互作用以DNA结合域回收转录激活域,而使其功能重构的体内探测方法。双杂交法已被用于研究酵母蛋白的相互作用及数以千计的蛋白构成的精细网络的鉴定。分析表明在这些高度异源的无级网络中少数紧密联系的蛋白介导着大量的链接较少的蛋白间的相互作用。这种类型的网络框架在很多复杂的网络中非常普遍,如英特网络、代谢网络等。以双杂交法还发现在其它类型的生物中也存在复杂网络,如病毒、细菌、动物系统等。噬菌体展示也为发现很多蛋白-配基相互作用做出了贡献。特别有用的是噬菌体展示和双杂交数据的结合可以减少假阳性相互作用的数量。蛋白质片段互补研究的相互作用数据的使用很可能增强蛋白质相互作用数据库,在蛋白组规模提供更为精确的相互作用谱。

以蛋白质芯片鉴定蛋白-配基相互作用很具有挑战性,蛋白质固定到固体支持物时需要保持三维结构的完整。蛋白间的相互作用用肽和蛋白芯片来检测和解析。SPOT合成已大量用于合成肽芯片,这种芯片主要用于鉴定抗体抗原决定部位和解析蛋白相互作用的结合部位。蛋白质芯片也被用于研究蛋白间和蛋白-配960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 基间相互作用。最近,构建了一个含90%酵母蛋白组(5800个蛋白)的蛋白质芯片,用它鉴定了钙调素结合蛋白和脂结合蛋白。这些使用表明,蛋白质可以在芯片上保持它的高级结构,这预示着蛋白质芯片的广阔未来。研制了小分子芯片用于在化学遗传学中快速鉴定小分子探针。小分子在解析复杂生物学过程中具体的蛋白的作用是一个非常有用的工具。蛋白和小分子芯片可以用荧光标记分子检测芯片表面的相互作用。一个比荧光检测方法更细致和定量化的方法是表面胞质基因组共振,该法原理是当配体结合到固定在芯片表面的靶体蛋白时引起的折射系数的变化。此法的优势在于可以测定相互作用分子对的结合率、解离率和平衡常数,因此该法在高通量的蛋白-配基相互作用的检测中发展快速而且很可能将广泛应用(Protomics,T.Palzkill, 2002)。

图例

图10.1 重组克隆.(a)以attB+attP>attL+attR反应克隆PCR产物受Int 和IHF蛋白催化。结果展示了可以构建功能载体的起始克隆。(b)以Int、Xis和IHF蛋白催化通过attB+attP>attL+attR反应将起始克隆转变为功能载体。利用编码适当的启动子和标签的目的载体可以构建多样的功能载体。(引自Protomics,T.Palzkill, 2002)

图10.2 PCR产物的定向克隆策略。定向拓扑异构酶介导的对PCR产物的克隆在其5’末端需要5’-CACC序列。本例中CACC序列紧靠在插入基因的起始密码子ATG之前。(引自Proteomics,T.Palzkill, 2002)

图10.3 酵母的重组克隆。进行两个连续的PCR反应。每套引物的5’端都含有额外序列,这些序列最终使PCR产物可与线性化载体进行同源重组。(引自Proteomics,T.Palzkill, 2002)

图10.4 酵母双杂交系统。报告基因上游的蛋白X和Y的相互作用导致转录激活。蛋白X做为融合蛋白通过DNA结合域(DBD)结合在报告基因的上游位点,蛋白Y是带有转录激活域(Act)的融合蛋白。蛋白X和Y的相互作用使激活域置于994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 报告基因的附近并刺激它的转录。(引自Proteomics,T.Palzkill, 2002)

图10.5 双杂交蛋白相互作用的高通量配型测定。含有‘饵’和‘阱’的酵母菌株放在多孔板的孔内杂交。以转录报告基因筛选二倍体并用以测定蛋白-蛋白相互作用。(引自Proteomics,T.Palzkill, 2002)

图10.6 酵母双杂交‘饵’和‘阱’的系统杂交.酵母的每ORF分别被克隆为DNA结合域融合(饵)和DNA激活域融合(阱).DNA结合域融合导入到MATa株,DNA激活域融合导入到MATa株.它们分别构成62套每套96克隆的组;组间进行系统的杂交(62×62共3844个组合).选择相互作用的克隆,PCR扩增插入片段并切测序鉴定。(引自Proteomics,T.Palzkill, 2002)

