第一篇:活性炭吸附实验报告
实验 3 3
活性炭吸附实验 报告
一、
研究背景 :
1.1、、吸附法 吸附法处理废水是利用多孔性固体(吸附剂)的表面吸附废水中一种或多种溶质(吸附质)以去除或回收废水中的有害物质,同时净化了废水。
活性炭是由含碳物质(木炭、木屑、果核、硬果壳、煤等)作为原料,经高温脱水碳化和活化而制成的多孔性疏水性吸附剂。活性炭具有比表面积大、高度发达的孔隙结构、优良的机械物理性能和吸附能力,因此被应用于多种行业。在水处理领域,活性炭吸附通常作为饮用水深度净化和废水的三级处理,以除去水中的有机物。除此之外,活性炭还被用于制造活性炭口罩、家用除味活性炭包、净化汽车或者室内空气等,以上都是基于活性炭优良的吸附性能。将活性炭作为重要的净化剂,越来越受到人们的重视。
1.2 、影响 吸附 效果的主要因素 在吸附过程中,活性炭比表面积起着主要作用。同时,被吸附物质在溶剂中的溶 解度也直接影响吸附的速度。此外,pH 的高低、温度的变化和被吸附物质的分散程度也对吸附速度有一定影响。
1.3 、研究意义 在水处理领域,活性炭吸附通常作为饮用水深度净化和废水的三级处理,以除去水中的有机物。活性炭处理工艺是运用吸附的方法来去除异味、某些离子以及难以进行生物降解的有机污染物。
二、实验目的本实验采用活性炭间歇的方法,确定活性炭对水中所含某些杂质的吸附能力。希望达到下述目的:
(1)加深理解吸附的基本原理。
(2)掌握活性炭吸附公式中常数的确定方法。
(3)掌握用间歇式静态吸附法确定活性炭等温吸附式的方法。
(4)利用绘制的吸附等温曲线确定吸附系数:K、1/n。K 为直线的截距,1/n 为直线的斜率 三、主要仪器与试剂
本实验间歇性吸附采用三角烧瓶内装人活性炭和水样进行振荡方法。3.1 仪器 与器皿 :
恒温振荡器 1 台、分析天平1 台、分光光度计 1 台、三角瓶 5 个、1000ml 容量瓶 1 个、100ml 容量瓶 5 个、移液管 2 3.2 试剂:活性炭、亚甲基蓝 四、实验步骤
(1 1)、标准曲线的绘制
1、配制 100mg/L 的亚甲基蓝溶液:称取 0.1g 亚甲基蓝,用蒸馏水溶解后移入1000ml 容量瓶中,并稀释至标线。
2、
用移液管分别移取亚甲基蓝标准溶液 5、10、20、30、40ml 于 100ml 容量瓶中,用蒸馏水稀释至 100ml 刻度线处,摇匀,以水为参比,在波长 470nm 处,用1cm 比色皿测定吸光度,绘出标准曲线。
(2 2)、吸附等温线间歇式吸附实验步骤
1、用分光光度法测定原水中亚甲基蓝含量,同时测定水温和 PH。
2、将活性炭粉末,用蒸馏水洗去细粉,并在 105℃下烘至恒重。
3、在五个三角瓶中分别放入 100、200、300、400、500mg 粉状活性炭,加入 200ml水样。4、将三角瓶放入恒温振荡器上震动 1 小时,静置 10min。
5、吸取上清液,在分光光度计上测定吸光度,并在标准曲线上查得相应的浓度,计算亚甲基蓝的去除率吸附量。
五、注意事项
1、实验所得的 qe 若为负值,则说明活性炭明显的吸附了溶剂,此时应调换活性炭或调换水样。
2、在测水样的吸光度之前,应该取水样的上清液然后再分光光度计上测相应的吸光度。
3、连续流吸附实验时,如果第一个活性炭柱出水中溶质浓度值很小,则可增大进水流量或停止第二、三个活性炭柱进水,只用一个炭柱。反之,如果第一个炭柱进出水溶质浓度相差无几,则可减少进水量。
4、进入活性炭柱的水中浑浊度较高时,应进行过滤去除杂质。
六、实验结果 与 分析6.1 实验结果
亚甲基蓝浓度与吸光度 序号 1 2 3 4 5 浓度 mg/l 5 10 20 30 40 吸光度 A1 0.078 0.098 0.153 0.205 0.256 亚甲基蓝标准曲线y = 0.0052x + 0.0497R 2
= 0.998200.050.10.150.20.250 5 10 15 20 25 30 35亚甲基蓝浓度(mg/L)吸光度A
活性炭投加量 吸光度 A 原亚甲基蓝 浓度C 0 /(mg/L)吸附平衡后 亚甲基蓝 浓度 C/(mg/L)logC C0-C C0-C/m logC0-C/m 100mg 0.217
32.173 1.507 59.808 0.598-0.223 0.232 35.058 1.545 56.923 0.569-0.245 0.23 91.981 34.673 1.540 57.308 0.573-0.242 0.212
31.212 1.494 60.769 0.608-0.216 0.197 28.327 1.452 63.654 0.637-0.196 200mg 0.136
16.596 1.220 75.385 0.754-0.123 0.132
15.827 1.199 76.154 0.762-0.118 0.122 91.981 13.904 1.143 78.077 0.781-0.107 0.102
10.058 1.002 81.923 0.819-0.087 0.104
10.442 1.019 81.539 0.815-0.089 300mg 0.121
13.712 1.137 78.269 0.783-0.106 0.129 15.250 1.183 76.731 0.767-0.115 0.11 91.981 11.596 1.064 80.385 0.804-0.095 0.099
