浅论基于WTB/MVB总线的轨道车辆LED照明控制系统设计论文[优秀范文五篇]

时间:2019-11-16 22:57:11下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《浅论基于WTB/MVB总线的轨道车辆LED照明控制系统设计论文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《浅论基于WTB/MVB总线的轨道车辆LED照明控制系统设计论文》。

第一篇:浅论基于WTB/MVB总线的轨道车辆LED照明控制系统设计论文

目前大部分轨道车辆车厢内使用的还是传统的荧光灯作为光源,其能耗大,使用效率低。LED具有效率高、绿色环保、寿命长、能量转换效率高、抗振性能好等优点,其在轨道车辆领域的应用也越来越受到关注。考虑到轨道车辆车厢照明系统在冲击震动、电磁兼容、温度及供电范围等方面都有特殊要求,现有的LED照明系统硬件不能直接应用于轨道车辆车厢当中,研究开发抗干扰能力强、散热性好、工作稳定的轨道车辆车厢LED照明系统硬件对于改进轨道车辆车厢照明系统具有非常重要的意义。另外,随着生活质量的提高,人们对轨道车辆舒适性的要求也越来越高,实现轨道车辆照明系统的自动调光将会大幅提高能源利用率,改善车厢照明条件,提高轨道客车的照明舒适性。

因此,本文针对铁轨道车辆车厢LED照明控制系统的特点,设计基于WTB(绞线式列车总线)和MVB(多功能车辆总线)相结合的轨道车辆车厢LED照明控制系统。

1LED照明控制系统硬件设计

设计的硬件系统主要分成三部分:(1)车厢内照明部分,采用LED作为发光源,设计了LED的驱动电源来控制LED的驱动电流;(2)信号采集与处理部分,亮度传感器采集的亮度信息通过单片机处理反馈给安装在车头控制室内的上位机IPC机,利用上位机软件完成数据融合处理;(3)信息传递部分,IPC机处理后的数据信息通过WTB总线传给各节车厢的MVB总线,以保证控制信号的高效传输。

利用分布在各节车厢的单片机执行IPC机的控制指令控制驱动电源,实现LED灯的自动控制。通过各部分的共同作用,实现了对轨道车辆LED照明系统的控制。

2LED照明控制系统硬件模块设计

2.1通信模块的设计

WTB总线用于构成经常动态编组以及多节车辆级联的开放式列车,可实现车辆间的数据通信;MVB总线用于一个车辆内设备或者一个固定的车辆组内设备的数据通信,在一个车辆组内最多可以连接4096个传感器并且可以实现信息的高速传输。WTB总线与MVB总线之间通过网关连接。选择这两种通信总线结合使用的方式,既能保证传输的高效性和准确性,也因为两种总线的成熟应用节省了重新选择总线所带来的各种问题。

2.2硬件散热壳体的设计

LED发光过程中将约62%的电能转化成热能。因此,解决LED灯的散热问题对LED的使用寿命非常重要。在基板与LED灯之间增加一层铝制薄板来增加散热效率,采用这样的设计使得LED灯的散热效果良好,有效降低了LED工作时温度,延长了使用寿命。

2.3LED排列方式的选择

LED灯的排列方式一般有三种类型:串联方式、并联方式、混联方式。将所有的LED串联或并联,不但限制LED灯的使用数量,而且并联LED负载电流较大,驱动器的成本也会增加。综合考虑串/并联两种方式的优缺点,采用串/并联混合连接方式。同时,为了提高照明系统的容错性,采用交叉混联排列方式。在同一条串联支路中,若有一个LED灯损坏,使一条串联的LED灯不能调节时使用交叉式排列,在机械结构的同一行,间隔性的还有LED灯正常工作,从而克服了串联LED灯损坏导致整行亮度不能调节的缺点。

2.4亮度采集模块设计

在保证照明控制系统对环境亮度信息的高速处理能力同时节约成本的前提下,结合轨道车厢的环境要求,选择STC89C52单片机作为亮度采集模块的微处理核心。与单片机的P2引脚连接的模/数转换芯片是ADC0804,实现模/数转换;选择三洋系列LA0150CS照度传感器,分布在车厢的不同位置,实现对亮度信息的高速处理。

2.5硬件驱动电源设计

由于轨道车辆采用外部供电,高压电经过变压后供车厢内部电路使用,在降压过程中会产生谐波干扰,为了消除电网中的电磁干扰,设计了EMC(电磁兼容性)滤波电路。采用桥式整流滤波电路,将220V的工频电流转换成一定的直流电后进行降压变换,再经过正激式DC/DC变换器变换为特定电压的稳压直流电,以供LED照明。

选择PT4107作为驱动芯片,PT4107能够输出范围为18V~450V的电压,能够驱动上百个LED的混联应用,可外部设定过温保护,可通过PWM数字脉冲控制达到改变LED亮度的目的,满足轨道车辆车厢LED照明驱动要求。同时,设置了PFC(功率因数校正)电路,克服了桥式整流滤波电路后功率因数降低的问题,使电源的功率因数大大提高。

3硬件驱动电源仿真及实验

采用临界比例度法对PID进行参数整定并进行驱动电源的仿真分析。利用PID算法对PWM占空比进行控制,从而控制驱动电源的输出电流,使LED的发光达到预定值。利用Matlab对控制算法进行仿真,将调节器的积分时间T1置于最大(T1=∞),微分时间置零(τ=0),比例度δ适当,平衡操作一段时间,把系统投入自动运行。将比例度δ逐渐减小,记下临界比例度δk和临界振荡周期Tk的值。根据δk和Tk的值,采用表1中的经验公式,计算出调节器的各个参数,即δ、T1和τ的值。

按先比例后积分最后微分的操作程序将调节器整定参数调到计算值上。通过临界比例度法对PID传递函数中的参数进行整定,整定后的传递函数是:

G(s)=500(s2+10s+50)(s+10)

可以看出,通过对PID参数的整定,控制曲线在1s以内达到稳定值,系统响应速度快,无超调。

为了检验驱动电源的自动调节能力,通过模拟傍晚天色逐渐变暗的过程得出了LED灯电流的仿真曲线图,图中实曲线是系统根据亮度变化过程应该输出的电流值,带点曲线是仿真中得到的系统输出电流的曲线。可以得出,系统实际输出电流值与理论输出电流值相差很小,能够满足亮度自动调节的要求。