图10.7 丝状噬菌体展示。随机序列的多态或者是不同的蛋白质被融合到噬菌体M13的衣壳蛋白的基因III上。目标配体被固定在固相上。噬菌体所展示的蛋白利用与目标之间的亲和力被富集并纯化,这个过程叫做Panning。经过多轮的Panning后,噬菌体被用来感染E.coli,然后这个被选择出来的插入片断的成分通过DNA测序来鉴定。(引自Proteomics,T.Palzkill, 2002)

图10.8 开裂的泛素作为蛋白质—蛋白质相互作用的传感器。蛋白A被融合到了泛素N末端区域,蛋白B则融合到了它的C末端。蛋白A与蛋白B的相互作用会重新组成一个完整的,折叠了的泛素。折叠了的蛋白质能够被一种特别的蛋白酶识别,酶切后释放一种报告蛋白。(引自Proteomics,T.Palzkill, 2002)

图10.9 鉴定复合物内蛋白相互作用的一般方法。利用一个与复合物种一个已知蛋白相互作用的标签序列把复合物从细胞中分离出来。或者利用针对这个复合物中的某个蛋白的抗体进行免疫沉淀来分离复合物。这些蛋白质用聚丙烯酰胺电泳,水解来分析,水解产生的碎片可以通过质谱来鉴定。或者是蛋白质水解后用液相色谱处理。然后,多肽片断用质谱鉴定,然后通过与数据库的比对来鉴定蛋白的成分。(引自Proteomics,T.Palzkill, 2002)

图10.10 利用抗体芯片来绘制蛋白表达图谱。这个抗体芯片是由针对一组感兴趣的生物体内蛋白的特异性的单克隆抗体固定到膜上而成的。为了鉴定一种蛋白在测试条件下是否有表达,先要获得粗裂解物,然后对裂解物内的蛋白要进行荧光标记。裂解液加到膜上,使蛋白质与相应的抗体结合。结合了的蛋白可以通过荧光标记看到。(引自Proteomics,T.Palzkill, 2002)

图10.11 利用点合成法构建多肽芯片。β丙氨酸被共价连接到作为平面支持的纤维膜上。然后以β丙氨酸为起点通过Fmoc化学法合成多肽。多肽通过羧基末端与膜相连。(引自Proteomics,T.Palzkill, 2002)

图10.12 从成组的酵母菌株中纯化蛋白质。每个酵母的ORF都被以蛋白表达载体中与谷胱甘肽S转移酶融合而克隆并构建了6144个酵母株。所有酵母株被分成64组,每组96株。每组培养后批量纯化96个融合蛋白。然后测定每组的生1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 化功能(Martzen等,1999)。将功能阳性的菌株归并为新的组。(引自Proteomics,T.Palzkill, 2002)

图10.13 用DNA微芯片确定转录因子的特异性结合位点。(A)含有Zif168-结合位点的DNA片断的 固定。F2指针的结合位点表示为图中NNN,N指任一核苷酸。(B)构建了一个64孔微芯片,每孔由图A显示的含有3碱基对的F2结合位点的序列组成,然后噬菌体展示的各种不同的Zif268蛋白结合到这个芯片上。(C)被结合的噬菌体用抗M13抗体检测。噬菌体的结合位点决定了不同Zif268蛋白的底物特异性(Bulyk et al.2001)。(引自Proteomics,T.Palzkill, 2002)

图10.14 表面胞质基因组共振生物传感器的示意图.一种结合伙伴固定在感应器表面.使用BIACORE仪器,可溶性分子可以流过固定的分子.可溶性分子的结合导致传感芯片表面的溶液的折光系数发生改变.折光系数改变的大小与可溶性分子被结合的数量存在相关性.(引自Proteomics,T.Palzkill, 2002)

