第一篇:PCB设计中的电磁兼容性浅析论文
随着信息化技术的发展,电子产品的数量及种类不断增加,其功能和速度也在不断提高,使印制电路板(PCB)电子器件密度越来越大,走线越来越宰,信号频率越来越高,不可避免地会引入电磁兼容性(EMC-Electro magnetic Compatibility)的问题。产品电磁兼容性能的高低,已经成为衡量电子产品与系统质量的一个重要指标。在保持系统功能的情况下,通过PCB设计和布置可从根源上消除电磁干扰并提高其抗扰度;反之,若设计不当,则将使载有小功率、高精度、快速逻辑,或连接到高阻抗终端的一些导线受到寄生电感或介质吸收的影响,致使PCB板发生EMC问题。
任何电磁兼容问题都包含三个要素,即辐射源,耦合路径,敏感设备。因此,在解决电磁兼容问题时,也要从这三方面着手进行分析,进而采取适当的措施消除或减小电磁干扰。PCB设计与布线技术
1.1元器件布局
元器件布局时,注意以下几点可以避免出现许多的电磁兼容问题:
1.发热元件远离关键集成电路。
2.某些敏感器件例如锁相环,对噪声干扰特别敏感,它们需要更高层次的隔离。解决的方法是在敏感器件周围的电源铜箔上蚀刻出马蹄形将能得到良好的隔离性。该期间使用的所有信号进出都通过狭窄的马蹄形根部的开口。噪声电流必然在开口周围经过而不会接近敏感部分。使用这种方法时,确保所有其它信号都远离被隔离的部分。这种设计方法可以避免能够引起干扰的噪声信号的产生。
3.连接器及其引脚应根据元器件在板上的位置确定。所有连接器最好放在印制板的一侧,尽量避免从两侧引出电缆,以便减小共模电流辐射。
4.高速器件(频率大于10兆赫或上升时间小于2ns的器件)在印刻电路板上的走线尽可能短。
5.I/O驱动器应紧靠连接器,避免I/O信号在板上长距离走线,耦合不必要的干扰信号。
1.2确定PCB走线形式
PCB走线形式对信号的传输会产生很大的影响,直角走线一般是PCB布线中要尽量避免的情况。直角连线对信号的影响主要体现在三个方面:
1.拐角可以等效为传输线上的容性负载,减缓上升时间;
2.阻抗不连续会造成信号发射;
3.直角尖端会产生电磁干扰。
4.所以在PCB板中一般采用45度拐角或圆弧形拐角。
1.3电源线及电线布局
1.电源线从电源出发,经过负载再返回,形成一个小的环形天线,其在高频时效率极高,因此,在考虑安全的条件下,电源线应尽可能靠近地线,以减小差模辐射的环面积,也有助于减小电路的交扰。在部件电源的布线过程中,电源及其返回线路必须平行走向,可以产生一个低阻抗小环路的传输线结构。
2.在小信号电路与大电流做在一起的电路中,必须将GND明显地区分开来。布线方法为将小信号GND与大电流的GND进行分离,通常使用两根引线的GND。使大电流不再布线电阻上流动,从而不产生干扰,如像功率放大级和负载那样,将大电流流动的部分由电源直接进行布线。还有,将小信号部分进行汇总,也直接由电源进行布线。如果这样做,小信号与大电流线完全分离,再将汇总的小信号GND与功率放大级的GND相连接。
3.正确选择单点接地与多点接地。在低频电路中,信号的工作频率小于1MHz,它的布线与器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地的方式。当信号工作频率大于10MHz时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。当工作频率在1MHz—10MHz时,如果采用一点接地,其电线长度不应超过波长的1/20,否则应采用多点接地法。
4.数字地与模拟地分开。电路板上既有高速逻辑电路,又有线性电路,应使它们尽量分开,而两者的地线不要相混,分别于电源端地线相连。低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地;高频电路宜采用多点串联接地,地线应短而粗。高频元件周围尽量用栅格状大面积地箔,要尽量加大线性电路的接地面积。
5.接地线应尽量加粗。若接地线用很细的线条,则接地电位会随电流的变化而变化,致使电子产品的定时信号电平不稳,抗噪声性能降低。因此应将接地线尽量加粗,使它能通过三倍于印刷电路板的允许电流。如有可能,接地线的宽度应大于3mm。
6.接地线构成闭环路。设计只由数字电路组成的印刷电路板的地线系统时,将接地线做成闭路可以明显地提高抗噪声能力。其原因在于:印刷电路板上有很多集成电路元件,尤其遇有耗电多的元件时,因受接地线粗细的限制,会在底线上产生较大的电位差,引起抗噪声能力下降;若将接地线构成环路,则会缩小电位差值,提高电子设备的抗噪声能力。PCB电磁兼容性的仿真分析与优化
采用软件对PCB进行电磁兼容预仿真分析,在产品的设计阶段就可大体估计所设计PCB的电磁兼容性能,了解PCB上场的分布于趋势,这对合理布局布线起到了很大的帮助。从而可以大大提高产品性能,节约成本,缩短研发时间,加快产品进入市场步伐,为占领大的市场份额争取了宝贵时间,提高经济效益。