将传感器采集的数据量传给IPC机进行数据融合,系统再根据融合得到的环境亮度值对LED灯发送不同占空比的PWM信号进行调光。

可见,设计的硬件系统可以实现对车厢内LED灯亮度的自动调节。对数据进行分析可知,系统对车厢亮度的调节误差小于1%,满足系统对轨道车辆车厢的LED照明控制的要求。

本文设计的基于WTB总线和MVB总线的轨道车辆车厢LED照明系统采用集中式控制方式,根据车厢LED照明调光要求对LED灯样机进行实验验证,通过模拟傍晚由明到暗的过程对设计的硬件系统进行了调光实验。实验结果表明,设计的硬件系统工作状态良好,无噪音,LED灯发光均匀稳定,能够实现自动调光,验证了本文硬件设计的正确性和合理性。

第二篇:智能led照明控制系统设计说明书(精)

目录

1.引言„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„2 2.方案论证„„„„„„„„„„„„„„„„„„„„„„„„„„„„3 2.1方案一„„„„„„„„„„„„„„„„„„„„„„„„„„„5 2.2方案二„„„„„„„„„„„„„„„„„„„„„„„„„„„6 2.3各方案的比较................................错误!未定义书签。

3.各电路设计和论证..................................................6 3.1 电源电路的方案设计与论证....................................6 3.2信号采集部分电路的设计和论证.................................7 3.3单片机部分电路的设计和论证..................................12 3.4输出部分电路的设计和论证....................................14 4.软件设计........................................................15 4.1程序流程....................................................15 4.1.1系统主程序流程图......................................15 4.1.2传感器子程序流程图....................................16 4.2程序........................................................17 4.2.1主程序................................................17 4.2.2定时器中断子程序......................................18 4.2.3数据处理程序..........................................18 4.2.4 ADC0809连续对2个通道采样程序........................19 5.软硬件系统的调试................................................19 5.1硬件调试....................................................19 5.2软件调试....................................................19 6. 附录...........................................................20

7.参考文献........................................错误!未定义书签。高亮度LED 楼道照明灯电路的设计

摘要:本系统以单片机80C51为核心部件,利用光线度检测技术、光电传感器接收技术并

配合一套独特的软件算法实现了路灯自动开关、声光控制电路等功能。在系统设计过程中,联系实际路灯状况,力求硬件线路简单,元件价格经济,充分发挥软件编程方便灵活的特点,来满足系统设计要求。

关键词:单片机、光明二极管、话筒、A/D转换器、传感器。1.引言

随着电子技术的迅猛发展,单片机技术已渗透到航天、国防、工业。农业、日常生活等各个领域,成为当今世界科技现代化不可缺少的重要工具和强有力武器。用单片机研制的各个智能化测量控制仪表周期短、成本低,在一起、仪表与机电一体化产品的设计中具有明显的优势。这次用单片机设计制作一个走廊路灯控制系统。

光控电路有着广泛的应用。比如城市中的路灯或楼道照明等一般都是由人工操作的, 如果采用光控电路, 根据光线的强弱来自动开启和关闭照明灯, 做到无人自动控制, 可以减轻工人的劳动强度, 有效的节约能源。但光控电路有其缺陷, 就是夜晚无光线的时候, 照明灯将一直工作着, 这样会造成资源的浪费, 也会缩短照明灯的寿命。

这时若在光控电路的基础上添加一个声控电路, 使得照明电路在无光线的时候, 只受声音的控制, 当有脚步声或其它较强声响的时候, 照明电路自动工作。当声音消失的时候, 照明灯自动熄灭, 这就需要在光控电路和声控电路联合工作的条件下添加一个延时电路, 使照明灯点亮后, 延时一定时间后自动熄灭。

以上电路的设计非常简单,是通过RC 震荡来完成电路的延时作用,它没有经过单片机的控制,所以电路完成的功能有限而且也不是非常稳定,所以我们把单片机加入走廊路灯控制电路能使得电路更加的完美和稳定。如果在此电路基础上加入ADC0809转换器就可以拓展单片机的作用,使得电路的功能得到进一步的提升,达到本课题的设计要求。

使用这种照明电路, 人们就不必在黑暗中摸索开关, 也不必再担心点长明灯费电和损坏灯泡了。夜间只要有脚步声或其它较强的声响时, 灯便自动点亮, 延时一定时间后自动熄灭。特别适用自动控制路灯照明以及走廊和楼道等处的短时照明。

声光控灯在市场上是很常见的,我们生活中也有很多单位用着这种灯,在楼道上,在门厅口,以及在各种人员流动不太频繁也不太稀少的地方,其原理是:利用声音与光来共同控制灯的明灭,当白天时(光线比较强烈时 即便有再强的声音,灯也不会亮,而当夜晚时(光线达到临界状态时 声控装置才会真正的被启动年,而这时,就是这种“声光控灯”大显身手的时候。即,当有声音响动的时候,灯才会亮起来,如果是人们活动,则有很强的适应性与活动性,当没人活动的时候,也不会造成无端的能源浪费。如果与普通的手动灯比较,当人在黑暗中的时候,很难找到开关的位置,乱找不一定能找到,甚至有时候会伤害到自己的人身安全(在黑暗中找不到方向,乱撞很可能会撞上对人体有害的东西,比如被硬物绊倒被摔伤,碰到尖锐的东西被割伤等,而对于声光控灯来说,人们只需要造出某种声音,比如拍手,大喊一声等,就可以启动声光控控制灯,从而办完自己想办的事情(要延长灯的亮着的时间得要在适当的时刻发出声音即延续。

图1 声光控延时开关的电路原理图

为了使声光控开关在白天开关断开,即灯不亮,由光敏电阻rg 等元件组成光控电路,r5和rg 组成串联分压电路,夜晚环境无光时,光敏电阻的阻值很大,rg 两端的电压高,即为高电平间t=2πr8c3,改变r8或c3的值,可改变延时时间,满足不同目的。vd3和vd4构成两级整形电路,将方波信号进行整形。当c3充电到一定电平时,信号经与非门vd3、vd4后输出为高电平,使单向可控硅导通,电子开关闭合;c3充满电后只向r8放电,当放电到一定电平时,经与非门