第四篇:体内化学交联和质谱分析法证实蛋白质相互作用

体内化学交联和质谱分析法证实蛋白质相互作用

蛋白复合体的分离可用不同的亲和色谱法。在经典的免疫亲和实验中,细胞裂解液中的蛋白复合体能被固定化了的抗体获取,该抗体识别复合体中已知成分的抗原决定簇。经过多次洗涤以去除非特异性结合蛋白,该复合体由质谱法分析(MS)。短暂性结合复合体,其解离常数高,不适合这种方法。本文通过一种新的方法,用体内化学交联和基于鉴定蛋白质的质谱分析法来鉴定瞬时作用的蛋白复合体。活细胞用甲醛处理,其快速蔓延到细胞膜,形成蛋白质-蛋白质化学交联。互作蛋白质交联到一个含有Myc标签的蛋白质上,通过免疫亲和层析共同纯化出来,再把分离下来。通过SDS-PAGE分离后,再用串联的质谱分析鉴定。利用这种方式我们证实了大量的与M-Ras组成激活形式共同被纯化下的蛋白质。在这些蛋白中,我们证实了RasGAP相关蛋白IQGAP1,它是与M-Ras相互作用的一个新的蛋白质。这种方法适合多种蛋白,对研究蛋白质相互作用十分有益。简介

蛋白质互作几乎是细胞内每个功能水平都出现的,包括亚细胞结构,各种细胞膜的机械转运,染色体包装,基因表达调控,细胞内信号传导。蛋白质互作异常将导致很多种疾病,所以对蛋白质互作的研究成为生命科学领域极为紧迫的一件事。蛋白质复合体的纯化可以应用多种方法,包括经典的分子筛和凝胶过滤,以及这个不同的亲和色谱法分离。免疫亲和的方法是目前最具说服力的纯化方法,通常用于证明体内蛋白质互作和复合体中相互作用的物。一个经典的免疫亲和实验中,细胞裂解液中的蛋白复合体能被固定化了的抗体获取,该抗体识别复合体中已知成分的抗原决定簇。经过多次洗涤以去除非特异性结合蛋白,该复合体由质谱法分析。

这种方法的缺点是,对感兴趣的蛋白质需要一种特异的抗体(Ab),许多时候这种亲和导致纯化效率很低。Ab除了和靶蛋白外的其他蛋白交联是另一个缺点。这时,与靶蛋白不相关的蛋白或蛋白复合体被纯化下了,导致假阳性。通过抗原决定簇标签把抗原结合到特异的抗体上,形成普通的抗体。为此,需要一个带有抗原决定簇标签的抗体和一个高亲和力的抗原。通用的标签有Myc,Flag,相应抗体已经被商品化。操作说明被标准,不要求每一部都在最适合的条件。虽然抗原决定簇标签适用于大范围的纯化实验,但是其局限于稳定的复合体。结合较弱的或者瞬间结合的复合物会被忽视,进而不能被分析出来。短暂性结合复合体,其解离常数高,在洗脱非特异结合条带时被洗脱下来。这些步骤不要严谨操作,在高盐或洗涤剂浓度时效率高。在温和条件下,重复洗涤也将洗脱掉结合不紧密的成分。

通过化学交联可以阻止蛋白质复合体特异组分的丢失。有效地化学交联剂是甲醛。甲醛的几个特点应用于蛋白质互作的研究。1,交联发生在近距离(2A),被交联的蛋白位置很近。2,甲醛可以扩散到细胞膜且是非特异的,有益于广谱的蛋白互作研究。3,甲醛几乎在添加到细胞内后阻止酶反应,可以提供添加时瞬间的互作情形。4,一旦交联反应完成,反应物可用于非生理条件下操作,并保持结构完整性。另外,交联是可逆的,可以随后分析复合体组分。

甲醛温和处理和免疫沉淀在分析转录因子,与染色体结合的多聚配合物,核小体位置的确定,核小体动力学和核小体再构建方面。最近,甲醛交联与免疫沉淀和Western杂交结合,成功分析了,在酵母里是否TATA结合蛋白,TF IIB,SAGA组氨酸乙酰转移酶是否直接与转录结合蛋白结合。最近,作者在哺乳动物细胞中,采用了新的分析蛋白质互作方法,即甲醛交联结合免疫亲和层析,基于质谱分析的蛋白鉴定。利用这种方式我们证实了大量的与M-Ras组成激活形式共同被纯化下的蛋白质。共免疫沉淀和Western杂交证实很多蛋白互作。在这些蛋白质,我们证实了RasGAP相关蛋白IQGAP1,它是与M-Ras相互作用的一个新的蛋白质。进一步研究去解释其互作的生物学功能。2材料与方法 2.1 抗体与试剂