9.481 0.977 82.500 0.825-0.084 0.105 10.635 1.027 81.346 0.813-0.090 400mg 0.191
27.173 1.434 64.808 0.648-0.188 0.174 23.904 1.378 68.077 0.681-0.167 0.13 91.981 15.442 1.189 76.539 0.765-0.116 0.121
13.712 1.137 78.269 0.783-0.106 0.189 26.788 1.428 65.193 0.652-0.186 500mg 0.236
35.827 1.554 56.154 0.562-0.251
活性炭间歇吸附试验记录 活性炭 投加量(mg)lgK 1/n K n 100 0.5695-0.5266 3.7111-1.899 200 0.0785-0.1641 1.1981-6.0938 300 0.0668-0.1529 1.1662-6.5402 400 0.2109-0.2769 1.6252-3.6114 500 0.3806-0.4024 2.4021-2.4851 吸附等温线(1)根据测定数据绘制吸附等温线;(2)根据 Freundlich 等温线,确定方程中常数 K,n;(3)讨论实验数据与吸附等温线的关系。
思
考
题
1.吸附等温线有什么现实意义?(1)宏观地总括吸附量、吸附强度、吸附状态等作为吸附现象方面的特性;(2)判断吸附现象的本质,如属于分配(线性),还是吸附(非线性);(3)用于计算吸附剂的孔径、比表面等重要物理参数;(4)吸附等温曲线用途广泛,在许多行业都有应用,如地质科学方面、煤炭方面。
2.作吸附等温线时为什么要用粉状炭? 废水中的物质经活性炭吸附后分散好,容易单层吸附。
3.实验结果受哪些因素影响较大,该如何控制? 实验结果受实验温度、吸附质的分压、活性碳性质(比表面积、孔隙率等)
0.213 31.404 1.497 60.577 0.606-0.218 0.173 91.981 23.712 1.375 68.269 0.683-0.166 0.152
19.673 1.294 72.308 0.723-0.141 0.146 18.519 1.268 73.462 0.735-0.134
第二篇:如何制作活性炭解读
现代农业以大量化肥代替原有农家有机肥的使用,以人工饲料代替农业废弃物饲料的使用,加之现代农业集约化和规模化的发展,打破了传统农业中废弃物的循环利用环节,结果造成了农业废弃物的大量积累,进而产生了较为严重的环境问题和资源浪费问题。因此,农业废弃物资源的合理利用已日益成为当前世界大多数国家共同面临的问题。国内外实践表明,农业废弃物的资源化利用和无害化处理,是控制农业环境污染、改善农村环境、发展循环经济、实现农业可持续发展的有效途径。
活性炭是一种具有特殊微晶结构、发达孔隙结构、巨大比表面积和较强吸附能力的含碳材料。其化学稳定性好,具有耐酸、耐碱、耐高温等特点。作为一种优良的吸附剂,人们对活性炭的应用开发研究越来越多。20世纪70年代前,活性炭在国内的应用主要集中于制糖、制药和味精工业:后来又扩展到水处理和环保等行业;20世纪90年代,除以上领域外,扩大到溶剂回收、食品饮料提纯、空气净化、脱硫、载体、医药、黄金提取、半导体等众多应用领域[1-5]。
2农业废弃物利用现状
农业废弃物(agriculturalresidue)是指在农业和林业生产与加工过程中产生的副产品、数量巨大、具有可再生、再生周期短、可生物降解、环境友好等诸多优点,是重要的生物质资源。主要有树皮、果壳、锯末、秸秆、蔗渣等。据有关资料,我国产生的农业废弃物按目前的沼气技术水平能转化成沼气3111.5亿m3,户均达1275.2m3,可解决农村能源短缺。以农作物秸秆为例,将目前的6.5亿吨秸秆转化为电能,按1kg秸秆产生电1千瓦时计算,就具有产生6.5亿千瓦时电能的潜力;作为肥料可提供氮大约2264.4万吨、磷459.1万吨、钾2715.7万吨;作为饲料,仅玉米秸秆就能提供1.9~2.2亿吨。然而,目前我国农业废弃物的利用率却很低乃至没有利用。因此,农业废弃物一方面成为最大的搁置资源之一,另一方面又成为巨大的污染源[6]。
从资源经济学的角度上看,农业废弃物本身就是某种物质和能量的载体,是一种特殊形态的农业资源,蕴含着丰富的能源和营养物质。目前,随着石油、煤炭等不可再生资源的日益短缺,越来越多的国家特别是发达国家已经把农业废弃物等可再生资源的转化利用列入社会经济可持续发展的重要战略,以农业废弃物等可再生资源为原料制备工业新产品的研究引起了世界各国的关注。在我国,随着经济的迅速发展,开发利用农业废弃物资源,逐步补充或替代化石资源,是关系到我国社会经济可持续发展的重大问题。
3农业废弃物制备活性炭及其改性
目前活性炭制备原料的使用也是由木屑和木片到煤和各种农林产品的充分利用。产品由单一品种向多品种发展:由低档活性炭向高档活性炭转变。农业废弃物制备活性炭的过程一般经过原料粉碎、压棒、炭化、活化、漂洗、烘干和活性炭粉碎等几个步骤。同时根据不同的需求可以在不同的步骤中进行表面物理结构的改性或表面化学性能的改性。
3.1表面物理结构的改性
活性炭材料吸附表面物理结构的改性是指在活性炭材料的制备过程中通过物理或者化学的方法来增加活性炭材料的比表面积、调节孔径及其分布,使活性炭材料的吸附表面结构发生改变,从而增加活性炭材料的物理吸附性能。常用的活化剂有碱金属、碱土金属的氢氧化物、无机盐类以及一些酸类,目前应用较多、较成熟的化学活化剂有KOH、NaOH、ZnCl2、CaCl2和H3PO4等[7-10]。