毕业设计说明书(论文)

vd3、vd4输出为低电平,使单向可控硅截止,电子开关断开,完成一次完整的电子开关由开到关的过程。

二极管vd1~vd4将交流220v 进行桥式整流,变成脉动直流电,又经r1降压,c2滤波后即为电路的直流电源,为bm、vt、ic 等供电。

用声光控延时开关代替住宅小区的楼道上的开关,只有在天黑以后,当有人走过楼梯通道,发出脚步声或其它声音时,楼道灯会自动点亮,提供照明,当人们进入家门或走出公寓,楼道灯延时几分钟后会自动熄灭。在白天,即使有声音,楼道灯也不会亮,可以达到节能的目的。声光控延时开关不仅适用于住宅区的楼道,而且也适用于工厂、办公楼、教学楼等公共场所,它具有体积小、外形美观、应用广泛、工作可靠等优点。

2.1.1.单片机控制部分电路

单片机控制模块:单片机选用我们常用的AT89C51。无论是信号采集还是信号输出都要经过单片机的出来。另外定时也是通过单片机的定时来做,这样可以减少外部元器件的数量。

2.1.2.信号采集部分电路的设计

判断外界光线采用光敏电阻,利用集成运放LM324将电阻输出的电压转换成TTL 电平以供单片机处理。检测外界声音的使用微型话筒,信号处理方法和光敏电阻出来的信号处理方法类似,并且下文有详细的介绍,在这里就不多作介绍。

系统组成框图如图2所示:

图2 信号采集部分电路系统组成框图

光敏电阻接在P1.0上,话筒接在P1.1上,继电器接在P1.2上,蜂鸣器接在P1.3上。房单片机运行时,单片机会不停的扫描P1.0和P1.1口上的逻辑状态。当发现这两个IO 口发生改变时,立即使判断是光敏电阻发生的信号,还是

话筒的信号。发送在P1.2或者P1.3IO 口上输出控制信号区控制继电器动作或者控制蜂鸣器蜂鸣。如果是要打开路灯,那么单片机的内部定时器就开始工作每当定时时间到了以后就会立即关闭路灯。这就是方案二的工作过程。

2.2 方案二

用A/D转换器ADC0809,由单片机去判断外界的环境。2.2.1方案二

方案二的组成框图如图3所示

方案二的主体电路和方案一类似,但是方案二中比方案一多了一个AD 转换器ADC0809,光敏二极管或者话筒输出的信号不是直接输入到单片机,而是经过ADC0809转换成数字信号,然后再输入到单片机。方案二中单片机收到的是经过简单判断的光线或者声音信号了,这种工作状态单片机永远只知道两种状态。而方案二单片机可以具体的知道外界光线的强弱或者外界的声音大小。这样方案二在处

理输入信号上更具有优势。同时由于加入ADC0809转换器,可以对输入的光线信号和声音信号从模拟量到数字量的转换,这样可以具体的判断出外界的环境情况,可以知道外界光线的具体强度大小和外界具体声音的强弱,这样使得走廊路灯具有功能更加强大的只能控制,开灯外界光线的强度和关灯外界光线的强度有一个差值,同样开灯外界声音的大小和关灯外界声音的大小也具有一个差值,具有降低误差的功能。

2.3两个方案比较

在这两个方案中方案一运用了单片机,定时通过单片机的内部定时器来完成,电路有了逻辑分析的能力,由于该方案前面的输入只有0和1两种状态所以该电路在处理光线或者声音在临界状态不断变化的情况会遇到比较大的麻烦,所以设计出方案二,方案二是用ADC0809可以由单片机去判断外界的环境是什么样子的,方案一处理不了的情况。所以放弃了方案一而选择了方案二。

3各电路设计和论证

下面详细对本次毕业设计所考虑的方案进行初步的论证和简要的分析。3.1 电源电路的方案设计与论证

由于但路中需要12V 和5V 两种电压,所以分别采用三端稳压器7812和7805 图3 方案二的组成框图

新余学院 毕业设计说明书(论文)图5 光信号采集部分电路 声音信号部分电路: 由于话筒必须和一个10K 的电阻串联接到5V 的电压才能有信号的输出,所以话筒的信号输出电路的形式如图6所示。由于输入信号有很大的直流部分,所以必须使用一个隔离电容C6将直流成分隔离掉,然后送入到三极管Q3,Q4进行信号的初步放大。下面的处理电路和光线信号的处理电路相同,最终也是输出一个0-5V 的电压,最后送入到单片机进行处理。图6 声音信号部分电路

A/D转换工作原理:

A/D转换器是用来通过一定的电路将模拟量转变为数字量。

模拟量可以是电压、电流等电信号,也可以是压力、温度、湿度、位移、声音等非电信号。但在A/D转换前,输入到A/D转换器的输入信号必须经各种传感器把各种物理量转换成电压信号。

A/D转换后,输出的数字信号可以有8位、10位、12位和16位等。A/D转换器的工作原理

主要介绍以下三种方法:逐次逼近法、双积分法、电压频率转换法。

在集成电路器件中普遍采用逐次逼近型,现简要介绍下逐次逼近型A/D转换的基本工作原理。

逐次逼近法

逐次逼近式A/D是比较常见的一种A/D转换电路,转换的时间为微秒级。采用逐次逼近法的A/D转换器是由一个比较器、D/A转换器、缓冲寄存器及控制逻辑电路组成,如图3.2.3.1所示。

基本原理是从高位到低位逐位试探比较,好像用天平称物体,从重到轻逐级增减砝码进行试探。

逐次逼近法转换过程是:初始化时将逐次逼近寄存器各位清零;转换开始时,先将逐次逼近寄存器最高位置1,送入D/A转换器,经D/A转换后生成的模拟量送入比较器,称为Vo,与送入比较器的待转换的模拟量Vi 进行比较,若Vo<Vi,该位1被保留,否则被清除。然后再置逐次逼近寄存器次高位为1,将寄存器中新的数字量送D/A转换器,输出的 Vo 再与Vi 比较,若Vo<Vi,该位1被保留,否则被清除。重复此过程,直至逼近寄存器最低位。转换结束后,将逐次逼近寄存器中的数字量送入缓冲寄存器,得到数字量的输出。逐次逼近的操作过程是在一个控制电路的控制下进行的。

ADC0809简介: 1.主要特性:8路8位A /D 转换器,即分辨率8位;具有转换起停控制端;转换时间为100μs ;单个+5V 电源供电;模拟输入电压范围0~+5V,不需零点和满刻度校准;工作温度范围为-40~+85摄氏度 ;低功耗,约15mW。

