第一篇:密利根油滴实验报告
密利根油滴实验 实验目的 1.通过对带电油滴在重力场和静电场中的运动进行测量,验证电荷的量子性和测定电子电荷。
2.学习密利根油滴实验精湛的思想和方法 实验原理
本次油滴实验运用平衡测量法。
首先利用喷雾器将雾状油滴喷入两块相距 d 的平衡板间,平行板带电压 V,使油滴在电场中受到电场力的影响运动。选择其中一个油滴,调整电压使其处于稳定状态,此时油滴受到重力和电场力。有 1)
同样,油滴在空气中受到的空气粘滞力有 2)
设油滴密度为ρ,油滴的质量有 3)
联立 2,3 式,得到 4)
√式是由 Stokes 定律得来,但 Stokes 定律是以连续介质为前提。由于实验中的油滴半径极小,丌能将空气看做连续介质,因此,空气粘滞系数应做修正:
5)
联立以上 3,4,5 式,其中 b=8.23×10^-3Pa·m g=9.80m·s^-2
P=101.325Pa
d=5.00×10^-3m l=2.00×10^-3m 得到 6)
[
(√)]
用 q 除以 e,可以得到油滴元电荷的数量 n,若 n 接近整数,则为可用数据,e 即为我们要求的电子电量 e。
实验步骤 1.寻找合适的油滴 调整极板间电压为 200V 左右,利用喷雾器将大量油滴喷射到极板间,大部分油滴均以一定速度向两极板移动,质量较大或较小的移动速度相比同电荷量的要快些。过一段时间后,监视器里的油滴已经非常少了,选择其中最稳定的油滴,调整电压,使该油滴在电压下静止,满足 1)式。记录此时极板间电压 V。
2.测量相关数据 略微升高电压,使油滴在高于重力的电场力下向上移动至屏幕最上方,恢复电压。再断开极板通电,使极板间无电场,油滴随着重力下降。过程中用秒表记录油滴降到监视器最下边的时间间隔。
3.计算 带入 3),6)式,得出油滴的半径和电荷量。
4.重复实验 选择 20 个丌同的油滴,每个油滴测量 4 组降落。
5.绘制丌同油滴半径和电量的散点图
实验数据
0 5 10 15 207.50E-0108.00E-0108.50E-0109.00E-0109.50E-0101.00E-0091.05E-0091.10E-0091.15E-0091.20E-009 G半径 /m编号0 5 10 15 204.00E-0196.00E-0198.00E-0191.00E-0181.20E-0181.40E-0181.60E-018 M电量 /c编号
将电量按由小到大顺序排列 0 5 10 15 204.00E-0196.00E-0198.00E-0191.00E-0181.20E-0181.40E-0181.60E-018 MY Axis TitleX Axis Title 由上图可见,油滴电荷量均分布在某些固定值左右,且每一固定值之间的电荷很少。由此可得出结论,基本电荷是量子化的,即油滴带电量为某一固定值的整数倍。
由图中数据可见,大部分数据虽然有量子化趋势,但是偏离较为严重,得出结论:实验数据较为粗糙。
0 2 4 6 8 10 12 14 161.35E-0111.40E-0111.45E-0111.50E-0111.55E-0111.60E-0111.65E-0111.70E-011Y =1.32883E-11+2.50711E-13 X L Polynomial Fit of 1_L电荷量分布平均值编号 上图是丌同电荷量集中区域不编号的关系,从图中可知,电荷量分布在一个线性区域中,而第七和第九严重偏离直线,误差较大,可以忽略。
测量及计算数据如下:
油滴编号 电压 时间 1 时间 2 时间 3 时间 4平均时间 半径/m 电荷量/c 1 195 21.09 21.06 22.06 22.03 21.56 7.88E-10 6.41E-19 2 164 21.06 20.63 20.71 20.66 20.765 8.19E-10 8.08E-19 3 152 14.79 14.57 14.31 14.55 14.555 1.17E-09 1.52E-18 4 155 17.27 17.31 17.41 17.11 17.275 9.84E-10 1.14E-18 5 166 16.2 16.52 16.19 16.34 16.3125 1.04E-09 1.16E-18 6 190 16.53 16.36 16.44 16.56 16.4725 1.03E-09 1.00E-18 7 310 