Cadence PSD 是Cadence公司著名的电路设计软件,它提供了完整的电路设计解决方案,从原理图板图设计,到电路分析仿真、封装等。可用于低、高频,数模混合电路的设计。我们主要采用Cadence PSD软件包中的Concept HDL工具和Allegro工具来完成电路原理图的绘制和板图的生成。Concept HDL工具支持行为级和结构级的原理图设计绘制,它提供一个可用文本和图形进行设计的设计环境,包括可用于快速设计的块编辑功能。Concept HDL是一个基于参照的编辑器,因为他在原理图中参照的所有部件来自驻留在参照区或者本地区内的各种各样的库中。Allegro主要功能是在自我设定的有效参数条件下,自动或手动完成元件布局及布线,生成适合要求的PCB。
随后利用Ansoft Designer软件进行PCB的场仿真,可得到我们想要的PCB的电流图和EM近场分布图。在仿真模型图中依据前面所提到得元件布局和走线原则适当调整强场区中的信号线和敏感元件位置,使之原理强场区,进而减少电磁干扰。
根据软件仿真结果分析PCB的电磁兼容性能,并对PCB板图加以优化。仿真所得的电流图和近场分布图对电路的合理设计和布局有重要的指导作用。结束语
电磁干扰已成为线路设计所面临的主要问题之一,PCB设计中的抗干扰是一项实践性非常强的技术工作。元件间的合理布局、增大布线间距、短线连接、减少布线过程中的过孔设置、降低连线的特性阻抗、避免多频率交调影响等式减少电磁干扰的有效方法。良好的PCB设计可以大大提高系统的抗干扰能力,从而提高系统可靠性。
参考文献
[1] 林国荣 电磁干扰及控制,北京电子出版社,2002
[2] [日]青本英彦著,周南生译.模拟电路设计与制作[M],北京:科学出版社,2005.4 [3] Bruce Carter.Circuit board layout technique, document from TI
第二篇:PCB设计中的抗干扰措施与电磁兼容性研究.doc
印制电路板设计中的抗干扰措施与电磁兼容性研究
印制电路板(PCB)是电子产品中电路元件和器件的支撑件,它提供电路元件和器件之间的电气连接,是目前电子器材用于各类电子设备和系统的主要装配方式。鉴于PCB设计的好坏对抗干扰能力影响很大,因此,PCB的设计除必须遵守一般原则之外,还应符合抗干扰设计与电磁兼容性的要求。
一. 电路板设计的一般原则 1.布局
首先应考虑PCB尺寸大小。PCB尺寸过大,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。在确定PCB尺寸后,再确定元件的位置,一般来说,应把模拟信号、高速数字电路、噪声源(如继电器、大电流开关等)这三部分合理分开,使相互间的信号耦合为最小。最后,根据电路的功能单元,对电路的全部元器件进行布局。在确定元件的位置时要遵守以下原则: 按照电路的流程安排各个功能电路单元的位置,便于信号流通,并使信号尽可能保持一致的方向。
以每个功能电路的核心元件为中心进行布局。元器件应均匀、整齐紧凑地排列,尽量减少和缩短各元器件之间的引线和连接。
在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尺可能使元器件平行排列,以利于装焊及批量生产且美观。
位于电路板边缘的元器件,离电路板边缘一般不小于2mm。电路板的最佳形状为矩形,长宽比为3:2或4:3,其尺寸大于200x150mm时,应考虑电路板所受的机械强度。
尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。
某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。
重量超过15g的元器件应当用支架加以固定,然后焊接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏元件应远离发热元件。
对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。
应留出印制板定位孔及固定支架所占用的位置。
2、布线
布线的原则如下:
输入、输出端用的导线应尽量避免相邻平行,最好加线间地线,以免发生反馈耦合。
导线的最小宽度主要由导线与绝缘基板间的粘附强度和流过它们的电流值决定,当铜箔厚度为0.05mm、宽度为1~15mm时,通过2A的电流,温度不会高于3℃。因此,导线宽度为1.5mm便可满足要求。对于集成电路尤其是数字电路,通常选宽度为0.02~0.3mm的导线,当然,只要允许,还是尽可能用宽线,尤其是电源线和地线。导线的最小间距主要由最坏情况下的线间绝缘电阻和击穿电压决定。对于集成电路尤其是数字电路,只要工艺允许,可使间距小至5~8mm。
印制导线拐弯处一般取圆弧形,而直角或夹角在高频电路中会影响电气性能。此外,尽量避免使用大面积铜箔,否则,长时间受热时,易发生铜箔膨胀和脱落现象。必须用大面积铜箔时,最好用栅格状,这样有利于排除铜箔与基板间粘合剂受热产生的挥发性气体。
二 电路板及电路抗干扰措施
印制电路板的抗干扰设计与具体电路有着密切的关系,以下从四个方面讨论PCB抗干扰设计的措施。
1、电源线设计
根据印制线路板电流的大小,尽量加粗电源线宽度,减少环路电阻。同时使电源线、地线的走向和数据传递的方向一致,这样有助于增强抗噪声能力。