抗Myc的小鼠抗体mAB(clone 9E10)来自于H.Ziltener博士。抗IQGAP1和抗Rac的小鼠抗体是购买于BD生物科学公司。抗Rap1的兔多克隆抗体购买于Santa Cruz生物技术公司。羊抗鼠和羊抗兔的二抗来自DAKO公司。羊抗鼠Alexa Fluor 680二抗来自分子探针公司。另外的试剂来自Fisher Scientific。2.2 细胞系和细胞培养

R6X细胞(依赖于白介素3双点位的鼠肥大细胞/巨噬细胞系)感染双顺反子逆转录病毒载体基于pMXpie,其稳定表达绿色荧光蛋白和天然的M-Ras和突变的组成型激活M-Ras,它们都带有氨基端的Myc标签。R6X细胞在37℃,5%CO2,RPMI1640培养基中加2mm的l谷氨酸盐,100单位/ml的青霉素,50ug/ml的链霉素,10%胎牛血清,2%的10倍的培养基,在WEHI-3B没有的作为白介素3的来源。2.3甲醛交联???

收集R6X细胞,用PBS洗,每5*106个细胞在1ml的PBS(含0.125-1.0%多聚甲醛质量体积比)中孵育。甲醛交联在37℃,5-60分钟。反应终止是加入起始浓度为1.25M的甘氨酸,抑制浓度为125mM,室温,5分钟。细胞收集,PBS洗两次,在裂解缓冲液(50 mM Tris pH 7.5, 150 mM NaCl, 10% 甘油, 1% NP-40, 5 mM EDTA)中打散沉淀物,裂解液中加入蛋白酶抑制剂。细胞裂解物在14000rpm,15min成为细胞颗粒碎片。收集上清用BCA蛋白浓度测定试剂盒定量检测蛋白质量。

3.4 Western杂交和免疫沉淀反应

蛋白在10% SDS-PAGE中被分离,并转到硝酸纤维素膜上,膜在4℃,3%的BSA过夜封闭,室温一抗孵育1小时,PBS中加入0.1%的吐温洗涤四次,室温二抗孵育1小时。在一轮洗涤后,条带在化学发光剂和X射线胶卷或奥德赛红外成像系统中被看到。免疫沉淀反应,2mg抗Myc的抗体用邻苯二甲酸二甲酯偶联到1ml的蛋白G琼脂糖珠子上,细胞裂解液用25-50ml蛋白G琼脂糖珠预处理,4℃,10min,含有1mg的处理裂解液在25-50ul的含抗Myc的抗体琼脂珠,4℃,2h。裂解液用buffer洗涤三次,结合材料再用1m甘氨酸(pH2.5)37℃,15min。用饱和Tris溶液再次洗涤。洗涤样品中加入5倍的样品buffer(2%SDS, 10%甘油, 40%mMTris pH 6.8, 715 mM b-巯基乙醇稀释成1倍),65℃煮10民,以备SDS-PAGE。2.5 免疫亲和层析

9多聚甲醛处理的细胞裂解液约需10R6X细胞,含有标准化保证岂有相同的蛋白数量。免疫亲和层析实验中,0.864 cm Poly-Prep柱子中1ml抗Myc抗体的柱子。在纯化之前,细胞裂解液用1ml的蛋白G琼脂珠预处理,4℃,10min。预处理的裂解液加入免疫亲和层析柱子中,4℃,2小时。柱子用10ml平衡buffer(20 mM Tris, pH 7.5, 100 mM NaCl, 0.1 mMEDTA)洗脱,第2次用10ml含1%吐温20平衡buffer洗脱,第3次用10ml含500mM NaCl平衡buffer洗涤。结合材料用1m甘氨酸(pH2.5)37℃,15min。用饱和Tris溶液再次洗涤。把三次的纯化也收集在一起,用Amicon Ultra-4 10 000 MWCO过滤器离心。在浓缩的样品中加入5倍的上样buffer,95℃煮20min。蛋白质在10%SDS-PAGE中分离,用考马斯亮蓝染色法观察。2.6多维液相层析/串联式质谱法分析