图7 ADC0809内部结构

2.模拟信号输入IN0~IN7: IN0-IN7 为八路模拟电压输入线,加在模拟开关上,工作时采用时分割的方式,轮流进行A/D 转换。

3.地址输入和控制线 :地址输入和控制线共4 条,其中ADDA、ADDB 和ADDC 为地址输入线,用于选择IN0-IN7 上哪一路模拟电压送给比较器进行A/D 转换。ALE 为地址锁存允许输入线,高电平有效。当ALE 线为高电平时,ADDA、ADDB 和ADDC 三条地址线上地址信号得以锁存,经译码器控制八路模拟开关通路工作。

4.数字量输出及控制线(11 条):START 为“启动脉冲”输入线,上升沿清零,下降沿启动ADC0809 工作。EOC 为转换结束输出线,该线高电平表示AD 转换已结束,数字量已锁入“三态输出锁存器”。D0-D7 为数字量输出线,D7 为最高位。ENABLE 为“输出允许”线,高电平时能使D0-D7 引脚上输出转换后的数字量。

5.电源线及其他(5 条):CLOCK 为时钟输入线,用于为ADC0809 提供逐次比较所需,一般为640kHz 时钟脉冲。Vcc 为+5V 电源输入线,GND 为地线。+VREF 和-VREF 为参考电压输入线,用于给电阻网络供给标准电压。+VREF 常和

VDD 相连,-VREF 常接地。ADC0809 芯片性能特点: 是一个逐次逼近型的A/D 转换器, 外部供给基准电压;单通道转换时间116us ;分辨率为8 位, 带有三态输出锁存器, 转换结束时, 可由CPU 打开三态门, 读出8 位的转换结果;有8 个模拟量的输入端, 可引入8 路待转换的模拟量。ADC0809 的数据输出结构是内部有可控的三态缓冲器, 所以它的数字量输出信号线可以与系统的数据总线直接相连。内部的三态缓冲器由OE 控制, 当OE 为高电平时, 三态缓冲器打开, 将转换结果送出;当OE 为低电平时, 三态缓冲器处于阻断状态, 内部数据对外部的数据总线没有影响。因此, 在实际应用中, 如果转换结束, 要读取转换结果, 则只要在OE 引脚上加一个正脉冲,ADC0809 就会将转换结果送到数据总线上。在本系统中ADC0809 在电路中的连接如下图所示,在模拟量之前加入滤波电路是为了使采集数据更加准确,对于模拟输入通道,还需要采用一些消除干扰的措施,这点将在下一小节提到ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS 组件。它是逐次逼近式A/D转换器,可以和单片机直接接口。

6.ADC0809的内部逻辑结构

由下图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D转换完的数字量,当OE 端为高电平时,才可以从三态输出锁存器取走转换完的数据。

图8 ADC0809的内部逻辑结构 7.ADC0809引脚结构 ADC0809各脚功能如下: D7-D0:8位数字量输出引脚。IN0-IN7:8位模拟量输入引脚。VCC :+5V工作电压。GND :地。

REF(+):参考电压正端。REF(-):参考电压负端。START :A/D转换启动信号输入端。ALE :地址锁存允许信号输入端。(以上两种信号用于启动A/D转换).EOC :转换结束信号输出引脚,开始转换时为低电平,当转换结束时为高电平。

OE :输出允许控制端,用以打开三态数据输出锁存器。CLK :时钟信号输入端(一般为500KHz)。A、B、C :地址输入线。8.外部特性(引脚功能)

ADC0809芯片有28条引脚,采用双列直插式封装,如图13.23所示。下面说明各引脚功能。

IN0~IN7:8路模拟量输入端。2-1~2-8:8位数字量输出端。

ADDA、ADDB、ADDC :3位地址输入线,用于选通8路模拟输入中的一路 ALE :地址锁存允许信号,输入,高电平有效。

START : A/D 转换启动信号,输入,高电平有效。

EOC : A/D 转换结束信号,输出,当A /D 转换结束时,此端输出一个高电平(转换期间一直为低电平)。

OE :数据输出允许信号,输入,高电平有效。当A /D 转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。

CLK :时钟脉冲输入端。要求时钟频率不高于640KHZ。REF(+)、REF(-):基准电压。Vcc :电源,单一+5V。

GND :地。

9.ADC0809的工作过程是:首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。此地址经译码选通8路模拟输入之一到比较器。START 上升沿将逐次逼近寄存器复位。下降沿启动 A/D 转换,之后EOC 输出信号变低,指示转换正在进行。直到A /D 转换完成,EOC 变为高电平,指示A /D 转换结束,结果数据已存入锁存器,这个信号可用作中断申请。当OE 输入高电平时,输出三态门打开,转换结果的数字量输出到数据总线上。

ADC0809对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。

在本课题设计中ADC0809的通道选择是通过A7、A8、A9来选择的,A7、A8、A9与通道选择关系为:

光信号从IN0输入,声音信号从IN1输入,所以光信号的A/D转换地址70FFH,声音信号A/D转换地址71FFH。ADC0809的转换结束引脚EOC 引脚接在单片机的IN0引脚上。所以这也就意味着既可以采用中断方式也可以使用查询方式对ADC0809转换好的数据进行读取操作。采用中断方式可以节约大量的时间,这样大大减轻了单片机的工作负担。

3.3单片机部分电路的设计和论证

单片机部分使用的是AT89C51,我们对此款单片机非常熟悉,所以使用起来也相对熟练一些。下面是AT89C51的简介:

AT89C51单片机内部包含部件概括如下:一个8位CPU,一个片内振荡器及时钟电路,ROM 程序储存器,RAM 数据储存器,两个16位定时器/计数器,可寻址64K 外部数据存储空间和64K 外部程序存储的控制电路,32条可编程的I/O总线(四个8为并行I/O端口),一个可编程全双工串行口,具有5个中断、2个优先级的中断结构。

AT89C51用CHMOS 工艺制造的单片机都采用双列直插式(DIP)40脚封装,端子信号完全相同。这40根端子大致可分为:电源(Vcc、Vss、Vpp、Vpd)、时钟(XTAL1、XTAL2)、I/O口(P0-P3)、地址总线(P0口、P2口)和控制总线(ALE、RST、/PROG、/PSEN、/EA)等几部分。它们的功能简述如下:

1.电源:Vcc(端子号40),芯片电源,接+5V;Vss(端子号20),电源接地端。

2.时钟:XTAL1(端子号18)、XTAL2(端子)分别是内部振荡电路反相放大器的输入端、输出端,是外接晶振的端子。

3.控制总线:ALE(端子号30)用来把地址的低字节锁存到外部锁存器;/psen(端子号29)外部程序存储器读选通信号;RST(端子号9)复位信号输入端;/EA为内部程序存储器和外部程序存储器的选择端;