2、地线设计 印刷电路板上,电源线和地线最重要。克服电磁干扰,最主要的手段就是接地。对于双面板,地线布置特别讲究,通过采用单点接地法,电源和地是从电源的两端接到印刷线路板上来的,电源一个接点,地一个接点。印刷线路板上,要有多个返回地线,并都会聚到回电源的那个接点上,就是所谓单点接地。所谓模拟地、数字地、大功率器件地开分,是指布线分开,而最后都汇集到这个接地点上来。与印刷线路板以外的信号相连时,通常采用屏蔽电缆。对于高频和数字信号,屏蔽电缆两端都接地。低频模拟信号用的屏蔽电缆,一端接地为好。如能将接地和屏蔽正确结合起来使用,可解决大部分干扰问题。电子设备中地线结构大致有系统地、机壳地(屏蔽地)、数字地(逻辑地)和模拟地等。地线设计的原则是:
数字地与模拟地分开。若线路板上既有逻辑电路又有线性电路,应使它们尽量分开,分别与电源端地线相连,并尽可能加大线性电路的接地面积。低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地。高频电路宜采用多点串联接地,地线应短而粗,高频元件周围尽量用栅格状大面积地箔。
接地线应尽量加粗。若接地线很细,则接地电位随电流的变化而变化,致使电子设备的定时信号电平不稳,抗噪声性能变坏。因此应将接地线加粗,使它能通过三倍于印制板上的允许电流。如有可能,接地线宽度应在2~3mm 以上。
正确选择单点接地与多点接地。在低频电路中,信号的工作频率小于1MHz,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地。当信号工作频率大于10MHz时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。当工作频率在1~10MHz时,如果采用一点接地,其地线长度不应超过波长的1/20,否则应采用多点接地法。
将接地线构成闭环路。设计只由数字电路组成的印制电路板的地线系统时,将接地线做成闭环路可以明显的提高抗噪声能力。其原因在于:印制电路板上的很多集成电路元件,尤其遇到耗电多的元件时,因受接地线粗细的限制,会在地结上产生较大的电位差,引起抗噪声能力下降,若将接地构成环路,则会缩小电位差值,提高电子设备的抗噪声能力。
3、合理设置退耦电容
性能好的高频去耦电容可以去除高到1GHZ的高频成份。瓷片电容或多层陶瓷电容的高频特性较好。去耦电容有两个作用:一方面旁路除掉该器件的高频噪声。数字电路中典型的去耦电容为0.1uF,有5nH分布电感,它的并行共振频率大约在7MHz左右,对于10MHz以下的噪声有较好的去耦作用,对40MHz以上的噪声几乎不起作用。1uF、10uF电容,并行共振频率在20MHz以上,去除高频率噪声的效果要好一些。在电源进入印刷板的地方并一个1uF或10uF的去高频电容往往是有利的,即使是用电池供电的系统也需要这种电容。每10片左右的集成电路要加一片充放电电容,或称为蓄放电容,电容大小可选10uF。最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感,最好使用胆电容或聚碳酸酯电容。去耦电容值的选取并不严格,可按C=1/f计算,即10MHz取0.1uF。对微控制器构成的系统,取0.1~0.01uF之间都可以。退耦电容的一般配置原则是: 电源输入端跨接10~100uF的电解电容器。如有可能,接100uF以上的更好。原则上每个集成电路芯片都应布置一个0.01uF的瓷片电容,如遇印制板空隙不够,可每4~8个芯片都应布置一个1~10uF的钽电容。
对于抗噪声能力弱、关断时电源变化大的器件,如RAM、ROM存储器件,应在芯片的电源线和地线之间直接接入退耦电容。
电容引线不能太长,尤其是高频旁路电容不能有引线。
4、特殊器件的处理
在印制板中有接触器、继电器、按钮等元件时,操作它们时均会产生较大火花放电,必须采用RC电路来吸收放电电流。一般R取1~2KΩ,C取2.2~47uF。
CMOS的输入阻抗很高,易受感应,因此在使用时对不用端要接地或接正电源。
选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。为减小信号传输中的畸变,信号在印刷板上传输,其延迟时间不应大于所用器件的标称延迟时间。
注意印刷线板与元器件的高频特性。在高频情况下,印刷线路板上的引线、过孔、电阻、电容、接插件的分布电感与电容等不可忽略。电阻对高频信号产生的反射,会对引线的分布电容起作用,当引线长度大于噪声频率相应波长的1/20时,就产生天线效应,噪声通过引线向外发射。
三、电磁兼容性设计
对于微控制器时钟频率与总线周期特别快、含有大功率与大电流驱动电路以及含有微弱模拟信号电路与高精度A/D变换电路的系统,应特别注意抗电磁干扰。
1、印刷电路板设计中的电磁兼容性措施
数字地与模拟地分开,地线加宽,以解决公共阻抗耦合问题。
在布局时若高速、中速和低速混用时,注意不同的布局区域,且模拟电路和数字逻辑要分离。
布线时专用零伏线、电源线的走线宽度≥1mm,电源线和地线尽可能靠近,整块印刷板上的电源与地要呈“井”字形分布,以便使分布线电流达到均衡。
要为模拟电路专门提供一根零伏线。
为减少线间串扰,必要时可增加印刷线条间距,有意安插一些零伏线作为线间隔离。
印刷电路的插头也要多安排一些零伏线作为线间隔离。
特别注意电流流通中的导线环路尺寸。
如有可能在控制线的入口处加接RC去耦,以便消除传输中可能出现的干扰因素。