20.61 20.75 20.81 20.89 20.765 8.19E-10 4.28E-19 8 208 15.63 15.74 16.01 15.79 15.7925 1.08E-09 9.77E-19 9 189 18.7 18.94 19.08 19.08 18.95 8.97E-10 8.09E-19 10 180 17.1 17.56 17.47 17.45 17.395 9.77E-10 9.71E-19 11 213 20.12 20.1 19.98 20.34 20.135 8.44E-10 6.53E-19 12 227 14.89 14.9 15.25 15.11 15.0375 1.13E-09 9.66E-19 13 244 18.52 18.28 18.3 18.37 18.3675 9.26E-10 6.58E-19 14 210 15.57 15.61 15.37 15.49 15.51 1.10E-09 9.95E-19 15 214 20.32 20.17 19.99 19.93 20.1025 8.46E-10 6.52E-19 16 304 16.27 16.25 16.53 16.09 16.285 1.04E-09 6.37E-19 17 243 18.49 18.29 18.37 18.29 18.36 9.26E-10 6.61E-19 18 235 19.09 19.19 20.65 19.19 19.53 8.70E-10 6.21E-19 19 199 21.3 21.25 21.43 21.35 21.3325 7.97E-10 6.39E-19 20 165 20.72 20.56 20.84 20.75 20.7175 8.21E-10 8.06E-19
第二篇:密立根油滴课后思考题
密立根油滴是一个物理实验,大家做完这个实验之后有什么收获呢?以下是小编精心准备的密立根油滴课后思考题,大家可以参考以下内容哦!
一、选择题
1、在密立根油滴实验前,需要实验装置进行水平调节操作吗?
A、需要 B、不需要
2、在密立根油滴实验时,任意一个油滴都可以被作为实验测量对象吗?
A、是 B、不是
3、在密立根油滴实验中,主要验证电荷的()
A 颗粒性 B 连续性 C 带电性
4、以下说法正确的是:()
A、在实验过程中寻找的电荷平衡电压为0-400之间的任意值
B、本次实验所采用的方法是动态(非平衡)法测油滴电荷
C、我们将实验测量和计算得到的一组油滴带电量数据除以公认值e,得到各油滴的带电量子数(一般为非整数),再对这些四舍五入取整,作为各油滴的带电量子数n5、密立根油滴实验中,基本电荷e的计算,应对实验测得的各油滴电荷q求()
A、算术平均值 B、最小公倍数 C、最小整数 D、最大公约数
二、填空题
1、在进行密立根油滴实验时,选择一个合适油滴的电压标准是 V到 V。
2、在进行密立根油滴实验时,选择一个合适油滴的试测时间范围是 S到 S。
3、密立根油滴实验中,主要需要测___________和 ___________这两个物理量。
三、简答题
1、为什么实验前要先调水平?
2、什么样的油滴是合适的?
参考答案:
一、选择题
1、在密立根油滴实验前,需要实验装置进行水平调节操作吗?
A、需要 B、不需要
答案:A2、在密立根油滴实验时,任意一个油滴都可以被作为实验测量对象吗?
A、是 B、不是
答案:B3、在密立根油滴实验中,主要验证电荷的(A)
A 颗粒性 B 连续性 C 带电性
4、以下说法正确的是:(C)
A、在实验过程中寻找的电荷平衡电压为0-400之间的任意值
B、本次实验所采用的方法是动态(非平衡)法测油滴电荷
C、我们将实验测量和计算得到的一组油滴带电量数据除以公认值e,得到各油滴的带电量子数(一般为非整数),再对这些四舍五入取整,作为各油滴的带电量子数n5、密立根油滴实验中,基本电荷e的计算,应对实验测得的各油滴电荷q求(D)
A、算术平均值 B、最小公倍数 C、最小整数 D、最大公约数
二、填空题
1、在进行密立根油滴实验时,选择一个合适油滴的电压标准是 200 V到 300 V。
2、在进行密立根油滴实验时,选择一个合适油滴的试测时间范围是 8 S到 20 S。
3、密立根油滴实验中,主要需要测__电压__________和 ___时间_______这两个物理量。
三、简答题
1、为什么实验前要先调水平?