4.I/O线:P0口(端子号32-39)单片机的双向数据总线和低8位地址总线;P1口(端子号1-8)双向输入/输出口,用来驱动4个LSTTL 负载;P2口(端子号21-28)双向输入/输出口,在访问存储器时,用作高8位地址总线;P3口(端子号10-17)双向输入输出口能驱动4个LSTTL 负载。P3口的每一个端子还有其他的功能。

P3.0——RXD :串行口输入端; P3.1——TXD :串行口输出端;

P3.2——/INT0:外部中断0中断请求输入端: P3.3——/INT1:外部中断1中断请求输入端: P3.4——T0:定时器/计数器0外部输入端;P3.5——T1:定时器/计数器1外部输入端;P3.6——/WR:外部数据存储器写选通信号; P3.7——/RD:外部数据存储器读选通信号;

5.时钟电力:AT89C51内有一个高增益发相反放大器,其频率范围为1.2MHz —12MHz,XTAL1和XTAL2分别为放大器的输入端和输出端时钟电路可以有内部方式或外部外部方式。在本设计中系统的时钟电路设计是采用的内部方式,即利用芯片内部的振荡电路。AT89单片机内部有一个用于构成振荡器的高增益反相放大器。引脚XTAL1和XTAL2分别是此放大器的输入端和输出端。这个放大器与作为反馈元件的片外晶体谐振器一起构成一个自激振荡器。外接晶体谐振器以及电容C1和C2构成并联谐振电路,接在放大器的反馈回路中。对外接电容的值虽然没有严格的要求,但电容的大小会影响震荡器频率的高低、震荡器的稳定性、起振的快速性和温度的稳定性。因此,此系统电路的晶体振荡器的值为12MHz,电容应尽可能的选择陶瓷电容,电容值约为22μF。在焊接刷电路板时,晶体振荡器和电容应尽可能安装得与单片机芯片靠近,以减少寄生电容,更好地保证震荡器稳定和可靠地工作。为了及提高单片机的运行速度,又能最大程度的保证单片机的 运行速度,所以AT89C51的晶振使用12MHz。由此我们可以计算出AT89C51在该晶振下的时钟周期、机器周期和指令周期的计算方法如下:

1.指令周期

CPU 执行一条指令所用的时间称为指令周期。一个指令周期由1~4个机器周期组成。

2.机器周期

CPU 执行一个基本操作所用的时间称为机器周期,一个机器周期由6状态S1~S6组成,每个状态由2时钟脉冲组成,前一个脉冲叫相位P1,后一个脉冲叫相位P2,因此,一个机器周期由12个时钟脉冲S1P1,S1P2„„S6P1,S6P2组成。

3.时钟周期

时钟脉冲周期T 为计算机系统主频f 的倒数,即:t=1/f。若系统主频为12MHz,则T=1/12us。在80C51指令系统中,指令长度为1~3个字节。在单字节和双字节的指令中,除了乘法和除法指令为4周期外,都是单周期或双周期的。三字节指令都是双周期的。若系统主频为12M,则单周期指令执行的时间为12T=12*1/12=1us。双周期指令执行时间为24T=24*1/12=2us。

6.复位电路:复位是由外部的复位电路来实现的。片内复位电路是复位引脚RST 通过一个斯密特触发器与复位电路相连,斯密特触发器用来抑制噪声,它的输出在每个机器周期的S5P2,由复位电路采样一次。单片机的复位有上电复位和按钮手动复位两种,本方案是采用两种复位电路相结合。电容C3和电阻R2构成了上电复位,当开机上电时,电容C2的正端的电压为5V,又因为电容两端的电压具有不可跃变性,所以电容C3和电阻R2之间的电压也为5V,所以单片机会复位。当系统正常工作时,由于直流电压无法通过电容,所以单片机的复位引脚相当于通过电阻R2接地,又因为单片机的复位高电平的有效,所以单片机不会复位。按键S1、电阻R1、R2构成了按键复位电路。在系统正常工作时,只要将按键按下,即可使单片机的复位引脚成高电平,单片机可复位。

在电路中采用了6个电容并联,给单片机的电源进行滤波,使单片机的电源更加平滑和稳定,增加系统的稳定性。在进行PCB 布板时,要注意将电容近贴着单片机放置。

单片机引脚的IO 口的使用:P1.2和P1.3外接继电器和蜂鸣器,P0口作为ADC0809的数据输入口,P0和P2作为地址输出口。

图9 单片机部分电路图 3.4输出部分电路的设计和论证

输出部分的电路由继电器和蜂鸣器构成。继电器电路的工作过程:

由于继电器是控制220VAC 的电压,通过的电压和电流相对较大,所以要选用功率较大的继电器。在本课题的设计中使用的是12V 的继电器。继电器室通过三极管Q1来控制,当单片机输出低电平时,三极管截止,继电器线圈失电,常开触点断开常闭触点闭合,路灯被关闭。当单片机输出高电平时,三极管导通继电器线圈得电,常开触点闭合常闭触点断开,路灯被打开。因为继电器在动作时会产生高电压脉冲干扰信号。为了消除这种影响,在继电器线圈的的两端并联一个蓄流二极管1N4148,二极管的正极接在线圈的附极,二极管的负极接在线圈的正极,当

继电器失电时电流从线圈的负极流向二极管的正极,然后再从正极流到二极管的负极,之后再次流到线圈的正极,这样使线圈上存储的能量最终消耗在线圈的内部,达到保护其它部分电路的目的。

蜂鸣器电路的工作过程

当单片机输出低电平时,由于采用的是PNP 型三极管,所以三极管处于导通状态,蜂鸣器蜂鸣。当单片机输出高电平时三极管出于截至状态,蜂鸣器停止蜂鸣。在本部分电路中采用PNP 型三极管的原因是单片机输出灌电流的能力要比输出拉电流的能力强,所以采用PNP 型三极管是电流从外部流向单片机。