3.2表面化学性能的改性
活性炭材料表面化学组成的不同对活性炭材料的酸碱性、润湿性、吸附选择性、催化特性等产生影响。活性炭材料的吸附表面化学性能的改性是指通过一定的方法改善活性炭材料吸附表面的官能团及其周边氛围的构造,使其成为特定吸附过程中的活性点,从而可以控制其亲水/疏水性能以及与金属或金属氧化物的结合能力。活性炭材料吸附表面化学性质的改性可以通过表面氧化改性、表面还原改性以及负载金属改性等修饰。
3.2.1氧化改性
氧化改性主要是利用强氧化剂在适当的温度下对活性炭表面的官能团进行氧化处理,从而提高表面的含氧酸性基团(如羧基、酚羟基、酯基等)的含量,增强材料表面的极性和亲水性。常用的氧化剂主要有HNO3、HClO3和H2O2等。Tsutsumi[11]认为HNO3是最强的氧化剂,产生大量的酸性基团,HClO3的氧化性比较温和,可调整活性炭的表面酸性到适宜值。氧化后活性炭表面的几何形状变得更加均一。刘文宏等[12]使用浓HNO3分别在常温和沸腾状态下对活性炭进行改性,研究结果表明:活性炭经常温浓HNO3改性后,比表面积和孔容都明显提高,而经沸腾浓HNO3改性后,比表面积和孔容却明显减小,但2种改性方式都使活性炭表面产生更多的含氧基团。韩彬[13]等选择磷酸氢二铵为活化剂在不同的活化温度和预氧化条件下来制备活性炭。结果表明,在先浸泡后预氧化处理并在700℃下活化制得的样品的比表面积为1078.21m2/g,其得率和碘吸附值分别为39.75%和636mg/g。
3.2.2还原改性
表面还原改性是指通过还原剂在适当的温度下对活性炭材料表面官能团进行还原改性,从而提高含氧碱性基团的比含量,增强表面的非极性,这种活性炭材料对非极性物质具有更强的吸附性能。常用的还原剂有H2、N2、NaOH、KOH等。Menendez等[14]认为,活性炭的碱性主要是由于其无氧的Lewis碱,可以通过在还原性气体H2或N2等惰性气体下高温处理得到碱性基团含量较多的活性炭。Krisztinalaszlo等[15]研究了经N2处理的活性炭对溶液中苯酚和2,3,4-三氯苯酚的吸附,结果表明,当溶液pH为3时,吸附量最大,当溶液pH为11时,吸附量下降。Haghserssht等[16]研究发现,经H2和N2还原碱性活性炭对水溶液中p-甲酚、硝基苯和p-硝基苯酚的吸附,较未处理过的活性炭吸附量大。
3.2.3负载金属和金属氧化物改性
负载金属改性大都是利用活性炭对金属离子的还原性和吸附性,使金属离子先在其表面上吸附,再还原成单质或低价态的离子,并通过金属离子或金属对被吸附物的较强结合力,增加活性炭对被吸附物的吸附性能。中南林业科技大学研究了利用农业废弃物棉秸秆为原料[17],采用氯化锌活化法制取活性炭的工艺,以及制备过程中各种因素对活性炭吸附性能的影响,得出了适宜的工艺条件:氯化锌溶液浓度为40°Be′,固液比为1:2,400℃炭化180min,650℃活化60min。Garg等[18]采用浓硫酸在150℃下处理印度红木锯末24h,去除残余酸后制得活性炭吸附剂,与甲醛处理的锯末相比,这种吸附剂有更好的Cr(VI)去除能力。
4农业废弃物制备活性炭的应用
活性炭的应用已经有很长的历史。活性炭最初用于糖的脱色,后逐步扩大到生产和生活的各个行业,并不断地根据市场的需求开发出新的产品。农业废弃物制备的活性炭目前已应用于污水处理、水质净化、治理烟气等方面
4.1污水处理 活性炭在废水处理方面的主要优点是处理程度高、出水水质稳定,与其它方法配合使用可获得质量很高的出水水质,郑旭煦等[19]研究活性炭负载纳米TiO2的光催化降解性能和影响甲基橙废水处理的主要因素,结果表明:用溶胶-凝胶法制备TiO2活性炭催化剂具有比表面积大、分散性高、光催化降解性能好、可重复利用等优点。Jun等[20]报道了用载有铂的各种活性炭在氧化还原过程中,可以达到增强有机酸吸附作用的效果。无机工业废水处理[21-22]某些活性炭对于废水中无机重金属离子具有一定的选择吸附能力。用于处理饮用水及微污染水净化,臭氧-生物活性炭工艺[23]以其可以高效去除水中溶解性有机物和致癌突变物、出水安全、优质而备受瞩目和重视。
4.2水质净化
活性炭在净化给水方面不仅对色、嗅去除效果良好,而且对合成洗涤剂ABS、三卤甲烷、卤代烃、游离氯也有较高的吸附能力,也能有效地去除几乎无法分解的氨基甲酸酯类杀虫剂等。活性炭能有效地去除水中的游离氯和某些重金属(如Hg、Sb、Sn)且不易产生二次污染,常用于家庭用水及饮用水的净化处理工艺中[24]。
4.3废气处理
目前,我国的煤炭燃烧过程中排放出的SO2和NOx是主要的大气污染物,而改性后活性炭材料的脱硫、脱硝处理效果好,投资运行费用低,且易于再生利用。改性活性炭材料脱硫、脱硝首先是利用活性炭材料的吸附性能将烟气中的污染气体SO2和NOx物理吸附于活性炭材料表面,在活性炭材料表面官能团或担载金属的催化作用下,SO2和NOx转化为SO3和无污染的N2或O2。在有水蒸气存在的情况下,SO3将会与水结合生成硫酸回收。Wey等[25]研究了炭载金属铜和铈脱硫剂的脱硫性能,邱琳等[26]研究了用碳酸钠溶液改性的活性炭比普通纯活性炭脱硫剂的硫容提高近30%。Wang等[27]通过加载金属改性活性炭纤维研究其对二氧化硫去除性能的影响。