蛋白条带从SDS-PAGE中切割下来,胶内进行胰蛋白酶化。按序蛋白酶化在37℃过夜。提取多肽,到新管中,加入10ul 5%的甲酸用多维液相层析/串联式质谱法分析。流入的液相色谱用最终高效液相色谱系统,流速为200nl/min用75 mm6150 mm RP毛细管柱,用水/CAN/甲酸为梯度。液相色谱流出液电喷入QSTAR quadrupole-TOF质谱仪的样品孔。收集串联质谱仪收据。串联质谱仪用MASCOT搜索引擎,收据分析和对比所有的哺乳动物序列(Swiss-Prot数据库)。3 结果与分析 3.1 体内M-Ras化学交联

甲醛是一种可逆的有效地蛋白交联试剂。据此,我们研究甲醛对Ras家族(小GTP酶M-Ras)化学交联效果。M-Ras,好家族中其他成员像类似,以结合GDP或GTP决定分子的开关。当结合GTP时它可以绑定下游效应物激活下游反应。至今,M-Ras几个候选效应物已有酵母双杂交证实,包括RPM, Nore1, AF-6, Rin1, RalGDS, Raf-1, and A-Raf。M-Ras具有很多调节物,有p21Ras蛋白特性,H-Ras,N-Ras,K-Ras。鸟嘌呤交换因子(GEFs),促使GDP释放,阴性调节剂包括GTP激活蛋白(GAPs),是Ras与GTP结合,并增强GTP酶活性,导致失活状态构想变化。

已知的M-Ras的效应物不能说明其功能,体内与其相互作用的物质应该解释其细胞功能,包括,生长,分化和瘤形成。本文的目的是寻求一种普遍的方法来鉴定蛋白质的互作,方便我们的研究。通过甲醛处理,作者认为可以交联到带有抗原决定簇标签的靶基因的互作蛋白。与靶基因互作的基因可以通过已知基因的抗体把互作基因共纯化下来。纯化的复合物通过SDS-PAGE纯化出来,通过多维液相层析/串联式质谱法分析

R6X细胞表达带有Myc标签的组成型激活M-Ras突变体,用某种浓度的多聚甲醛处理20min,包含M-Ras用Western分析(Myc抗体),M-Ras约在29kDa处,在1%多聚甲醛处理后其上方约50kDa处有两条明显的条带。随着多聚甲醛浓度从0.125%到1%增加,这两条带越来越明显,表面M-Ras至少和两条蛋白交联,大小约20kDa。由于不溶性沉淀出现在细胞裂解物中,所以没有测定更高浓度的多聚甲醛。除了上面的条带外,约37kDa的条带在Western(抗Myc的抗体)中一直被发现,为了选择1%多聚甲醛的最适作用时间,做了一组选择最适时间的试验。孵育时间在10,20min时M-Ras复合体的产量高。条带弥散表明杂交时间太长。因此过度的杂交,则会造成抗原决定簇位点的掩盖,这是由于赖氨酸或其他由于甲醛作用的位点扩大化。最后把1%多聚甲醛,20min固定作为体内M-Ras交联的最适条件。

Q71LWTR6X细胞中表达pMXpie空载体,M-Ras(突变),M-Ras,通过交联与非交联用Western杂交观察M-Ras表达量。多聚甲醛交联后用红外成像系统观察到多余复合物的出现。这些复合物表达量较低,大小在65kDa到250kDa.只是在突变的表达载体中看到的,因为突变的载体处于激活状态,其效应物和负调控因子与其结合,增加了蛋白含量。3.2 免疫亲和纯化与M-Ras交联的蛋白

Q71L为了鉴别与M-Ras(突变)结合的蛋白,需要纯化出足够的复合体以供质谱分析。所以我们需要对地表达量的条带进行富集。起初,作者想用商业化的抗Myc的亲和树脂来小范围的纯化大量的SDS-PAGE中观察到的条带。虽然富集量很大,通过Western杂交显示仍不够。按比例增加反应量,合并收集液,收益很小,且增加了非特异条带。为此,作者采用免疫亲和层析大范围纯化复合体。柱子上灌入亲和树脂,其共价结合抗Myc的抗体的蛋白G琼脂糖珠。纯化之前,细胞裂解液先于蛋白G琼脂糖珠处理,然后,与亲和树脂孵育。经过洗涤后,结婚有复合体的珠子用低pH的洗提也洗,然后立即从新洗涤以免蛋白质被破坏。在进行蛋白分离之前,甲醛交联复合体先复兴即从新解离。甲醛是与主链氨基上的赖氨酸残疾反应形成交联,解交联将会抑制,1)凝胶被溶解时,多肽链形成。胰蛋白酶消化位点丢失。2)残留物中含有多个位点参与化学交联3)来自不同蛋白的多肽用胰蛋白酶消化。几种解交联地方法,我们选择了Hall et al,样品在5*SDS-PAGE中煮沸20min,用Western杂交显示煮沸法是否适用与解交联,结果很成功。Myc变性或修饰的因素应该被排除,因为M-Ras条带清晰可见。