图10 蜂鸣器部分电源电路图 4.软件设计 4.1程序流程

4.1.1系统主程序流程图

图11 系统主程序流程图 4.1.2传感器子程序流程图

4.2程序 4.2.1主程序 ORG 0000H AJMP MAIN ORG 000BH LJMP INT_T0 ORG 0030H MOV SP,#60H MAIN: CLR P1.2 SETB

P1.3 MOV TMOD,#01H MOV TH0,#0B0H MOV TL0,#3CH SETB ET0 SETB EA CLR TR0 MOV 45H,#0 MOV 46H,#0 MOV 47H,#0 MOV A,#0 MOV DPTR,#ADC0809_IN0_address 图12 传感器子程序流程图 MOVX @DPTR,A JB EOC,$ MOV A,@DPTR MOV 45H,A MOV A,#0 MOV DPTR,#ADC0809_IN1_address

MOVX @DPTR,A JB EOC,$ MOVX A,@DPTR MOV 46H,A LCALL DATA_PROCESS SETB TR0 MOV A,50H NEQ: CJNE A,#1,NEQ MOV 45H,#0 MOV 46H,#0 MOV 50H,#0 SJMP MAIN 4.2.2定时器中断子程序

;子程序名称:定时器中断程序INT_T0;入口参数:50H 定时器时间到标志;子程序功能:完成中断计时 INT_T0: MOV TH0,#0B0H MOV TL0,#3CH

INC 47H MOV A,47H CJNE A,#20,NEQ2 MOV 50H,#1 MOV 47H,#0 CLR TR0 NEQ2: RETI 4.2.3数据处理程序

;子程序名称:DATA_PROCESS;入口参数:46H,47H;子程序功能:完成对数据的处理 DATA_PROCESS: MOV A,46H MOV B,#50 将亮度分为50个等级 DIV AB LCALL L_PROCESS 判断开灯还是关灯子程序 MOV A,47H MOV B,#50

DIV AB 将声音分为50个等级 LCALL V_PROCESS RET 4.2.4 ADC0809连续对2个通道采样程序 MOV R0,#30H MOV R4,#02H MOV DPTR,#0C000H 选择ADC0809的IN0输入 LOOP: MOVX @DPTR,A 启动AD 转化 LOO : JB P1.3, LOO 用查询方式等待转换结束

MOVX A,@DPTR 转换结束后,将数字量送入累加器A MOV @R0,A 数字量存入30H 单元中

MOV @R0 R0的内容加1,指向下一单元 INC DPTR 修改模拟输入通道 DJNZ R4,LOOP 8路未完,循环 5.软硬件系统的调试 5.1硬件调试

1.电源部分的调试

使用万用表测量桥式整流电路的输出端电压是否在15V 到20V 之间,若在则说明桥式蒸馏部分是正常的,不在需要检查各二极管的好坏及有无虚焊等,然后再去测量7812和7805的输出电压是否为12V 和5V。

2.单片机部分电路的调试

主要是测量单片机的电源纹波是否在控制范围内,单片机的晶振是否起振,复位电路是否正常工作等。

3.信号采集部分电路的调试

信号采集部分电路的调试比较繁琐,需要有耐心调试,由于各种元器件的参数都有误差,所以电路处理过的输出信号可能不是严格的0—5V,而且电路中有两个电位器,所以要将两个电位器联合调节。

5.2软件调试

单片机应用系统的软件设计是研制过程中任务最繁重的一项工作,难度也比较大,对于某些较复杂的应用系统,不仅要使用汇编语言来编程,有时还要使用高级语言。

单片机应用系统的软件主要包括两大部分:用于管理单片机系统工作的监控 程序和用于执行实际具体任务的功能程序。对于前者,应尽可能利用现成单片机系统的监控程序。为了适应各种应用的需要,现代的单片机开发系统的监控软件功能相当强,并附有丰富的实用子程序,可供用户直接调用,例如键盘管理程序、显示程序等。因此,在设计系统硬件逻辑和确定应用系统的操作方式时,就应充分考虑这一点。这样可大大减少软件设计的工作量,提高编制程效率。后者要根据应用系统的功能要求编写程序,例如,外部数据采集、控制算法的实现、外设驱动、故障处理及报警程序等。

单片机应用系统的软件设计千差万别,不存在统一模式。开发一个软件的明智方法是尽可能采用模块化结构。根据系统软件的总体构思,按照先粗后细的方法,把整个系统软件划分成多个功能独立、大小适当的模块。应明确规定各模块的功能,尽量使每个模块功能单一,各模块间的接口信息简单、完备,接口关系统一,尽可能使各模块间的联系减少到最低限度。这样,各个模块可以分别独立设计、编制和调试,最后再将各个程序模块连接成一个完整的程序进行总调试。

系统调试包括硬件调试和软件调试。硬件调试的任务是排除系统的硬件电路故障,包括设计性错误和工艺性故障。软件调试是利用开发工具进行在线仿真调试,可以发现和解决程序错误,也可以发现硬件故障。

程式序调试一般是一个模块一个模块地进行,一个子程序一个子程序地调试,最后联起来编统调,利用开发工具的单步和断点运行方式,通过检查应用系统的CPU 现场、RAM 和SFR 的内容以及I/O口的状态,来检查程序的执行结果和系统I/O设备的状态变化是否正常,从中发现程序的逻辑错误、转移地址错误以及随机的录入错误等,也可以发现硬件设计与工艺错误和软件算法错误。在调试过程中,要不断调整、修改系统的硬件和软件,直到正确为止。联机调试运行正常后,将软件固化到EPROM 中,脱机运行,并到生产现场投入实际工作,检验其可靠性和抗干扰能力,直到完全满足要求,系统才算研制成功。

6. 附 录 K1 VCC VCC R? 4 R3 RES2 GND 3 L1 11 LM324 Q2 PNP R6 RES2 R? RES4 R4 R? 2 LAMP VCC 1 ADC0809_IN0 UIA R? 光光光光 R5 RES2 Q1 NPN RELAY-SPST VCC VCC VCC LED CU1 CU2 CU3 CU4 CU5 CU6 R4 RES4 L2 L1 R2 RES2 R? U1 L2 新余学院 毕业设计说明书(论文)毕业设计说明书(论文)1 2 3 4 5 6 7 8 u9 12MHZ R? R4 RES4 4 VCC SPEAKER C1 UIA P10 P11 P12 P13 P14 P15 P16 P17 P00 P01 P02 P03 P04 P05 P06 P07 39 38 37 36 35 34 33 32 XTAL1 XTAL2 13 12 INT1 INT0 C2 15 14 T1 T0 MIC C6 0.1UF DW Q4 NPN 31 Q3 NPN 3 R9 6.2K 1 VCC 2 11 LM324 R10 RES2 ADC0809_IN1 VCC EA/VP X1 X2 RESET 9 RESET C3 17 16 R9 6.2K R8 S1 RD WR RXD TXD ALE/P PSEN 10 11 30 29 + 8051 R7 16K R1 R2 R12 RES4 ALE 5 U4 1 2 3 4 5 U3F ADC0809_ALE_START 6 7 12 13 8