活性炭作为一种多孔性含碳材料,其内部具有十分发达的空隙结构和巨大的比表面积,表面具有含氧等元素的特殊功能的表面功能团,应用领域越来越宽。自20世纪初投入工业生产以来,作为吸附剂、催化剂载体等已经广泛用于电子、化工、食品加工、医疗卫生、交通能源、农业、国防等领域,特别是最近,为了防治大气污染、水质污染和恶臭等公害以保护环境,使得活性炭的生产和研究有了更快的发展。如今全世界约有50个国家生产活性炭,美国、日本、英国、德国、法国和俄罗斯等国家的发展处于领先水平。到1990年止,美国年消耗量105 491 t,并以4%~5%的年均增长率增加。日本的消耗也达75 251 t,而西欧各国活性炭年生产能力为10万t[1]。我国的活性炭工业起步于1960s年代,1970s年代的产量才1万t,进入1980s年代末产量达到4万t。近些年来我国的活性炭工业有了较大的发展,年产量达到8万t,但活性炭的质量远不及发达国家,大量高质量的活性炭还需进口[2]。活性炭的制备原料
所有制造活性炭的原料均为含碳物质,目前国内外选用的制造活性炭的原料分为5大类。
2.1 植物原料(木质原料)活性炭的木质原料范围很广,常选用的有:木炭、椰子壳、木屑、树皮、核桃壳、果核、棉壳、稻壳、竹子、咖啡豆梗、油棕壳、糠醛渣及纸浆废液等[3~13]。木质原料在我国活性炭工业中占有着十分重要的地位。其中,椰子壳、核桃壳为最优,但由于原料有限,制约了其发展。
2.2 煤炭原料
煤炭是制造活性炭的重在原料。几乎所有的煤都可以制出活性炭。其中,成煤时间短的年轻的无烟煤、弱粘煤、褐煤及泥煤等都是制造活性炭的优良原料。由于煤炭资源丰富、分布广泛、价格低廉,因此以煤为原料生产活性炭有着很好的前景[2]。
2.3 石油原料
石油原料主要指石油炼制过程中的含碳产品及废料。例如石油沥青、石油焦、石油油渣等[4~17]。1990s年代初期,中国科学院山西煤炭化学研究所采用灰分、杂质含量低(<0.01%)的石油系沥青为原料,采用KOH化学活化法,制备出比表面积为3 600 m2/g的活性炭[18~19]。2.4 塑料类聚氯乙烯、聚丙烯、呋喃树脂、酚醛树脂、脲醛
树脂、聚碳酸酯、聚四氟乙烯等[20~23]。这些原料主要指工业回收废料,我国目前尚未充分利用。
2.5 其他
旧轮胎、动物骨、动物血、蔗糖、糖蜜等[24]。上述原料中我国目前主要以椰子壳、桃杏核作为木质活性炭的原料。因为它们具有灰分低、孔隙发达、比表面积大、强度和吸附性能良好等优点,是理想的木质活性炭原料,但由于原料数量的限制影响到其大量的发展。而煤则具有品种多、价格低、质量稳定、资源丰富等优点,因此以煤为原料的活性炭发展很快,煤质活性炭的应用范围和数量也在逐渐扩大。国内外活性炭制造方法
目前国内外活性炭的制造方法从原理上讲可分为3类。3.1 气体活化法
气体活化法是把原料炭化以后,用水蒸汽、二氧化碳、空气、烟道气在600~1 200℃下进行活化的方法[25]。世界上生产活性炭的厂家70%以上都是采用气体活化法。我国主要以气体活化法生产活性炭。
一般认为,水蒸气活化的反应机理如下: C*+H2O C[H2O] C[H2O] H2+C[O] C[O] CO 此处,C*表示位于活性点上的碳原子,[]表示处于化学吸附状态。由于氢结合在活性点上而妨碍了反应的进行: C+H2C[H2] 并且,还有下式所示的副反应存在: CO+H2O→H2+CO2气体活化法是以消耗碳原子而形成孔隙结构,因而得率较低。其工艺特点是活化温度高,设备投资大,但对环境无污染。
3.2 化学活化法
化学活化法是把化学药品以一定比例加入原料中,然后在惰性气体介质中加热,同时进行炭化和活化[25]。最后又将加入的化学药剂予以回收。在活化过程中,用化学药剂刻蚀含碳材料,并使其中的氢和氧等元素主要以H2O、CH4等小分子形式逸出,抑制副产物焦油的形成,可提高活性炭收率。使用的主要化学药剂有KOH、KCNS、H3PO4、H2SO4、ZnCl2、NaOH等。
目前文献报导最多的化学活化法是利用KOH活化制备高比表面积活性炭[18~19][26~39]。1980s年代中期,美国阿莫卡公司以KOH为活化剂,采用化学活化法,制得比表面积大于2 500m2/g的活性炭[26~28]。日本大阪煤气公司,用中间相沥青微球为原料、也采用类似的活化方法制得比表面积高达4 000 m2/g的活性炭[29]。日本关西热化学也有这种称之为Maxsorb的制品[18]。中国科学院山西煤炭化学研究所于1990s年代初开展了这方面的研究工作,并成功制得了高比表面积活性炭(SBET~3 600 m2/g)[19][30~31]。下面以KOH活化为例简单叙述化学活化法。
读书的好处
1、行万里路,读万卷书。
2、书山有路勤为径,学海无涯苦作舟。
3、读书破万卷,下笔如有神。
4、我所学到的任何有价值的知识都是由自学中得来的。——达尔文
5、少壮不努力,老大徒悲伤。
6、黑发不知勤学早,白首方悔读书迟。——颜真卿
7、宝剑锋从磨砺出,梅花香自苦寒来。
8、读书要三到:心到、眼到、口到
9、玉不琢、不成器,人不学、不知义。
10、一日无书,百事荒废。——陈寿
11、书是人类进步的阶梯。
12、一日不读口生,一日不写手生。
13、我扑在书上,就像饥饿的人扑在面包上。——高尔基
14、书到用时方恨少、事非经过不知难。——陆游
15、读一本好书,就如同和一个高尚的人在交谈——歌德
16、读一切好书,就是和许多高尚的人谈话。——笛卡儿