答案要点:本实验采用的方法是平衡法,本方法利用两个平衡状态(1、重力与电场力平衡处于“静止”状态;
2、重力与空气阻力二力平衡,处于匀速直线运动状态),立方程求解。其中平衡状态1即对电场力的方向有竖直向上的要求,与电场力方向垂直的平行极板必须为水平,因此,实验前需要满足这一要求将平行极板调水平。
2、什么样的油滴是合适的?
答案要点:
1、平衡电压在200至300V;
2、油滴测量时下落所花的时间在8至20秒。
第三篇:变压器油实验报告
变压器油试验报告
使用单位:甘肃省陇南市白鹤桥水电厂 试验单位:甘肃华元电气工程有限公司 产品型号:S11-8000/38.5 出厂序号:1506075 变压器油号:45# 执行标准:GB7252-2001,GB2536-90,GB/T7595-2008 试验环境温度:20℃ 相对湿度:60% 试验人:XXX 审核:XXX 批准:XXX XXXXXXXXXX 2015年08月18日
第四篇:密立根油滴法测量电荷电量实验的一种改进
密立根油滴实验的操作改进
姓名:屈少斌 学号:2022015020 摘要: 密立根油滴实验是物理学的经典实验之一, 至今仍是近代物理实验中的必做实验。本文针对密立根油滴法测量电荷电量的实验中存在误差过大导致实验结果偏差过大的问题, 提出一种辅助该实验的软件方案。该方案能够避免过大的误差, 同时合理保留精度允许范围的误差量, 较为真实可靠的还原整个实验过程。将该软件改进方案引入实验教学, 能够在节约成本的同时改善教学效果、提高教学质量。关键词: 密立根油滴法;实验;电荷;改进方案
引言
19世纪末, 随着X射线的发现而迅速展开的物理学革命, 揭开了现代物理学的序幕, 人类从此打开了奇妙的微观世界研究的大门。1897年J1J1Thomson在研究阴极射线的实验中确认了电子的存在。于是, 测定电子电荷e就成了当时物理学家面临的重大课题。美国实验物理学家密立根(R1A1Millikan)历经11年时间[ 1 ], 首次精确地测出了基本电荷的数值为e=(1.5924±0.0017)×10-19C,因而获得1923年的诺贝尔物理学奖[ 2 ]。密立根油滴实验设计巧妙, 方法简便, 设备简单, 结果准确, 堪称物理实验之典范, 尤其是它的设计思想更值得借鉴。近年来[ 3 ], 根据该实验的设计思想改进的用磁漂浮的方法测量分数电荷, 以及用密立根油滴仪同时测量粉尘的粒径和电荷量的实验, 引起了人们的普遍关注, 说明该实验至今仍富巨大的生命力。重做密立根油滴实验[ 4 ], 在不断改进测量方法的同时, 可以进一步体验前辈物理学家深刻的物理思想和精巧的实验设计。
1897年汤姆生发现了电子的存在后,人们进行了多次尝试,以精确确定它的性质。汤姆生又测量了这种基本粒子的比荷(荷质比),证实了这个比值是唯一的。许多科学家为测量电子的电荷量进行了大量的实验探索工作。电子电荷的精确数值最早是美国科学家密立根于1917年用实验测得的。密立根在前人工作的基础上,进行基本电荷量e的测量,他作了几千次测量,一个油滴要盯住几个小时,可见其艰苦的程度。
密立根通过油滴实验,精确地测定基本电荷量e的过程,是一个不断发现问题并解决问题的过程。为了实现精确测量,他创造了实验所必须的环境条件,例如油滴室的气压和温度的测量和控制。开始他是用水滴作为电量的载体的,由于水滴的蒸发,不能得到满意的结果,后来改用了挥发性小的油滴。最初,由实验数据通过公式计算出的e值随油滴的减小而增大,面对这一情况,密立根经过分析后认为导致这个谬误的原因在于,实验中选用的油滴很小,对它来说,空气已不能看作连续媒质,斯托克斯定律已不适用,因此他通过分析和实验对斯托克斯定律作了修正,得到了合理的结果。