D3 74LS04 ADC0809_OE 9 10 VCC ADC0809_CLK 11 12 ADC0809VREF 13 14 INT0 R7 10k D1 IN3 IN4 IN5 IN6 IN7 START EOC D3 OE CLOCK VCC Vref+ GND D1 ADC0809 /RD IN2 IN1 IN0 ADDA ADDB ADDC ALE D7 D6 D5 D4 D0 VrefD2 28 27 26 25 24 23 22 21 20 19 18 17 16 15 ADC0809_IN2 ADC0809_IN1 A9 A10 A11 ADC0809_ALE_START D7 D6 D5 D4 D0 12VGND D2 9 74LS04 U1A 2 /WR 3 1 AD_CS 74LS32 U1B 4 6 5 74LS32 74LS04 U3D 8 U3C 6 U1C 9 10 74LS32 U1D 12 13 74LS32 10 8 SD 2 D Q U2A 5 11 CLK 11 3 CD SD 4 12 21 19 18 P20 P21 P22 P23 P24 P25 P26 P27 21 22 23 24 25 26 27 28 D Q U2B 9 ADC0809_CLK CLK Q 8 CD U3A 1 74LS04 U3B 3 74LS04 2 ADC0809_ALE_START 1 74LS74 U3E RESET 11 10 4 ADC0809_OE 74LS04 13 Q 6 74LS74 新余学院 毕业设计说明书(论文)毕业设计说明书(论文)7.参 考 文 献 [1]杨恒,LED 照明驱动器设计步骤详解:中国电力出版社.2010 [2]杨清德,LED 照明工程与施工:金盾出版社.2009 [3]王港元,电工电子实践指导.江西:江西科学技术出版社,2009.[4]谢自美,电子线路设计、实验、测试.武汉:华中理工大学出版社,2003.[5]赵志杰,集成电路应用识图方法.北京:机械工业出版社,2003.[6] 王庆有,光电传感器应用技术,北京:机械工业出版社,2007 22

第三篇:LED照明灯具在轨道车辆上的应用

LED照明灯具在轨道车辆上的应用

技术工程部 宋玉庆 高夫基

摘要:本文简述了LED照明灯具特点及应用场合,重点介绍在轨道车辆客室照明系统的应用结构及可行性。

1.简介

近年来,随着以节约能源、保护环境为宗旨的绿色照明灯具的应用。LED是Light Emitting Diode(发光二极管)的简称,早在上世经60年代就已经出现,80年代后在辅助、指示、信号等低照度的场合成功地广泛应用。从LED产生到现在,其能够达到的最高光通量已经增加了几个数量级,目前达到了100lm以上,已逐渐开始成为白炽灯甚至荧光灯的实际替代品。

随着轨道车辆的技术发展,客室照明要求相应地日趋严格,LED作为一种新型的固态光源,正逐渐被应用在客室照明系统中,将成为轨道车辆的新一代照明光源。

2.LED发光的原理及性能特点 电致发光原理

与其他二极管一样,LED包含有一片半导体材料基片与杂质相互渗秀或掺杂形成的pn结。稳态时,极性相反的载流子(电子或空穴)因形成了空间电场无法穿过Dpn结。当LED的pn结正向偏置时,电流可以正分容易地从P区(阳极)流向N区(阴极),但不能反向流动。当电子空过PN结从N型材料进P型材料时,电子和空穴的复合过程会产生光子。这一过程称为电致发光。因此暴露的的半导体材料表面可以发光,这就是LED发光的原理。

灯具的作用

灯具是能起到分配、透过和改变光源的光的设备,包括除光源外所有用于固定和保护所需的全部零部件,必要时还可包括其与电源连接的线路附件。其具体作用是

1).合理地分配光,即将光源的光通量重新分配 2).防止光源或灯具所产生的眩光 3).提高光的利用率 4).保护光源免受损伤 5).美化和装饰照明环境。

光学特性

灯具的光学特性主要由下列三特性决定。1).灯具效率

灯具效率是在规定条件下灯具所发出的光通量ΦL与灯具内的全部光源在灯具外点燃时发射的总光通量Φs之比。以符号η表示。

η=ΦL/ΦS

灯具的效率愈高愈好,一般灯具的效率为0.7时属于较高效率的灯具;如果灯具效率达到0.8,则属于高效率灯具。灯具所用的材料影响灯具的效率,如采用高反射比和透射比的材料,则灯具效率提高甚大。效率也取决于灯具的出光口大小,出光口愈大,则效率愈高。此外灯具效率还取决于灯罩和反射器形状的光学设计。

2).灯具的截光角和遮光角 灯具的截光角(γ)是在灯具垂直轴与刚好看不见高亮度发光体的视线之间的夹角。而遮光角是截光角的余角(α)。遮光角愈大,则眩光愈小。

3).配光曲线

灯具在空间各个方向上的光强分布情况,用配光曲线来描述。配光特性是衡量灯具光学特性的重要指标。

在城轨车辆的客室照明实际应用中,一般要求灯具光线均匀,不能有防碍视觉的眩光或闪光。同时照度均匀易于控制。在距地板面0.8米处的照度不低于300lx。

LED灯具特点

与轨道车辆上目前广泛应用日光灯相比,LED灯具的优点是比较明显的,作为新一代的照明光源,较其他照明光源,具有以下优点:光效高、功率因素高、无频闪、无紫外光、启动快、寿命长、抗震性好、绿色环保。

第一,节能,在满足同样要求照度情况下,采用LED灯的功率仅为普通日光灯的1/2~1/3。节省效果是很明显的。这一点在轨道车辆的客室照明系统,将再通过合理的电源选择形式与应急灯设置方式,可以在简化线路与控制方式的同时,并大大减少照明系统辅助功率的需求。

第二,耐震性优良,作为一种新型的固态光源确立了在机动车、轨道交通等车辆中应用的绝对优势,目前汽车除前大灯外几乎都由LED取代。

第三,维护简单寿命长。一般普通日光灯的寿命在5000小时左右,由于轨道车辆的交流供电品质影响,其实际寿命会更低。再加上因镇流器、启辉器等零件的故障造成车辆使用过程的维护保养方面花费在照明系统的费用与时间很大。而LED灯的寿命一般在30000小时,远远长于日光灯的使用寿命,几乎是轨道车辆系统寿命最长的零部件。而且LED灯采用直流恒压供电,受电源品质的影响也小得多。因此采用LED灯具会极大地减轻轨道车辆在照明系统的维护精力,提高整个车辆的可靠性。