17、学习永远不晚。——高尔基
18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。——刘向
19、学而不思则惘,思而不学则殆。——孔子
20、读书给人以快乐、给人以光彩、给人以才干。——培根
第三篇:变压吸附工艺流程
变压吸附工艺流程
物料在精馏低塔系统处理完毕后,剩余的不凝气体经过预热器预热进入吸附塔,乙炔和氯乙烯被吸附下来,无法被吸附剂吸附下来的其他气体通过尾排阀门排放到大气中。
吸附饱和的吸附塔经过压力均降,逆放,抽空一,抽空二,抽冲,抽空三,压力均升,终充8个步骤进行处理,塔内吸附的乙炔和氯乙烯完全解吸出来,通过压力差和真空泵送入转化。
下面将变压吸附的9个步骤进行分步介绍:
1、吸附
不凝气体在尾排前进入预热器,原料气在预热器内加热到40℃后,通过KV1阀送到吸附塔内。六塔流程为两个塔同时进行吸附,其他四个塔进行处理。原料气内氯乙烯和乙炔在吸附塔内被吸附下来,剩余未被吸附的气体,经过KV2阀到达尾排,通过压力调节阀门排放至空气中。
此过程需要的时间为804S,压力比精馏系统的压力低0.02MPa,在0.47~0.49 MPa。总时间的设定是根据原料气流量、净化气内的氯乙烯和乙炔含量决定的。
如精馏系统出现波动,变压吸附的压力也同时跟着波动。所以,我们在操作时,要保证精馏压力及原料气的流量稳定。当精馏停车时,系统通过KV10,KV11或KV15,KV16阀切换至直排;精馏压力低到设定值(0.45 MPa)时,系统自动进行切换。
2、压力均降 吸附结束后,饱和的吸附塔在设定好的T2步骤进行压力降,通过KV5和KV9阀,将吸附塔内的压力泄入中间罐内。均降步骤在16S就可完成,剩余的时间留给抽空三,使得抽空三步压力尽可能的抽至-0.09MPa吸附塔的解吸更彻底。
吸附塔压力由0.48MPa降至0.22MPa。
3、逆放
均压结束后,吸附塔的逆放为T4和T6步骤,共计130S。此时,吸附塔的压力通过KV17阀进入转化二级混脱,为防止转化压力波动,控制HV102阀门的开度调节,使气体的压力缓慢释放。
压力由0.22MPa降至0.04~0.05MPa。HV102的斜率系数为1.00,阀门的最小开度为25%,最大开度为100%。
4、抽空一
逆放结束后为吸附塔的T8抽空一,打开KV18或KV19阀控制HV102阀门的开度,真空泵
设定的时间为132S,达到要求的真空度-0.05 MPa。
5、抽空二
6、抽冲
7、抽空三
8、压力均升
9、终充
第四篇:活性炭厂近期安全工作总结
活性炭厂近期安全工作总结
集团安委会:
为了深入落实集团安全发展理念,认真贯彻执行“安全第一,预防为主,综合治理”安全生产方针和集团《 关于做好今冬明春安全,环保工作的通知》精神,加强企业安全管理,、杜绝违章行为和各类安全事故,确保生产的正常运行,现将我厂近期安全工作汇报如下:
一、做好宣传、部署工作
一是召开中层以上干部大会,传达自治区领导讲话内容、集团《 关于做好今冬明春安全,环保工作的通知》精神及宝丰集团“12.17”发生重大人员伤亡事故的教训,进行学习动员,提高思想认识;二是结合我厂安全工作的现状,落实讲话、通知精神,全面部署和安排:厂部要求:各科室、车间要召开专题安全会议,及时传达集团通知精神和厂部的要求,认清形势,使大家充分认识到安全是企业的生命线,是企业最大的效益,没有安全就谈不上企业的发展。全厂干部、职工要牢固树立安全发展的理念,高度重视安全工作,克服侥辛心理,逞强心理和冒险心理,在实际工作中求真务实,做到“防患于未然”。
二、制定计划、安全措施
根据集团《2012年安全生产目标管理责任书〉的总目标,制定了我厂2012年安全生产实施计划、2012年职工学习计划、安全教育计划,做到有计划、有步骤地开展安全工作。
三、提高思想觉悟,稳定职工队伍
由于我厂临时工占三分之二,流动性大,文化素质参差不齐等特点,做好思想教育工作,调动大家的工作积极性,爱岗敬业,稳定职工队伍,确保生产正常运行,显得尤为重要,厂领导、部门负责人,深入车间、班组,参加车间、班组会议,个别交流、谈心,听取职工的意见和建议,解答有关问题,解决职工关心的问题等方式,对大家进行教育,通过耐心细致的思想教育工作,提高了大家的思想觉悟,统一了思想,激发了大家的工作热情,爱岗敬业,吃苦耐劳,讲安全,讲质量,讲消耗,已蔚然成风。能正确对待个人利益与公司的关系,保持了职工队伍的稳定,从而提高了产量,促进了生产的正常运行。
四、开展安全教育和培训,提高全员安全意识。
(一)由厂安全科、办公室组织,指定专人讲课,对全厂班组长、中层以上干部进行了法律、安全知识、以往发生事故的原因进行了分析和教育。观看了火灾案例,使大家受到直观的教育,从中吸取教训,同时警示大家,忽视安全生产管理,不严格遵守操作规程、违章指挥、违章作业、带给我们的是惨痛的教训和血的代价;
(二)各科室、车间组织职工学习有关安全规章制度,规定、安全措施,操作规程;
(三)是对车间班组长、安全员、中层以上干部,编写法律法规,安全管理、安全基础知识进行复习、论答,并对班组长,安全员、中层干部进行了安全知识测试和考试,强化了教育,从而达到教育培训效果。提高了安全防范意识。通过教育使各级人员了解和掌握有关安全的法律法规、操作规程、安全知识,使大家真正认识到做好安全工作、即关系到企业的利益,又关系到每个职工的切身利益,只有重视安全工作,严格各项安全
措施和规章制度,不失职,不违章,才能确保安全。