线宽不要突变,导线不要突然拐角(≥90度)。
在印刷线路板上使用逻辑电路时,凡能不用高速逻辑电路的就不用,并在电源与地之间加去耦电容。
可用串电阻的办法,降低控制电路上沿跳变速率;尽量为继电器等提供某种形式的阻尼;使用满足系统要求的最低频率时钟且时钟产生器尽量靠近到用该时钟的器件;石英晶体振荡器外壳要接地;用地线将时钟区圈起来,时钟线尽量短;I/O驱动电路尽量靠近印刷板边,让其尽快离开印刷板;对进入印刷板的信号要加滤波,从高噪声区来的信号也要加滤波,同时用串终端电阻的办法,减小信号反射;集成电路上该接电源的端不要悬空,闲置不用的运放正输入端接地,负输入端接输出端印制板尽量使用45折线而不用90折线布线以减小高频信号对外的发射与耦合印制板按频率和电流开关特性分区,噪声元件与非噪声元件要距离远一些单面板和双面板用单点接电源和单点接地;时钟、总线、片选信号要远离I/O线和接插件;模拟电压输入线、参考电压端要尽量远离数字电路信号线,特别是时钟;对A/D类器件,数字部分与模拟部分不要交叉;时钟线垂直于I/O线比平行I/O线干扰小,时钟元件引脚远离I/O电缆;元件引脚尽量短,去耦电容引脚尽量短关键的线要尽量粗,并在两边加上保护地;高速信号线要短要直;对噪声敏感的线不要与大电流、高速开关线平行;石英晶体下面以及对噪声敏感的器件下面不要走线弱信号电路、低频电路周围不要形成电流环路;任何信号都不要形成环路,如不可避免,让环路区尽量小;每个电解电容边上都要加一个小的高频旁路电容用大容量的钽电容或聚酯电容而不用电解电容作电路充放电储能电容,使用管状电容时,外壳要接地。
2、配套于印刷电路板的开关电源的电磁兼容性
电源在向系统提供能源的同时,也将其噪声加到所供电的电源上。电路中微控制器的复位线、中断线以及其它,一些控制线最容易受外界噪声的干扰。电网上的强干扰通过电源进入电路,即使电池供电的系统,电池本身也有高频噪声。模拟电路中的模拟信号更经受不住来自源的干扰。
开关电源对电网传导的骚拢及开关电源的辐射骚扰的主要因素是非线性流和初级电路中功率晶体管外壳与散热器之间的耦合在电源输入端产生的传导共模噪声。抑制方法为:对开关电压波形进行“修整”:在晶体管与散热器之间加装屏蔽层的绝缘垫片,在市电输入电路中加接电源滤波器尽可能地减小环路面积在次线整流回路中使用软恢复二极管或在二极管上并联聚酯薄膜电容器;对晶体管开关波形进行“修整”。另外,由于二极管反向电流陡变及回路分布电感与二极管结电容等形成高频衰减振荡,而滤波电容的等效串联电感又削弱了滤波的作用,因此在输出改波中出现尖峰干扰,为此应加小电感和高频电容以减速小输出噪声。
3、传输线的电磁兼容性
传输电缆的形式较多,双绞丝在低于100KHz下使用非常有效,高频下因特性阻抗不均匀及由此造成的波形反射而受到限制;带屏蔽的双绞线,信号电流在两根内导线上流动,噪声电流在屏蔽层里流动,因此消除了公共阻抗的耦合,而任何干扰将同时感应到两根导线上,使噪声相消;非屏蔽双绞线抵御静电耦合的能力差些,但对防止磁场感应仍有很好作用,其屏蔽效果与单位长度的导线扭绞次数成正比同轴电缆有较均匀的特性阻抗和较低的损耗,从直流到甚高频都有较好特性。传输线最好的接线方式是信号与地线相间,稍次的方法是一根地、两根信号再一根地依次类推,或专用一块接地平板,将负载直接接地的方式是不合适的,这是因为两端接地的屏蔽层为磁感应的地环路电流提供了分流,使得磁场屏蔽性能下降。
至于电缆线的端接,在要求高的场合要为内导体提供360°的完整包裹,并用同轴接头来保证电场屏蔽的完整性。
4、静电的防护
静电放电可通过直接传导、电容耦合和电感耦合三种方式进入电子线路。直接对电路的静电放电经常会引起电路的损坏,对邻近物体的放电通过电容或电感耦合,会影响到电路工作的稳定性。防护方法:建立完善的屏蔽结构,带有接地的金属屏蔽壳体可将放电电流释放到地金属外壳接地可限制外壳电位的升高,造成内部电路与外壳之间的放电;内部电路如果要与金属外壳相连时,要用单点接地,防止放电电流 流过内部电路;在电缆入口处增加保护器件;在印刷板入口处增加保护环(环与接地端相连)。
第三篇:IGBT模块电磁兼容性设计
IGBT模块电磁兼容性设计
(1)IGBT模块的优化布局
变流器主电路在空间产生的磁场强度随输入、输出母线中通过电流的强弱而变化,同时IGBT模块产生的空间交变电磁场的强度随其两端电压和电流突变的剧烈程度而变化。这些干扰信号很容易耦合到IGBT模块的驱动线上。通过合理的布局,可以使在功率驱动端附近和驱动线一带的空间交变电磁场强度最小,即干扰信号最小。设计中应采取以下措施。1)从滤波电容到IGBT模块的直流连接采用双层镀锡铜板叠加技术。2)输入、输出母线与外部直流输入端和外部交流输出端采用铜条连接。
这种结构不仅可以减小寄生电感,而且对于IGBT模块产生的空间交变电磁场起到了很好的屏蔽作用。
(2)IGBT模块的接地设计
当IGBT模块的栅极驱动或控制信号与主电流共用一个接地回路时,在开关过渡过程中,由于主电流具有很高的di/dt,功率电路漏电感上有感应电压存在。一旦发生这种情况,电路中应该为“地”电位的各点实际上会处于高于“地电位”几伏的电位上。这个电压会出现在IGBT模块的栅极,从而使IGBT模块有可能误导通。为了避免这个问题的出现,需要慎重考虑栅极驱动与控制电路的设计。在设计中应采取以下措施。