密立根的实验装置随着技术的进步而得到了不断的改进,但其实验原理至今仍在当代物理科学研究的前沿发挥着作用,例如,科学家用类似的方法确定出基本粒子──夸克的电量。
油滴实验中将微观量测量转化为宏观量测量的巧妙设想和精确构思,以及用比较简单的仪器,测得比较精确而稳定的结果等都是富有启发性的。
由于密立根油滴法的精妙设计和重大的意义, 因此大学物理实验课中, 密立根油滴法测定电子电荷的实验也是学生必做实验之一。现在做密立根油滴法测定电子电荷实验所用的仪器设备比起100年前的密立根所用设备有了非常大的改进。学生用专用实验仪器在做该实验 时只需要找到合适的油滴, 并进行简单的按键操作就可以完成基本的测量。经过测量, 实验仪器会自动给出油滴所带的电荷数。然后, 学生通过计算就可以测定电子所带的电荷数。然而, 由于实验仪器本身的原因和学生的操作误差, 常常导致实验结果测量到的电子电荷数和电子电荷理论值相距甚远, 大大超出可接受的范围。基于这种实验课程中的实际情况, 本文提出了一种对密立根油滴法测定电子电荷实验的改进方案。
一
密立根油滴法实验原理
密立根油滴实验有两种基本的方法, 即动态法和静态平衡法。这两种方法都是从观察和测量带电油滴在电场中的运动规律入手的, 运动规律不同导致实验方法有一定区别。为了获得比较精确的测量结果, 尽可能把油滴受到的各种作用和修正因素都考虑进去。
动态法
当油滴受到的重力、电场力、浮力及粘滞阻力四个力的作用平衡时, 作匀速的上升运动, 就满足了动态 法的测量条件。(1)实验原理
当平行极板间未加电压时, 油滴受重力、浮力、粘滞阻力三个力作用,平衡时 F重-F浮=F粘在平行极板间加电压, 油滴受重力、浮力、电场力及粘滞阻力四个力作用,平衡时。
静态平衡法
当油滴在重力、电场力、浮力三个力的作用下静止时, 就满足了静态平衡法的测量条件。(1)实验原理
当平行极板间未加电压时, 油滴的受力情况与311节(1)中未加电压时相同。
当给平行极板加上电压时, 调节电压使油滴静止, 这时油滴同时受到重力、浮力、电场力三个力作用, 其关系为: F重-F浮= F电
在介绍改进方案之前, 再介绍下密立根油滴法[ 5 ]。实验中,用喷雾器将油滴喷入两块相距为d的水平放置的平行极板之间,如图3所示。油滴在喷射时由于摩擦,一般都会带电。设油滴的质量为m,所带电量为q,加在两平行极板之间的电压为V,油滴在两平行极板之间将受到两个力的作用,一个是重力mg,一个是电场力mg=qV/d。通过调节加在两极板之间的电压V,可以使这两个力大小相等、方向相反,从而使油滴达到平衡,悬浮在两极板之间。此时有: mg=qV/d
(1)
为了测定油滴所带的电量q,除了测定V和d外,还需要测定油滴的质量m。但是,由于m很小,需要使用下面的特殊方法进行测定。
因为在平行极板间未加电压时,油滴受重力作用将加速下降,但是由于空气的粘滞性会对油滴产生一个与其速度大小成正比的阻力,油滴下降一小段距离而达到某一速度v后,阻力与重力达到平衡(忽略空气的浮力),油滴将以此速度匀速下降示。
由斯托克斯定律可得:
f=6παηv=mg
(2)其中η是空气的粘滞系数,α是油滴的半径(由于表面张力的作用,小油滴总是呈球状)。
设油滴的密度为ρ,油滴的质量m可用下式表示
m=4πα3ρ/3
(3)将(2)式和(3)式合并,可得油滴的半径为:
α=(9ηv/2ρg)1/2
(4)由于斯托克斯定律对均匀介质才是正确的,对于半径小到10-6m的油滴小球,其大小接近空气空隙的大小,空气介质对油滴小球不能再认为是均匀的了,因而斯托克斯定律应该修正为
fr=6παηv/(1+b/αp)式中b为一修正常数,取b=6.17 ×10-6cmHg ;P为大气压强,单位是cmHg。利用平衡条件和(3)式可得