五、认真落实安全目标责任制
(一)加强宣传、教育工作。厂里召开了中层以上干部参加的安全工作会议,传达集团安委会召开的2012年的安全工作会议精神,学习集团与厂部签定的安全管理目标责任书,提高认识,统一思想,使大家充分认识到建立安全责任制,是安全管理工作的核心,在日常工作中要高度重视安全工作,牢记安全工作的方针,把其列入工作的重中之重,做到有计划、有布置、有检查、有总结,常抓不懈。做到思想上重视,行动上抓好落实。
(二)层层签订安全目标管理责任书。遵照集团《2012年安全目标管理责任》的目标和要求,制定了我厂《2012年安全目标管理责任书》,提出了我厂全年安全工作目标、任务、具体要求和考核细则,同时厂部与各部门,部门与班组、个人签定安全目标管理责任书,把责任落实到人,为全年安全工作目标的实现,奠定了一定的基础。
六、召开总结表彰大会
对我厂“2011年安全目标管理责任书”落实情况及2011年9月15日至12月30日开展的“百日安全生产劳动”竞赛活动进行了总结,表彰了先进单位和个人,树立了典型,查找了不足,鞭策后进,从而使职工的安全意识明显提升,全厂安全生产管理明显增强。同时就如何做好2012年安全、环保管理工作进行了总体部署和安排,2012年“舂节”节前安全教育、安全检查、节日值班进行了部署和安排,确保安全无事故。
七、加强安全管理、落实安全责任
(一)认真开展安全检查、事故排查工作
每周五由安全、生产、设备、质检4大科室对全厂安全、生产、设备、产品质量、清洁生产,进行安全大检查。对检查中发现的问题,认真填写检查记录,提出整改意见,定人、定措施、期限进行整改。同时要求各部门做好自查、自改工作,加大隐患整改力度,消除不安全因素和事故隐患,确保生产的正常运行。
(二)加强现场安全生产监管、落实安全措施,把事故消除在萌芽状态。一是加强现场安全管理,消除人的不安全行为和物的不安全状态,要求各车间主任、班组长跟班作业,对容易发生事故的重点部位、场所进行定期或不定期每日巡查、检查,发现问题及时整改,使安全工作有人抓,把安全管理,监督落到实处;;二是明确各级人员的安全责任,强化责任意识,落实“谁主管、谁负责”的原则,把反“三违”当做工作重点来抓,从根本上预防各类事故的发生。
八、加强后勤、财务安全管理工作
(一).加强门卫值班制度,做好治安防范工作。
(二).加强食堂安全卫生管理,预防食物中毒、流行病的发生。
(三).加强对车辆的管理及司机的教育工作。
(四).加强施工现场的安全管理工作。
(五).加强财务现金管理工作。
(六).加强领导值班,明确值班职责。一是加强日常厂部、车间值班制度的落实;二是明确值班职责,加强监督和查岗力度,督导车间及时消除不安全因素,保证了生产正常运行。
九、做好环境保护工作
定期与不定期开展环保检查、巡查,发现烟尘超标排放现象,能及时督导车间,进行整改,消除污染源。
“安全为生产,生产必须安全”我们将以集团《关于做好今冬明春安全、环保工作的通知》精神为契机,吸取2011年我厂发生2起人身伤害事故和宝丰集团“12.17”事故教训,全面加强安全管理工作,确保2012年各项工作的顺利完成。
宁夏宝塔活性炭有限公司
二0一一年一月十七日
第五篇:石油焦制备活性炭文献总结
一、简介
石油焦是炼油过程中的一种副产品,目前国内主要用于冶金工业,高硫原油炼制过程中的石油焦不能满足冶金行业煅烧焦的要求,因此必须为高硫石油焦寻找新的用途。石油焦固定碳含量高、灰份低,是制备活性炭的优质原料,并且石油焦中的硫在制备活性炭的过程中能够起到造孔的作用。活性炭微孔发达、比表面积高、吸附能力强,是一种优良的吸附材料,广泛应用于化工、环保、食品与制药、催化剂载体和电极材料等领域。随着科学技术的飞速发展,高容量电池、高容量电容器的生产技术得到快速提高,市场对高比表面积活性炭的需求量越来越大。尤其是比表面积大于2000m2/g的高比表面积活性炭在双电层电容器的成功应用,使得对高比表面积活性炭的制备与应用的研究得到广大科学工作者的极大关注。
二、发展历史
国外20世纪70年代开始研究石油焦制备活性炭工艺,80年代中期实现工业化,均生产比表面积在2500m2/g以上的产品。我国于20世纪80年代末开始进行石油焦制活性炭的研究工作,研究水平大多较低,有部分技术已进入工业化实验阶段。美国StandardOil公司在1971至1978年申请了石油焦制备活性炭多项专利,均涉及氢氧化钾法。其工艺过程为:石油焦经破碎、筛分后,与KOH充分混合,在500℃下脱水,700℃一1000℃下活化,洗涤、干燥。产品于1976年进行了中试,比表面积均大于2500m2/g。1985年在Ahderson公司实现工业化,制得的产品为高比表面积活性炭。日本Kansai公司也有氢氧化钾法工艺,其活化条件为800℃减压下进行。1993年进行了50t/a规模中试,随后进行了工业化,产品比表面积达到3000m2/g。
三、KOH成孔机理
石油焦与其它炭原料相比,结晶度高,有序化程度高,结构紧密,并已部分石墨化。因此其活化难度大,发生剥皮反应的可能性大,必须采用腐蚀性强的催化剂。因此通常都以强碱作为活化剂制取性能优良的活性炭。强碱能渗进石油焦微晶间隙中,并与其中的碳化物、无定形碳以及活性点反应,形成微孔结构;但碱的种类不同,对石油焦的破坏能力也不一样,其中KOH 的破坏能力强于NaOH。这是因为K的活泼性强于Na,在用量相同的条件下,KOH 能更多地渗进石油焦的基本微晶中,为形成孔隙起到骨架作用,并与石油焦发生化学反应。KOH 活化反应的成孔机理就是通过KOH 与原料中的碳反应,形成热稳定差易挥发的物质,这样就把石油焦中的部分碳刻蚀掉,经过洗涤把生成的盐及多余的KOH 洗去,在被刻蚀的位置上出现了孔,在炭化及活化过程中,这一过程主要发生以下反应:
四、生产工艺 国外20世纪70年代开始研究石油焦制备活性炭工艺,80年代中期实现工业化,均
2生产比表面积在2500m/g以上的产品。我国于20世纪80年代末开始进行石油焦制活性炭的研究工作,研究水平大多较低,有部分技术已进入工业化实验阶段。美国StandardOil公司在1971至1978年申请了石油焦制备活性炭多项专利,均涉及氢氧化钾法。其工艺过程为:石油焦经破碎、筛分后,与KOH充分混合,在500℃下脱水,700℃一1000℃下活化,洗涤、干燥。产品于1976年进行了中试,比表面积均大于2500m2/g。1985年在Ahderson公司实现工业化,制得的产品为高比表面积活性炭。日本Kansai公司也有氢氧化钾法工艺,其活化条件为800℃减压下进行。1993年进行了50t/a规模中试,随后进行了工业化,产品比表面积达到3000m2/g。
美国、日本拥有利用石油焦制备比表面积超过3000m2/g的超级活性炭的专利技术,并实现了产业化。我国在石油焦制备高比表面积活性炭方面远远落后与此,虽然采用KOH活化方法制备出比表面积达3000m2/g的活性炭,但是由于KOH的高腐蚀性、高碱碳比、低收率以及KOH的高价格难以实现实现产业化。但选用腐蚀性相对较小、价格更低的氯化锌作为活化剂,用石油焦作为原料制备活性炭。
制备高比表面积活性炭一般是将一定尺寸的石油焦颗粒与碱性活化剂混合,经低温脱水和高温活化后冷却水洗。使用合适的工艺可以得到比表面积超过3000m2/g的活性炭。我国在这方面已经有不少研究文章,探索了石油焦原料性能、制备过程中活化剂种类、碱炭比、活化温度、活化时间等因素对活性炭收率、比表面积、孔结构和吸附能力的影响。一般认为,石油焦原料粒度在100μm~200μm时可以获得合适的收率和较高的比表面积,粒度尺寸过小将导致表面刻蚀严重,使得收率和比表面积均下降。制备过程中KOH效果优于其他活化剂,碱炭质量比在4左右。活化温度在700℃~800℃左右可以获得最大限度的比表面积,而活化时间则不宜过长,在700℃~800℃温度下活化时间应小于2h。石油焦与KOH的比列1.1∶1.6,该工艺相对成熟,其缺点是工艺路线长、成本高、对设备腐蚀严重,因此该工艺在我国仍然没有实现工业化。
水蒸气活化法是制备活性炭的常用手段,但是对于用水蒸气活化法制备石油焦活性炭的研究却寥寥无几,这可能是由于石油焦结构紧密,用水蒸气活化难以达到较高的比表面积所致。此外值得关注的是高硫石油焦制备活性炭的工艺。硫含量对活性炭比表面积的影响很大,只有当高硫石油焦的脱硫率达到98%时活性炭产物的比表面积才可能大幅度提高。有研究表明向硫石油焦中掺入一定量的无烟煤可以提高活性炭的比表面积。原材料配比对产品质量的影响
在一定范围内,随KOH∶石油焦的增加,制得的活性炭比表面积也增大。根据试验数据,工业化主要考察活化时间1.0h时,KOH∶石油焦分别为4∶1、5∶1和6∶1时产品的性能指标,数据见表1。
由表l可知,随活化剂KOH用量的增加,活性炭产品的比表面积、总孔容积均增加,产品的微孔容积是先增加后减少,产品的振实密度和微孔容积所占的比例逐渐减少。活化温度800℃时平均孔径逐渐增大,而在830℃时平均孔径先增加后减少,在碱炭比为5和6时,比表面积和总孔容积增加不明显,且平均孔径变化不大。造成上述指标变化的原因是随着活化剂用量的增加,活化反应加快,活性点上的碳消耗也随之增加,产品活性炭的比表面积和孔容积增大。但当活化温度一定对,活性点上碳的数目也是一定的,这些碳原子消耗完后,继续反应则会消耗孔隙周围作为骨架的碳原子,造成孔隙塌陷,使活性炭微孔容积减少。至于振实密度的减少则是由于KOH用量的增加,生成的活性炭微孔占的比率减少,中孔比率增大造成的。在工业化中,若KOH用量大,会加大粗产品水洗后碱液的处理量。通过对数据的分析,作者认为在KOH:石油焦为5时,HSAAC性能指标比较理想,也比较经济。
活化温度对产品质量的影响
温度是影响活化效果的重要因素。一般地,随活化温度的升高,比表面积增大。根据试验数据
由表2可知,碱炭比为4时,随活化温度从800℃升高到870℃,产品的比表面积、平均孔径、总孔容积、吸附微孔容积均先升高后降低,振实密度逐步降低,2活化温度850℃时,产品活性炭的比表面积达到最大值2637m/g.碱炭比为5时,随活化温度升高,产品的比表面积和总孔容积均先升高后降低,平均孔径变化不大,振实密度和微孔容积逐渐降低,在活化温度830℃时,产品的比表面积达到最大值2902m2/g。造成上述指标变化的原因是随活化温度的提高,处于活化状态的碳原子数目增加,与KOH反应加强,同时钾蒸汽的扩散速度增加,使产品活性炭的比表面积和总孔容积增加,但随活化温度的进步提高,导致已形成的孔隙过度烧结,使活性炭比表面积和总孔容积降低。振实密度降低的原因则可能是随活化温度的提高,得到的活性炭微孔占的比率减少,中孔比率增大造成的。
通过对数据的分析,碱炭比为4时,活化温度850℃是HSAAC制备的临界温度碱炭比为5时,活化温度830℃是HSAAC制备的临界温度。活化时间对产品质量的影响
主要考察原材料配比5:
1、活化温度830℃时,活化时间分别为0.