1)下桥臂每个栅极IGBT驱动电路都采用了分离绝缘措施,且各自的电源零线按在IGBT模块的辅助端子上,不与主电流共用电流支路,以消除接地回路噪声问题。2)在功率器件关断期间,使用负的反向偏置电压,以避免噪声干扰。
经过电磁兼容性设计的变流器,在实际运行中可以获得良好的技术性能指标,对此可以得到以下结论。
1)变流器所处的电磁环境十分复杂,带来很多电磁干扰,良好的电磁兼容性设计是变流器安全可靠运行的关键。
2)吸收电路设计是变流器电磁兼容设计的难点,由于在功率母线的设计中采用了独特的双层镀锡铜板叠加技术,母线电感足够小,吸收电路只需简单的无感电容即可。3)在设备或系统设计的初始阶段应同时进行电磁兼容设计,把电磁兼容的大部分问题解决在设计定型之前,这样可得到最高的性能价格比。
第四篇:通信设备的电磁兼容性设计
通信设备的电磁兼容性设计
李宏坚
(陕西烽火电子股份有限公司)摘要:本文从印制板设计、内部走线设计和机壳结构设计三方面,介绍了通信设备的一些电磁兼容性设计方法。
关键字:电磁兼容、印制板设计、内部走线设计、结构设计
随着电磁环境越来越复杂,通信设备的电磁兼容性要求也越来越高,在设计阶段就应该考虑其电磁兼容性,这样可以将产品在生产阶段出现电磁兼容问题的可能性减少到一个较低的程度。
一、通信设备印制板电磁兼容性设计
造成通信设备辐射超标的原因是多方面的,接口滤波不好,结构屏效低,电缆设计有缺陷都有可能导致辐射发射超标,但产生辐射的根本原因却在PCB的设计,主要关注这几个方面:
1.从减小辐射干扰的角度出发,应尽量选用多层板,内层分别作电源层、地线层,用以降低供电线路阻抗,抑制公共阻抗噪声,对信号线形成均匀的接地面,加大信号线和接地面间的分布电容,抑制其向空间辐射的能力。
2.电源线、地线、印制板走线对高频信号应保持低阻抗。在频率很高的情况下,电源线、地线、或印制板走线都会成为接收与发射干扰的小天线,降低这种干扰的方法除了加滤波电容外,更值得重视的是减小电源线、地线及其他印制板走线本身的高频阻抗,因此,各种印制板走线要短而粗,线条要均匀。
3.电源线、地线及印制导线在印制板上的排列要恰当,尽量做到短而直,以减小信号线与回线之间所形成的环路面积。
4.电路元件和信号通路的布局必须最大限度地减少无用信号的相互耦合。在PCB的不同的设计阶段所关注的问题点不同,在元器件布局阶段需要注意:
1.接口信号的滤波、防护和隔离等器件是否靠近接口连接器放置,先防护,后滤波;电源模块、滤波器、电源防护器件是否靠近电源的入口放置,尽可能保证电源的输入线最短,电源的输入输出分开,走线互不交叉;
2.晶体、晶振、继电器、开关电源等强辐射器件或敏感器件是否远离单板拉手条、连接器;
3.滤波电容是否靠近IC的电源管脚放置,位置、数量适当; 4.时钟电路是否靠近负载,且负载均衡放置; 5.接口滤波器件的输入、输出是否未跨分割区;除光耦、磁珠、隔离变压器、A/D、D/A等器件外,其它器件是否未跨分割区;
在PCB布线阶段需要注意:
1.电源、地的布线处理无地环路,电源及与对应地构成的回路面积小; 2.差分信号线对是否同层、等长、并行走线,保持阻抗一致,差分线间无其他走线;
3.时钟等关键信号线是否布内层(优先考虑优选布线层),并加屏蔽地线或与其他布线间距满足3W原则,关键信号走线是否未跨分割区;
4.是否无其他信号线从电源滤波器输入线下走线,滤波器等器件的输入、输出信号线是否未互相并行、交叉走线;
二、通信设备内部走线电磁兼容性设计 通信设备内部走线混乱,不仅会造成高、低电平信号之间相互干扰,也会给后期采用屏蔽、滤波、接地等补救措施带来不便,会使设计的屏蔽、滤波电路、接地措施起不到应有的作用,在规划内部走线时,需要遵循以下基本原则:
1.机箱内各种裸露走线要尽量短。2.传输不同电平信号的导线分组捆扎,数字电路和模拟电路信号线应分组捆扎,并保持适当距离,减少导线相互影响。
3.对产品中用来传递信号的扁平电缆,应采用地-信号-地-信号-地排列的方式,这样可以有效抑制干扰,增强其抗干扰能力。
4.将低频进线和回线绞合在一起,形成双绞线,减少电磁干扰,如电源线。5.对确定的辐射干扰较大或敏感的导线要加屏蔽措施。
6.屏蔽电缆进出屏蔽体必须保证屏蔽层与屏蔽体之间可靠搭接,一般要求360°环接,并提供足够低的搭接阻抗。
7.非屏蔽电缆原则上禁止直接从屏蔽体中出线。特殊情况下允许直接出线,但是要求屏蔽体内侧(或者外侧)电缆的长度不得越过80mm,注意这个尺寸包括PCB上面的走线,如果有滤波电路,指滤波电路与屏蔽体之间的电缆长度。
8.屏蔽电缆还有一种特殊应用场合,有时系统规定其屏蔽层不得与屏蔽体(实际上就是PGND)连接,典型的例子是同轴电缆。这时的屏蔽电缆可以按照非屏蔽电缆处理(在屏蔽体一侧的长度不得超过80mm),或者采用双层屏蔽电缆。
三、通信设备机壳结构的电磁兼容性设计
通信设备的金属机壳是良好的屏蔽体,但实际上,由于屏蔽体上面不可避免地存在各种缝隙、开孔以及进出电缆等各种缺陷,这些缺陷将对屏蔽体的屏蔽效能有急剧的劣化作用,真正决定实际屏蔽体的屏蔽效能的因素是各种电气不连续缺陷,包括缝隙、开孔、电缆穿透等。
1.机壳接缝