α=[9ηv/2ρg(1+b/αp)]1/2
(5)上式根号下虽然还包含油滴的半径α,因为它是处于修正项中,不需要十分精确,仍可用(4)
式来表示。将(5)代入(3)式得
3/
2m=4π/3[9ηv/2ρg(1+b/αp)] ρ
(6)当平行极板间的电压为0时,设油滴匀速下降的距离为l,时间为t,则油滴匀速下降的速度为
v=L/t
(7)将(7)式代入(6)式,再将(6)式代入(1)式得
q=18πd[ηL/t(1+b/αp)]
3/2
/v(2ρg)1/2
(8)
实验发现,对于同一个油滴,如果改变它所带的电量,则能够使油滴达到平衡的电压必须是某些特定的值vn。研究这些电压变化的规律可以发现,他们都满足下面的方程
q=ne=mgd/vn 式中n=±1, ±2…..而e则是一个不变的值。
对于不同的油滴,可以证明有相同的规律,而且e值是相同的常数,这即是说电荷是不连续的,电荷存在着最小的电荷单位,也即是电子的电荷值e。于是,(8)式可化为 ne=18πd[ηL/t(1+b/αp)]
3/2
/v(2ρg)1/2
(9)
根据上式即可测出电子的电荷值e,验证电子电荷的不连续性。
二
密立根油滴实验的仪器
密立根油滴实验仪MOD-8由油滴仪和CCD成像系统组成。在过去的油滴实验中常通过显微镜观测油滴, 时间一长眼睛感到疲劳, 以至于丢失油滴。现使用电视显微油滴仪, 采用CCD摄像头和监视器。从监视器上观察油滴, 视野宽阔, 图像鲜明, 提高了测量精度[ 6 ]。
三
实验中存在的问题
现在实验采用的密立根油滴仪的操作虽然比较简单, 但由于仪器自身的限制, 加上学生的操作误差, 常常不能得到令人满意的测量精度。根据实际的实验经历, 总结如下几方面的误差:
第一, 由于采用喷雾器, 因此油滴大小不可控, 选择合适大小的油滴需要耗费大量时间和精力。
第二, 两个带电极板间的电压是可调的, 但是其精度有限, 因此会造成实验中极板间的电场力和油滴重力不能完全平衡, 油滴会存在缓慢的漂移。
第三, 学生肉眼判断油滴进入匀速下降状态存在一定的误差。
第四, 油滴仪的按键存在响应时间。学生目视油滴仪屏幕, 观察到油滴匀速下落开始计时和计时结束时都需要操作按键, 而从学生看到到按键响应中间的时间误差较大。由于油的密度、重力加速度、空气粘度、大气压强、平行板间距离等都可以通过精确测量得到较为准确的数值, 顾不考虑这几个参量引入的误差。
从上述分析可以看出, 密立根油滴仪对油滴的选择具有极大的随机性, 而仪器本身的性能又增加了许多限制, 加上学生个体的操作误差, 在有限的课堂时间中,很可能会使实验结果出现非常大的偏差。这种实验偏差不但不利于学生对密立根油滴法的理解, 还给教师的教学带来了许多不必要的麻烦。
四
改进方案
为了能够在有限的课堂时间中改善实验效果, 让学生对密立根油滴法有更为直观和准确的认识, 本文提出一种软件方案来模拟密立根油滴法测定电子电荷实验。改进方案具体包含以下几个部分: 第一, 由于油的密度、重力加速度、空气粘度、大气压强、平行板间距离和修正常数基本不会引入大的误差, 所以我们在软件中将这些参量预置为本地测量的实际数据。
第二, 通过软件随机产生模拟油滴的质量, 并把油滴的质量控制在与实际喷雾器喷出的油滴相同的数量级,这个值做为模拟油滴的真实值。并根据这个模拟的真实质量和前面预置的本地重力加速度值来计算出模拟油滴受到的重力。
第三, 为模拟油滴的真实值附加一个大小合适的随机测量误差, 从而得到模拟油滴的质量测量值。
第四, 设置两极板电压可调, 并且极板电压调节精度采用最高精度的浮点数, 从而保证两极板电压绝对可以使带电油滴所受到的电场力完全和其重力平衡。电压值给出精确值。