第四,无频闪效应,照明品质高。日光灯的闪烁频率为电源频率的两倍。第五,启动过程简单、迅速,并且不会因频繁启动而损害LED的工作寿命。

第六,工作时动态范围大,从3%工作电流~100%工作电流范围内可大幅度调光的特性,易实现智能化调光节能,既节能又延长LED的使用寿命。这在上海地铁3号线等有频繁开关或调节亮度的应用中具有绝对优势。

第七,LED供电电压低,在普通照明中要设置电源转换电路,使灯具结构复杂。但是在轨道车辆上通过合理选择客室照明系统的供电方式,会简化照明系统的电气设计及要求。

第八,LED灯具的制造和使用过程无重金属污染,而且还能再利用,是具有绿色前景的新一代照明灯具。

3.LED照明灯具的结构形式

LED作为轨道车辆的客室照明形式主要有三种方式

第一种方式最为简单,制作外形结构与原来荧光灯外形接口一致的LED灯具,直接替换下原来灯具。需要说明的是由于LED的工作方式与原来荧光类大不相同,电源部分需要重新设计,由于目前市场一般用的超高亮度LED单元,为直流12V或24V。所以这种荧光灯式LED灯在LED单元的背面均设有电源驱动转换电路,将交流220V电源转换成LED照明单元所需的直流电源。对于我们轨道车辆来说,因为车辆系统本身有24V的直流电源,因此可以对客室照明系统的供电电路重新进行设计,直接使用车辆的24V系统供电,取消灯具本身的驱动电路,将会极大增强灯具的可靠性。这种灯管式的LED灯具由于受制于遮光角度问题,难以避免在灯罩背面产生暗区,目前还难以被广泛应用。但是,在已有车辆的节能改造中是优选的易行方案。

图2 荧光灯管式LED灯具

第二种方式是边缘布置LED光源的平板照明形式,这种灯的结构如图3所示,主要有超高亮度LED灯带、散热片、弹性卡簧、平板灯体、封装胶带及电源线组成,一般的平板灯的厚度可以做到8mm或者更小,长度和宽度通过组合几乎不受限制。这种结构的平板灯体将导光板与扩散板设计集于一体,因此不会产生牛顿环等现象。与通过将单个LED光源通过列组成的平面光源(深圳地铁5号线)相比,这种结构的简单,散热性良好,此外还可以很容易地与顶板或侧顶板集成嵌入安装,但是由于结构布置上的限制灯具照度较低,导光板的选材上也必须保证其出光率高,光色纯正,无眩光,无暗区,透光率在90%以上,据报道目前已有可用于LED热管理系统冷却组件的聚碳酸脂导光板。在轨道车辆的客室照明上边缘布置LED光源的平板灯应趋于设计成条状灯具,可以沿客室纵向布置多条灯具,来扩大灯具面积,满足照度要求。

图3 LED平板灯结构示意图

第三种方式是设计LED灯带(国外称Light Bar),安装在原来的灯安装位置。这种结构的灯具进行线状设计,利用LED自身的出光方向性把有效的光投到客室内部,出光的利用率高,散热性好。从根本消除了把几十颗、甚至上百颗LED串、并联集成在很小的面积内,造成散热差,影响光效,抹杀了LED长处的缺点。能充分发挥LED发出的光束集中,不需要反射器聚光的长处,或通过利用平面镜光学系统,在用较少LED发光单元情况下照亮很大的面积,同时LED灯带的截面尺寸可以做得很小,如图4所示。因此原有的安装空间完合可以满足。固定形式可以采用端部或者背部嵌入安装皆可。

图4 LED灯带结构示意图

图5双排布置的灯带结构

5.LED照明灯具设计注意的问题

LED照明灯具以其节能耐振及高可靠性,很适合于在轨道车辆客室照明中的应用,但是LED产品本身也有不可避免的缺点:

1)怕高温,尤其散热不好时,会造成光效低、使用寿命短,光衰快。2)怕超功率运行,那怕是瞬时的超功率也会明显影响使用寿命。

因此,在实际应用过程中,重视设计需求,从产品安全要求(结构、IP等)、性能要求(包括配光要求),EMC(包括EMI和EMS)要求以及用户使用的要求。采取适宜的措施,对照明系统的灯具、布置、电源、控制系统进行分析设计,从整车匹配到紧急照明灯的启用等进行系统规划考虑。杜绝产品缺陷,确保客室照明系统寿命与可靠性。才能体现LED的安全、高效和长寿特性。

虽然传统光源的产热量远高于LED光源,但不会因为高温而降低其光输出,然而LED的光输出会因为结温升高而下降,因此散热问题在LED灯具中设计中至关重要。结合我们轨道车辆的具体情况来看,LED灯具的布置上一般靠近空调风道,因此这对灯具的散热特性有所改善,使散热通道短,热阻小。

电源及控制电路的设计,电源方面要设置合理的恒流源供电电路,提高LED灯具的稳定性,同时进一步加强对照明电源的电流监控手段,尤其在有调光要求的应用情况下,提高的系统可靠性。

6.结论及建议

LED用于轨道车辆的客室照明中,可以减少照明系统的辅助功率需求,通过对照明系统电路的系统的综合设计还能简化整个照明系统的电气线路,同时以其节能、高可靠、长寿命的特性将极大地减少客室照明系统灯具的维护,目前已在深圳5号线,北京14号线等车辆上逐步应用,随着LED照明技术迅速发展,此类产品必将以强大生命力更广泛地应用。

参考文献

〔1〕刘军良

钟碧羿,城轨车辆客室LED照明的特点及灯具选型分析,《电力机车与城轨车辆》,2010年第2期

〔2〕张国富

方宇等,上海地铁3号线列车客室照明节能方案设计,《上海工程技术大学学报》,2011年第1期

〔3〕王声学

吴广宁等,LED在汽车照明系统中的应用,《灯与照明》,2007年第1期

下载浅论基于WTB/MVB总线的轨道车辆LED照明控制系统设计论文[优秀范文五篇]word格式文档
下载浅论基于WTB/MVB总线的轨道车辆LED照明控制系统设计论文[优秀范文五篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