主要为通信设备的壳体与安装盖板之间的接缝,该类缝虽然面积不大,但其最大线度尺寸即缝长却非常大,由于维修、开启等限制,致使该类缝成为电子设备中屏蔽难度最大的一类孔缝,采用导电衬垫等特殊屏蔽材料可以有效地抑制电磁泄漏。该类孔缝屏蔽设计的关键在于:合理地选择导电衬垫材料并进行适当的变形控制。
2.通风孔
该类孔面积和最大线度尺寸较大,通风孔设计的关键在于通风部件的选择与装配结构的设计。在满足通风性能的条件下,应尽可能选用屏效较高的屏蔽通风部件,如在风扇的风道口增加与机壳连接,具有一定深度蜂窝状铜网等。
3.观察孔与显示孔
该类型孔面积和最大线度尺寸较大,其设计的关键在于屏蔽透光材料的选择与装配结构的设计。
4.连接器与机箱的接缝
这类缝的面积与最大线度尺寸均不大,但由于在高频时导致连接器与机箱的接触阻抗急剧增大,从而使得屏蔽电缆的共模传导发射变大,往往导致整个设备的辐射发射出现超标,为此应采用导电橡胶等连接器导电衬垫。
电磁兼容是一个整机性能指标,它与PCB设计、设备内部走线设计、结构设计的好坏有着密切的关系。在设计一个新产品时,一开始就必须考虑到电磁兼容问题,如果忽视了这一问题,到新产品定型时,干扰问题会暴露出来,因此及早地解决电磁干扰问题不仅是行之有效的,而且会大大降低产品成本。
参考文献:
1、电磁兼容的印制板电路设计,(美)Mark I,Montrose著,吕英华 于学平张金玲译,机械工业出版社,2008;
2、产品设计中的EMC技术,(英)威廉姆斯著,李迪 王培清译,电子工业出版社,2004;
3、电磁兼容设计与整改对策及案例分析,朱文立著,电子工业出版社,2012。
第五篇:通信开关电源的电磁兼容性
通信开关电源的电磁兼容性: 摘要:简要介绍了通信开关电源的电磁兼容性要求、国内外标准、电磁兼容性的成因、研究解决方法及国内通信开关电源的电磁兼容性现状.引言
通信开关电源因具有体积小、重量轻、效率高、工作可靠、具有远程监控等原因,广泛的应用于程控交换、光数据传输、无线基站、有线电视系统及IP网络中,是信息技术设备正常工作的核心动力.随着信息技术的发展,信息技术设备遍布祖国大江南北,从发达的中心城市至贫穷落后的偏远山区,为人与人间的沟通交流及数据传输提供了极大的便利.通信设备的电网供电质量由于城乡间的差异,即有稳定的大电网如核电、火电、水电等并网的供电方式,同时也有独立的小水电单独供电方式.特别是在小水电站供电方式下,因水量的变化复杂、用户用电量的变化较大及设备工作的不稳定,造成电网波形失真严重及其电网电压和大幅波动,同时因配电系统的接线不规范,对通信开关电源也造成了严峻的考验.铁路通信及电力通信正在发展壮大.由于电力机车经过之处,产生很强的感应电压,使地线电压产生很大的波过,从而引起电网电压的很大的波动,强大的电场容易引起开关电源设备工作的瞬时不稳定.在高压电网运行的通信开关电源,虽然电网电压稳定,但容易受电网负载变化等引起的强电磁场的搔扰影响.用于基站的通信用开关电源,由于多安装在较高的建筑物上或是山顶,更容易受到雷电的袭击.因此,通信开关电源要有很强的抗电磁搔扰的能力,特别是对雷击、浪涌、电网电压、静电、电场、磁场及电磁波等要有足够的抗扰动能力,保证自身能够正常工作以及通信设备供电的不间断而且稳定.另一方面,因通信开关电源内部的功率开关管、整流或续流二极管及主功率变压器,在高压、大电流及高频开关的方式下工作,其电压电流波形多为方波.在高压大电流的方波切换过程中,方波电压电流将产生丰富的谐波电压及谐波电流,这些谐波电压及谐波电流可通过电源输入线或开关电源的输出线传出,对与通信电源在同一电网上供电的其它设备及电网产生搔扰,同时对由通信电源供电的设备如程控交换设备、无线基站、光传输设备及有线电视设备等产生搔扰,使设备不能正常工作.由于电压差可以产生电场、电流的流动可以产生磁场,丰富的谐波电压电流的高频部分,在开关电源内部产生电磁场,造成开关电源内部工作的不稳定,使电源的性能降低.有部分电磁场通过开关电源机壳的缝隙,向周围空间辐射,与通过电源线、直流输出线产生的辐射电磁场,一起通过空间传播的方式,对其它高频设备及对电磁场比较敏感的设备造成搔扰,引起其它设备工作异常.因此,要限制通信开关电源对由负载线、电源线产生的传导搔扰量对空间产生的辐射电磁场搔扰量,使之能与处于同一环境中的其它电信设备均能够正常工作,互不产生搔扰.电磁兼容性的国内国外标准
电磁兼容性是指设备或系统在其电磁环境中能正常工作且不对该环境中的任何事物构成不能随的电磁搔扰的能力
要彻底消除设备的电磁搔扰及对外部一切电磁搔扰信号不敏感是不可能的.只能通过制订系统内设备与设备之间的相互允许产生的电磁搔扰大小及抵抗电磁搔扰的能力,才能使电气设备及系统间达到电磁兼容性的要求.国内外大量的电磁兼容性标准,为系统内的设备相互达到电磁兼容性要求制订了约束条件.国际无线电干扰特别委员会(CISPR)是国际电工委员会(IEC)下属的一个电磁兼容标准化组织,早在1934年就开展EMC标准的研究,下设六个分会.其中第六分会(SCC)主要负责制订关于干扰测量接收机及测量方法的研究.CISPR16《无线电干扰和抗扰度测量设备规范》对电磁兼容性测量接收机、辅助设备的性能以及校准方法作出了详细的要求.CISPR17《无线电干扰滤波器及抑制元件的抑制特性测量》制订了滤波器的测量方法.CISPR22《信息技术设备的无线电搔扰限值和测量方法》规定了信息技术设备在0.15-1000MHz频率范围内产生的电磁搔扰限值.CISPR24《信息技术设备抗扰度限值和测量方法》规定了信息技术设备对外部搔扰信号的时域及频域的抗搔扰性能要求.