第五, 通过软件实现模拟油滴从屏幕上方自由落体下落, 并在一个起始线后进入匀速状态。该匀速度的大小可以由修正的斯托克斯定律求得。
第六, 学生观察到模拟滴穿越起始线进入匀速状态后, 随时可以点击鼠标开始记录时间和下降距离。记录完毕时, 再次点击鼠标, 计算机自动统计给出下降的时间和下降的距离。
第七, 为上述参与公式计算的测量量分别附加一个合理的误差, 输出给学生。并且将电荷量的计算结果输出给学生, 让学生根据这个值进行计算。
第八, 通过软件图示演示数据处理过程和误差分析的方法, 让学生对整个实验加深认识和理解, 掌握密立根实验的精髓。
五
改进方案的C++和Matlab编程实现要点
由于C++和Matlab语言具有丰富的函数库和强大的开发功能[ 7 ] [ 8 ], 上述改进方案的具体实现采用C++和Matlab语言编程实现。由于文章篇幅所限, 本文并不给出具体程序, 而只阐述编程实现过程中需要注意的关键问题: 第一, 软件方案中的预置量需要提前实地测量, 保证与实际密立根油滴仪一致。只有这些前提条件是准确一致的, 才能确保两个实验可以进行相对应的比较。
第二, 随机产生油滴时, 由于带电量和质量都是随机的, 所以需要通过软件设置保证油滴的质量和带电量基本符合实际情况, 不会相差若干个数量级。
第三, 一定要给软件产生的数据量附加一个误差量, 而且误差量的具体大小根据相应的实际测量工具来确定。
六
结
论
密立根油滴实验的方法给我们许多启发,通过本实验,我们不仅能进一步理解该实验,而且还可以对电荷的量子性有初步的感受,能够用实验的方法对量子论的东西进行接触,也许对我们学习量子论的物理知识有很大的帮助,可能就是因为做过本实验,我们在学习量子论的后续课程中有一点点实验的基础。实验中我们发现了想要做好此实验并不是那么的容易,因为当我们真正的来做该实验的时候,我们才发现,虽然实验的原理不是很难,但是操做起来比较困难,因为实验中我们不仅要用眼睛观看油滴的运动,而且还要用手进行相关的操作,这样导致我们的眼眼睛和手的操作很难同时实现。鉴于上面的这些因素,才提出了下面的操作控制。
密立根油滴法测量电荷电量的实验中常常由于实验仪器本身的误差和学生的操作误差过大而导致实验结果严重偏离正确值, 给学生的学习和教师的教学都带来了非常大的困扰。本文提出一种软件方案用于辅助密立根油滴法实验教学。该方案能够避免上述较大的误差, 同时合理保留精度允许范围的误差量, 较为真实的反映密立根油滴法实验的整个过程。采用该方法, 在不用更换密立根油滴仪的情况下, 就可以解决该实验中学习和教学的问题, 可以在节约成本的同时实现对教学效果较好的改善。
密立根因测出电子电量及其他方面的贡献,荣获1923诺贝尔物理奖,从他的成功过程可以看出,在科学探索中,只要具备了条件,思想方法正确,百折不挠地干下去,认识就能不断深化,并能最终获得成功。p参考文献: [1] 熊俊.近代物理实验[M].北京: 北京师范大学出版社,2007:1-9.[2] 李娟,李蜀晋, 胡再国.密立根油滴实验数据分析[ J].物理实验,2008,28(4):28-30.[3] 潘人培.物理实验[M].南京: 南京工学院出版社,1986:267-276.[4] 邬鸿彦,朱明刚.近代物理实验[M].北京:科学出版社, 1998:41-51.[5] 李明.大学物理实验教程[M].浙江: 浙江大学出版社, 2007.[6] 张天 ,董有尔.近代物理实验[M].北京:科学出版社, 2004:30-36.[7] 谭浩强,周志德,北京:清华大学出版社,C++程序设计。电子工业出版社,2006.[8] 陈杰.MATLAB宝典[M].北京: 电子工业出版社, 2007.