3.3 质谱分析共纯化的蛋白

三次共纯化的复合物收集一起,经过解交联反应,再用SDS-PAGE分离。用考马斯亮蓝染色,与对照组相比,实验组显示有多条蛋白。从胶中切下16条带,再用胰蛋白酶消化。抽提蛋白,用液体色谱法分离,流出液电喷入QSTAR quadrupole-TOF质谱仪的样品孔。串联质谱分析以此出现的多肽数据,分析显示有19中蛋白,每种至少有五个特有的肽序列。最亮的那条带为244分(基准分为37).

第五篇:高一生物教案:蛋白质的鉴定

高一生物教案:蛋白质的鉴定

【】鉴于大家对查字典生物网十分关注,小编在此为大家整理了此文“高一生物教案:蛋白质的鉴定”,供大家参考!本文题目:高一生物教案:蛋白质的鉴定

【实验一】 生物组织中还原糖、脂肪、蛋白质的鉴定

一、教学目的

初步掌握鉴定生物组织中还原糖、脂肪、蛋白质的基本方法。

二、教学建议

教材中本实验安排为验证性实验,有条件的学校可以改为探索性实验,安排在讲课之前,或与讲课同步进行。本实验难度并不大,但内容较多,实验时间较长,因此,必须作周密安排,才能按时完成。实验中应注意以下几点。1.增设教师演示实验。上课之前,教师应该准备好做演示实验所需的实验材料、用具、仪器和试剂等。同时,逐项完成还原糖、脂肪、蛋白质3类有机物的鉴定实验。在实验课上,将3个实验的正确结果分别展示在讲台上,并作扼要的介绍,以便使学生将自己的实验结果与教师的演示实验作比较。2.实验中学生应分工合作。在“还原糖的鉴定”实验中,当每组两个学生中的一个制备生物组织样液时,另一个学生可以用酒精灯将水煮开,以便缩短实验的等待时间。在“脂肪的鉴定”实验中,一个学生制作临时装片时,另一个学生则可以调试显微镜。另外,在完成前两个实验时,一个学生洗刷试管、清洗玻片和整理显微镜,另一个学生则可以进行后一个实验的操作。

3.关于鉴定还原糖的实验,在加热试管中的溶液时,应该用试管夹夹住试管上部,并放入盛开水的大烧杯中加热。注意试管底部不要接触烧杯底部,同时试管口不要朝向实验者,以免试管内溶液沸腾时冲出试管,造成烫伤。如果试管内溶液过于沸腾,可以上提试管夹,使试管底部离开大烧杯中的开水。

4.做鉴定还原糖和蛋白质的实验时,在鉴定之前,可以留出一部分样液,以便与鉴定后的样液的颜色变化作对比,这样可以增强说服力。

5.斐林试剂的甲液和乙液混合均匀后方可使用,切勿将甲液和乙液分别加入组织样液中。

三、参考资料

还原糖的鉴定原理 生物组织中普遍存在的还原糖种类较多,常见的有葡萄糖、果糖、麦芽糖。它们的分子内都含有还原性基团(游离醛基或游离酮基),因此叫做还原糖。蔗糖的分子内没有游离的半缩醛羟基,因此叫做非还原性糖,不具有还原性。本实验中,用斐林试剂只能检验生物组织中还原糖存在与否,而不能鉴定非还原性糖。

斐林试剂由质量浓度为0.1 g/mL的氢氧化钠溶液和质量浓度为0.05 g/mL的硫酸铜溶液配制而成,二者混合后,立即生成淡蓝色的Cu(OH)2沉淀。Cu(OH)2与加入的葡萄糖在加热的条件下,能够生成砖红色的Cu2O沉淀,而葡萄糖本身则氧化成葡萄糖酸。其反应式如下:

CH2OH—(CHOH)4—CHO+2Cu(OH)2→CH2OH—(CHOH)4—COOH+Cu2O↓+2H2O

用斐林试剂鉴定还原糖时,溶液的颜色变化过程为:浅蓝色棕色砖红色(沉淀)。

蛋白质的鉴定原理 鉴定生物组织中是否含有蛋白质时,常用双缩脲法,使用的是双缩脲试剂。双缩脲试剂的成分是质量浓度为0.1 g/mL的氢氧化钠溶液和质量浓度为0.01 g/mL的硫酸铜溶液。在碱性溶液(NaOH)中,双缩脲(H2NOC—NH—CONH2)能与Cu2+作用,形成紫色或紫红色的络合物,这个反应叫做双缩脲反应。由于蛋白质分子中含有很多与双缩脲结构相似的肽键,因此,蛋白质可与双缩脲试剂发生颜色反应。

用于鉴定还原糖的实验材料准备植物组织是常用的实验材料,但必须加以选择。在双子叶植物中,光合作用的主要产物葡萄糖形成后,合成为淀粉,暂时储藏在叶子内,因此最好不用双子叶植物的叶子作实验材料。有些单子叶植物,如韭菜、鸢尾,并不将光合作用的初始产物转变为淀粉,因此叶内含有大量的可溶性单糖,但是,由于叶片中叶绿素的颜色较深,对于鉴定时的颜色反应起着掩盖作用,导致实验现象不明显,因此,也不宜用单子叶植物的叶子作实验材料。本实验最理想的实验材料是还原糖含量较高的植物组织(或器官),而且组织的颜色较浅或近于白色的,如苹果和梨的果实。经试验比较,颜色反应的明显程度依次为苹果、梨、白色甘蓝叶、白萝卜。

用于鉴定脂肪的实验材料 准备实验材料最好选择富含脂肪的种子,如花生种子(取其子叶)。供实验用的花生种子,必须提前浸泡3~4 h。浸泡时间短了,不容易切成片;浸泡时间过长,则组织太软,切下的薄片不易成形。

做鉴定脂肪的实验,教师可根据本地区的情况选用苏丹Ⅲ或苏丹Ⅳ染液。苏丹Ⅲ染液遇脂肪的颜色反应为橘黄色,苏丹Ⅳ染液遇脂肪的颜色反应为红色。因苏丹Ⅳ染液与脂肪的亲和力比较强,所以,染色的时间应比较短,一般为1 min左右。用于鉴定蛋白质的实验材料准备 实验材料最好选用富含蛋白质的生物组织(或器官),植物材料常用的是大豆种子,动物材料常用的是鸡蛋(卵白)。如用大豆种子,必须提前浸泡1~2 d,这样容易研磨成浆。有条件的学校,可以直接采用现成的大豆磨成的豆浆,豆浆可以购买,也可用小型的研磨机制取。利用豆浆作实验材料,可以节约实验时间。如果用稀释的卵白作实验材料,效果会更好。斐林试剂的配制 甲液质量浓度为0.1 g/mL的氢氧化钠溶液 乙液质量浓度为0.05 g/mL的硫酸铜溶液

使用时临时配制,将4~5滴乙液滴入2 mL甲液中,配完后立即使用。

苏丹Ⅲ溶液的配制 称取0.1 g苏丹Ⅲ干粉,溶于100 mL体积分数为95%的酒精中,待全部溶解后再使用。

苏丹Ⅳ溶液的配制 称取0.1 g苏丹Ⅳ干粉,溶于50 mL丙酮中,再加入体积分数为70%的酒精50 mL,充分混合后即可使用。

双缩脲试剂的配制 取10 g氢氧化钠放入容量瓶(或有刻度的烧杯)中,加水至100 mL,待充分溶解后倒入试剂瓶中,配成质量浓度为0.1 g/mL的氢氧化钠溶液,瓶口塞上胶塞,贴上标签,写上试剂A。

取1 g硫酸铜放入容量瓶(或有刻度的烧杯)中,加水至100 mL,待充分溶解后倒入试剂瓶中,配成质量浓度为0.01 g/mL的硫酸铜溶液(蓝色)。瓶口塞上胶塞,贴上标签,写上试剂B。

下载基于质谱蛋白质鉴定,第1节:蛋白质鉴定技术简介[大全5篇]word格式文档
下载基于质谱蛋白质鉴定,第1节:蛋白质鉴定技术简介[大全5篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