其中CISPR16、CISPR22及CISPR24构成了信息技术设备包括通信开关电源设备的电磁兼容性测试内容及测试方法要求.是目前通信开关电源电磁兼容性设计的最基本要求.IEC最近也出版了大量的基础性电磁兼容标准.其中最有代表性的是IEC61000系列标准,规定了电子电气设备的雷击浪涌(SURGE)、静电放电(ESD)、电快速瞬变脉冲群(EFT)、电流谐波、电压跌落、电压瞬变及短时中断、电压起伏和闪烁、辐射电磁场、由射频电磁场引起的传导搔扰抗扰度、传导搔扰及辐射搔扰等的电磁兼容性要求.另外,美国联邦委员会制订的FCC15、德国电气工程师协会制订的VDC0871-1A1、VDE0971-2A2、VDE0878,都对通信设备的电磁兼容性提出了要求.我国对电磁兼容性标准的研究比较晚.采取的最主要的办法是引进、消化、吸收.洋为中用是国内电磁兼容性标准的制订的最主要的方法.1998年,信息产业部根据CISPR22、IEC61000系列标准及ITU-T 0.41标准,制订了UD/T983-1998《通信电源设备电磁兼容性限值及测量方法》,详尽的规定了通信电源设备包括通信开关电源的电磁兼容性的具体测试项目、要求及测试方法,为通信电源电磁兼容性的检验、达标并通过入网检测明确了设计目标.国标也等同采用了相应的检测明确了国际标准.如GB/T 17626.1-12系列标准等同采用了IEC61000系列标准;GB9254-1998《信息技术设备的无线电搔扰限值及测量方法》等同采用CISPR22;GB/T17618-1998《信息技术设备抗扰度限值和测量方法》等同采用CISPR24.开关电源引起电磁兼容性的原因
通信开关电源因工作在高电压大电流的开关工作状态下,其引起电磁兼容性问题的原因是相当复杂的.从整机的电磁兼容性讲,主要有共阻抗耦合、线间耦合、电场耦合、磁场耦合电磁波耦合几种.电磁兼容产生的三个要素为:搔扰源、传播途径及受搔扰体.共阻耦合主要是搔扰源与受搔扰体在电气上存在的共同的阻抗,通过该阻抗使搔扰信号进入受搔扰对象.线间耦合主要是产生搔扰电压及搔扰电流的导线或PCB线,因并行布线而产生的相互耦合.电场耦合主要是由于电位差的存在,产生的感应电场对受搔扰体产生的耦合.磁场耦合主要是大电流的脉冲电源线附近,产生的低频磁场对搔扰对象产生的耦合.而电磁场耦合,主要是由于脉动的电压或电流产生的高频电磁波,通过空间向外辐射,对相应的受搔扰体产生的耦合.实际上,每一种耦合方式是不能严格区分的,只是侧重点不同而已.在开关电源中,主功率开关管在很高的电压下,以高频开关方式工作,开关电压及开关电流的接近方波,从频谱分析知,方波信号含有丰富的高次谐波,该高次谐波的频谱可达方波频率的1000次以上.同时,由于电源变压器的漏电感及分布电容,以及主功率开关器件的工作状态非理想,在高频开或关时,常常产生高频高压的尖峰谐波振荡,该谐波振荡产生的高次谐波,通过开关管与散热器间的分布电容传入内部电路或通过散热器及变压器向空间辐射.用于整流及续流二级管,也是产生高频搔扰的一个重要原因.因整流及续流二极管工作在高频开关状态,由于二极管的引线寄生电感、结电容的存在以及反向恢复电流的影响,使之工作在很高的电压及电流变化率下,且产生高频振荡.因整流及续流二极管一般离电源输出线较近,其产生的高频搔扰最容易通过直流输出线传出.通信开关电源为了提高功率因数,均采用了有源功率因数效正电路.同时,为了提高电路的效率及可靠性,减小功率器件的电应力,大量的采用了软开关技术.其中零电压、零电流或零电流开关技术应用最为广泛.该技术极大的降低了开关器件所产生的电磁搔扰.但是,软开关无损吸收电路,多数利用L、C进行能量转移,利用二极管的单向导电性能实现能量的单向转换,因而,该谐振电路中的二极管成为电磁搔扰的一大搔扰源.通信开关电源中,一般利用储能电感及电容器,组成L、C滤波电路,实现对差模及共模搔扰信号的滤波,以及交流方波信号转换为平滑的直流信号.由于电感线圈的分布电容,导致了电感线圈的自谐振频率降低,从而使大量的高频搔扰信号穿过电感线圈,沿交流电源线或直流输出线向外传播.滤波电容器,随着搔扰信号频率的上升,由于引线电感的作用,导致电容量及滤波效果不断的下降,直至谐振频率以上时,完全失去电容器的作用而变为感性.不正确的使用滤波电容及引线过长,也是产生电磁搔扰的一个原因.通信开关电源由于功率密度高、智能化程度高,带MCU微处理器,因而,从高至近千伏的电压信号,到低至几伏的电压信号;从高频的数字信号,至低频的模拟信号,电源内部的场分布相当复杂.PCB布线不合理、结构设计不合理、电源线输入滤波不合理、输入输出电源线布线不合理及CPU、检测电路的设计不合理,均会导致系统工作的不稳定或如静电放电、电快速瞬变脉冲群、雷击、浪涌及传导搔扰、辐射搔扰及辐射电磁场抗扰性能力的降低.电磁兼容性研究及解决方法