第五篇:生物制品学实验报告----三价副猪嗜血杆菌油乳剂灭活疫苗的制备及检验(小编推荐)
三价副猪嗜血杆菌油乳剂灭活疫苗的制备及检验
副猪嗜血杆菌是猪格拉泽氏病(Glasser’s disease)的病原菌,属于巴斯德菌科嗜血杆菌属,是一种多形态、非溶血性、不运动、NAD 依赖型、革兰氏阴性细小杆菌。对营养要求比较苛刻,培养时必须供给含有V 因子(NAD)或(NADP)的新鲜血液才能生长。此菌有多种血清型,其中强毒力的有1、5、10、12、13、14型,常可致死动物;中等毒力的有2、4、8、15型,多表现为多发性浆膜炎,不致死;低毒力的有3、6、7、9、11型,常无临床表现和病变。在中国,4型和5型是主要分离株,而澳大利亚和丹麦的主要血清型为5型和13型。在研究2、4、5、12、13和14型间的交叉保护性时发现,除了血清12型制备的单菌和血清2、12型制备的二价苗外,其他型都能对同源菌株产生保护;用血清4型制备的菌苗,可以保护血清5型的攻击;用血清4、5型制备的二价菌苗,可以抵抗血清13、14型的攻击(仔猪病变的严重性和病死率明显降低)。三价灭活疫苗主要用于预防猪副嗜血杆菌病。该苗针对性强,安全可靠,能有效降低发病率和死亡率。一、实验目的 了解副猪嗜血杆菌油乳剂灭活苗制作的流程。2 掌握副猪嗜血杆菌油乳剂灭活苗制作的操作技术。
二、乳化的原理
乳化剂能降低分散物的表面张力,在微滴(粒)表面形成薄膜或双片层,以阻止微滴(粒)的相互凝结。
三、材料,试剂,培养基
(1)器材:不锈钢锅(或瓷锅)、电炉、乳化器、量筒、玻璃棒、离心机、吸管等。
(2)试剂:、甲醛(灭活剂)、白油(抗原油相)、Span-80(油相乳化剂)、Tween-80(抗原水相乳化剂)、硬脂酸铝(稳定剂)、4、5、13型分离菌株(抗原)。(3)培养基的制备:
1、配制0.2%的V因子
准确称0.2g的NAD(辅酶I)加入100mlddH2O,用0.22um的细菌过滤器过滤除菌,4°C保存备用。
2、制备TSA培养基
称16gTSA加入348ml双蒸水,121°C高压灭菌20min,当温度到50°C左右时(放入50°C水浴锅)加入0.2%的V因子,使V因子浓度达100ug/ml,然后加入32ml的灭活新生牛血清
100ml----4g TSA-----5ml V因子-------8ml血清
3、TSB培养基
称3gTSB于87 ml双蒸水中溶解。121°C高压灭菌15min,冷却至50°C左右,加入已配制的0.2%的V因子5ml,再加入灭活的新生小牛血清8ml,使血清浓度达0.8% 100ml-------3g TSB----5ml V因子----8ml血清
四、实验内容
(1)菌株菌液制备及培养繁殖 将副猪嗜血杆菌三株菌种按分别划线接种于TSA固体培养基平板上,37°C恒温培养18-24h,挑取单个菌落接种于TSB液体培养基中,37°C振荡培养12-16 h后,再将此菌液按l%的比例加入新配制的TSB液体培养基,37℃振荡培养12-16h后,按平板菌落计数法计数。培养24h后,收集菌液,用分光光度计法测定细菌总菌含量。经检验合格者作为制苗抗原。(2)制苗抗原的浓缩和细菌的灭活
将纯检合格的制苗抗原培养物以超滤器浓缩,作为制苗用浓缩抗原。然后按TSB液体培养基总体积加入终浓度为0.2%的甲醛(先10倍稀释),充分摇匀后,37°C温箱中灭活14h或分别在4、8、12、16、20h和24h取灭活菌液于TSA固体培养基划线培养,置普通恒温箱中37℃培养48h,观察细菌灭活效果。37°C灭活14h可达到较好的效果。(3)制苗用水相的制备