电磁兼容性的研究,一般运用CISPR16及IEC61000中规定的电磁场检测仪器及各种搔扰信号模拟器、辅助设备,在标准测试场地或实验室内部,通过详尽的测试分析、结合对电路性能的理解与改进来进行分析研究.从电磁兼容性的三要素讲,要解决开关电源的电磁兼容性,可从三个方面入手.第一:减小搔扰源产生的搔扰信号.第二:切断搔扰信号的传播途径.第三,增强受搔扰体的抗搔扰能力.在解决开关电源内部的兼容性时,可以综合运用上述三个方法,以成本效益比及实施的难易性为前提.因而,开关电源产生的对外搔扰,如电源线谐波电流、电源线传导搔扰、电磁场辐射搔扰等,只能用减小搔扰源的方法来解决.一方面,可以增强输入输出滤波电路的设计,改善APFC电路的性能,减小开关管及整流续流二极管的电压电流变化率,采用各种软开关电路拓扑及控制方式等.另一方面,加强机壳的屏蔽效果,改善机壳的缝隙泄漏,并进行良好的接地处理.而对外部的抗搔扰能力,如浪涌、雷击应优化交流输入及直流输出端口的防雷能力,通常,对1.2/50us开路电压及8/20US短路电流的组合雷击波形,因能量较小,采用氧化锌压敏电阻与气体放电管等的组合方法来解决.对于静电放电,通常在通信端口及控制端口的小信号电路中,采用TVS管及相应的接地保护、加大小信号电路与机壳等的电距离来解决或选用具有抗静电搔扰的器件.快速瞬变信号含有很宽的频谱,很容易以共模的方式传入控制电路内,采用防静电相同的方法并减小共模电感的分布电容、加强输入电路的共模信号滤波(加共模电容或插入损耗型的铁氧体磁环等)来提高系统的抗扰性能.减小开关电源的内部搔扰,实现其自身的电磁兼容性,提高开关电源的稳定性及可靠性,应从以下几方面入手:注意数字电路与模块电路PCB布线的正确分区、数字电路与模拟电路单点的接地、大电流电路与小电流特别是电流电压取样电路的单点接地以减小共阻搔扰、减小地环的影响、布线时注意相邻线间的间距及信号性质,避免产生串扰、减小高压大电流回路特别是变压器原边与开关管、电源滤波电容回路所包围的面积,减小输出整流回路及续流二极管回路与直流滤波器所包围的面积,减小变压器的漏电、滤波电感的分布电容、运用谐振频率高的滤波电容器等.MCU与液晶显示器的数据线、地址线工作频率较高,是产生辐射发射的主要搔扰源:小信号电路是抗外界搔扰的最薄弱环节,适当的增设提高抗搔扰能力的TVS及高频电容、铁氧体磁珠等元器件,以提高小信号电路的抗搔扰能力;与机壳距离较近的小信号电路,应加适当的绝缘体耐压处理等.功率器件的散热器、主变压器的电磁屏蔽层要适当的接地,综合考滤各种接地措施,有助于提高整机的电磁兼容性.各控制单元间的大面积接地用接地板屏蔽,可以改善开关电源内部工作的稳定性.整流器的机架上,要考虑各整流器间的电磁耦合、整机地线布置、交流输入中线、地线及直流地线、防雷地线间的正确关系、电磁兼容级的正确分配等.开关电源对内、外的搔扰及抗搔扰中,共模信号与开关器件的工作方式、散热器的安装及整机PCB板与机壳的连接有相当复杂的关系,共模信号在一定的条件下又可转变成差模信号.解决共模搔扰最简单的方法是解决好各电路单元与整机端口、机壳间的问题.整机屏蔽难以实施且成本较高,在无可赖何的情况下才采用该措施.国内通信开关电源的电磁兼容性改进现状
自YD/T983标准开始起草以来,国内通信电源制造商纷纷开始电磁兼容性的研究.由于电磁兼容性测试仪器、试验场地建设费用很高,且需要有经验的研发人员,很多制造商不能有自己的试验室,对电磁兼容性的研究造成了一定的困难.YD/T983标准中,抗扰度指标选用了国外标准中较低等级.除雷击浪涌、ESD及EFT指标外,其它抗扰度指标均比较容易达到要求.电磁搔扰指标如传导搔扰及辐射搔扰指标,由于很难满足标准的要求,是目前电磁兼容性研究的热点内容.国内只有极少数的厂家可以完全达到相关的标准的要求.中兴通信建立了自己的电磁兼容性试验室,在通信开关电源研发的初期,就致力于电磁兼容性的研究工作.其通信开关电源的前级运用最先进的有源功率因数校正技术加无损吸收电路,后级DC-DC采用零电压零电流(ZVZCS)相移谐振软开关技术或双管正激无损吸收软开关技术,通过专业的电源输入输出滤波器设计及防雷设计,以及对整机的安全性、数字接口电路的抗静电设计及抗快速瞬变脉冲群设计,对整机结构洽到好处的电磁静电设计及抗快速瞬变脉冲群设计,对整机结构洽到好处的电磁屏蔽设计,不仅使整机内部的电磁环境良好,工作稳定,可靠性提高,也使通信开关电源对外的电流谐波、电起伏和闪烁、传导搔扰及辐射搔扰达到或超过CISJPR22标准规定的A级要求.使输入交流电源线能够承受至少±6KV(1.2/50us与8/20us的综合波)浪涌电压搔扰、直流电源线能够承受至少±2KV的浪涌电压;整机外部能够承受至少±8KV的静电放电及3V/M的高频电磁场搔扰,300A/M的工频磁场搔扰.宽广的交流输入电压范围,使整机的电压跌落、电压瞬变及电压短时中断等搔扰过后,开关电源能够正常工作.专业的采集全国各地的电网搔扰电压,均在中兴开关电源上经过验证分析.中兴通信系列开关电源的电磁兼容性指标,已完全满足并超过了YD/T983-1998《通信开关电源设备电磁兼容性要求及测量方法》中所规定的所有项目的指标,部分产品已通过CE认证及FCC认证中的全部电磁兼容性指标,是真正的环保型通信开关电源.特别适合于移动基站、程控交换设备、IP电话、有线电视等数据通信传输设备以及铁路、水电、火电站等强的电磁场搔扰的场合使用.