根据培养24h后的分光光度计法或麦氏比浊管测定的总菌数结果,参照培养12-16h的平板菌落计数法计数结果。取灭活的三种血清型按照一定的比例(等量)混合抗原液96份,然后过滤, 除去沉渣及杂物, 加入4份即终浓度为4%灭菌的Tween-80(96∶4)充分混匀, 边加边搅拌,使其充分融化(可加热助溶,温度低于37℃), 作为制苗用水相,水相要摇匀,让吐温-80充分溶解。(4)制苗用油相的制备
取10号白油93份(先加一部分,后补足)置于不锈钢锅中缓慢加热后,加入硬脂酸铝1份,边加边搅拌,直到透明为止,再缓慢加入6份Span-80(司本-80),充分混匀,121℃高压蒸汽灭菌3Omin,冷却至室温备用。或者按比例将工业白油94份置于不锈钢锅(或瓷锅)中加热后,缓慢加入6份 Span-80,混合后按总量加入2%硬脂酸铝,溶化后,继续升温至160℃,维持10min,待冷却后即可制苗。切勿用少量的白油与硬脂酸铝混合后边煮边搅拌,那样很容易烧焦冒烟。(5)疫苗的制备(乳化工艺)
按油相与水相2:1(v/v)混合乳化。即1份水相配2份油相在高速搅拌器中搅拌。先将处理好的油相2份置于高速搅拌器中,低速搅动油相,同时缓慢加入水相l份(油∶水= 2∶1),乳化时胶体磨转速由慢变快,最后以8,000一10,OO0r/mln高速乳化2一5min,使水油充分乳化。乳剂混匀,分装于灭菌疫苗瓶中。在乳化过程中亦可根据乳剂黏稠度适当调整油、水相比。制成乳白色的W/O型油乳佐剂疫苗。
(6)油乳剂检验:油乳剂检验项目包括乳剂类型检查、黏度测定、稳定性测定、粒度大小及分布检测等,生产实际中以黏度测定与稳定性测定为主。在每批苗分装过程的前、中、后各抽样2瓶供物理性状检验及安全检验。无菌检验: 将制备好的灭活油乳苗分别接种于普通肉汤培养基和血琼脂培养基中 , 于37 ℃温箱中培养10 d, 观察有无细菌生长。均应无菌生长方合格。物理性状检验 : 观察疫苗颜色:眼观应为均匀一致的乳白色黏稠乳剂。稳定性检测 :1)离心加速法,将疫苗置于 10m l 离心管内, 3 000 r/min离心15min水油不分层,可保存1年以上不破乳。2)加速老化法,疫苗于37℃储存10-30d不破乳,说明其稳定性良好。黏度检验:最简易的方法是在室温条件下用吸管吸取1ml乳剂, 然后垂直放出, 记录放出0.4ml所需时间。垂直放出0.4ml所需要的时间作为黏度单位,以0.4ml 2-6s为合格,说明黏度适中, 适合于注射应用,不得多余10-15s。
5剂型检测:将疫苗数滴滴于冷水表面, 观察油滴扩散情况,即观察疫苗滴于水中是否呈油滴状且不分散。滴于水中油滴呈规则的圆形, 未见扩散现象, 说明疫苗为油包水剂型。
6安全检验:对最小使用日龄靶动物一次单剂量接种的安全性灭活疫苗接种途径只有一种,就是肌肉注射。每批三价灭活苗随机取样3瓶,等量混合后接种兔2只,每只肌肉注射2mL;接种14日龄哺乳仔猪,每组5头,每头猪接种2ml,另设5头猪作为阴性对照,于耳后肌肉注射5-10 mL, 观察仔猪的临床表现,并每日测定体温,持续2周。
五、小结
(1)副猪嗜血杆菌对营养要求比较苛刻,培养时必须供给含有V 因子(NAD)或(NADP)的新鲜血液才能生长。且具有非常多的血清型,纯化非常困难。故对菌的纯化及灭活和疫苗的安全性试验是生产灭活苗的关键环节。由于副猪嗜血杆菌,在菌液制备的过程中容易生长杂菌,我们纯化了很多次菌,液体仍然很浑浊,使得实验进展延后。(2)注意事项: 细菌灭活过程中,甲醛浓度越高,碱性溶液中的抗原性损失就越大。故甲醛要注意适量 2 制备油相时,要使Span-80和硬脂酸铝充分溶解。3 制备水相时,抗原与Tween-80充分混匀。乳化时,油相必须冷却后方可与水相混和乳化,以防油温过高使抗原性降低。5 注意先加入油相后再加入水相,充分搅拌。6 疫苗在4℃、暗处保存,切勿冰冻。7 一定要做好安全检验