5、1.0、1.5h产品的性能指标,见表3
由表3可知,活化时间1.0h,产品比表面积达到最大值2902m2/g,总孔容积达到1.62cm/g.其原因是随活化时间的延长,活化反应会更充分,得到的活性炭的比表面积越大,但活化时间超过1.0h后,KOH与位于孔隙周围的骨架碳原子反应,引起活性炭过度烧蚀,造成已形成的孔隙烧塌,最终导致比表面积下降。可以确定在考察范围内,活化时间1.0h为最佳活化时间。高比表面积活性炭生产工艺条件的确定
根据工业化生产HSAAC的试验数据,确定以针状焦为原料生产HSAAC最佳的生产工艺条件为:碱炭比5:1,活化温度830℃,活化时间1.0h。生产条件:
需要粉碎机、烘干机、电热搅拌反应釜、专用化学活化炉、原料罐、碱液浓缩设备等,需蒸汽和保护气氮气。主要原材料为石油焦、生石灰、氢氧化钾、去离子水等。
五、用途
应用范围:
产品高比表面积活性炭应用于催化剂及催化剂载体(钯、钌、铑、铂),贵重金属回收及黄金提取,血液净化,高性能燃料电池、双电层超级电容器、锂离子电池负极材料、贮能材料(H2和CH4的储存),以及军事、航天等领域。历史事件
第一件大事是活性炭防毒面具,在20世纪20年代在第一次世界大战中的应用。可以次作为划分活性炭应用历史的第一阶段和第二阶段的界限。
活性炭在初期主要应用是粉炭在糖业中逐步代替了原来的骨炭。在20世纪20年代的第一次世界大战中出现的颗粒大量应用于防毒面具。这是工业化学史上辉煌的一页。当时荷兰的Norit和捷克斯洛伐克、德国、法国、瑞士等国的制造商和批发商曾成立一个联合公司,说明在欧洲萌芽的活性炭也是被广为看好的新兴产业。
通过防毒面具应用的推动,活性炭历史进入了第二阶段,活性炭市场不断扩大,活性炭的吸附和催化功能在众多行业的精制、回收、合成上的应用陆续开发,美国等的活性炭厂陆续开设。在20世纪中叶不断拓展应用面的活性炭,被视为“万能吸附剂”。
第二件大事是活性炭除臭作用,在20世纪40年代数以百计的自来水厂中采用了活性炭除臭。以此作为划分活性炭应用历史的第二阶段与第三阶段的界限。
1927年美国芝加哥自来水厂发生了广大居民难以接受的自来水恶臭事故,这是由于原水中的苯酚和消毒用的氯生成异臭所致。德国等地的自来水厂也发生了同样的事故,这些事故都是用活性炭来解决的。
此后,随着环境保护日益受到重视,政府法令的日趋严格。活性炭不仅在净水方面,而且在净气等方面的用量剧增,使得在20世纪的后半叶,环保产业成为活性炭应用的大户。由此活性炭历史进入了第三阶段,即发展阶段。中国应用
我国活性炭在应用历史上简单分为三个阶段:
(1)第一阶段是20世纪40年代以前,我国制药工业、化学工业中使用活性炭量大,都用进口货,例如用Carboraffin牌的活性炭。
(2)第二阶段自20世纪50年代初开始,国产活性炭上市。1951年沈阳和抚顺的单管炉厂、青岛的反射炉闷烧法厂、上好的电热活化法厂,接着有氯化锌活化法厂,1958年福建、杭州、广州、烟台、东北等地纷纷建厂,1966年太原开创斯列普活化法厂,随后我国陆续开设数以百计的斯列普炉厂。此外,还有不少的转炉、粑式炉等工厂。总生产能力从1951年的三五十吨猛增到20世纪80年代的近十万吨。生产与应用相互促进,活性炭的应用范围被迅速开拓。从原来单一的通用炭向多种的专用炭发展,例如净水炭、糖炭、味精炭、油脂炭、黄金炭、载体炭、药用炭、针剂炭、试剂炭等等,足见活性炭因国内经济蒸蒸日上而应用量速增,又因产量扩大、成本降低而使出口量上升。我国活性炭的应用,不仅在国内市场发展,而且进入了国际市场。
(3)第三阶段2003-至今;活性炭应用于装修污染治理,利用先进的造孔技术将活性炭,使其具备与室内有害气体分子大小相匹配的孔隙结构,专用于吸附甲醛、苯系物、氨、氡等所有对人体有害的气体及空气中的浮游细菌。具有吸味、去毒、除臭、去湿、防霉、杀菌、净化等综合功能,有效清除室内环境污染成功应用于装修污染治理,并创立了家康景品牌。目前市场上家用活性炭众多,活性炭已走进千家万户,成为健康时尚的环保产品。
六、市场需求
目前全世界延迟焦化加工能力持续增长,并且石油持续劣质化、高硫石油焦持续增加,如何更好地利用石油焦资源是一个具有重大经济效益的课题。传统上人们对于石油焦用途的开发集中于燃料、有色和冶金等方面。事实上随着新材料领域的快速发展,尤其是先进炭材料以及先进陶瓷材料的快速发展,有越来越多的材料科学工作者将目光集中于石油焦上。相应地,以石油焦为基础的各种先进材料也应运而生。这些新石油焦材料涉及很多材料领域,但是其共同点是具有高的科技含量和高的附加值,相信石油焦作为一种廉价的碳源还可能被应用到更多的新材料领域,而这必将产生远高于传统应用途径的经济效益和社会效益。
国内高硫石油焦制备活性炭的研究只停留于小试实验。中国石油大学陈进富等以含硫量4.8%的金山石化石油焦为原料,在最优条件下制备了用于天然气粉体吸附剂,其储气性能接近于低硫焦基吸附剂,且含硫量与原料相比大为降低,证明高硫石油焦可作为生产高性能天然气吸附剂的优良原料。但排放气体中含硫太高,环保水平不达标。高硫石油焦生产活性炭技术国内外均未工业化,与低硫石油焦掺混后可生产预焙阳极,质量合格,但是两者均达不到环保要求;以高硫石油焦为燃料生产立窑水泥符合环保要求,其灰渣利用价值较高,但未来未来立窑水泥生产技术淘汰趋势逐渐明朗,高硫石油焦在水泥行业的应用范围将开始收窄。
石油焦生产活性炭技术可行,成本低,生产的活性炭种类多、市场竞争力强。我国活性炭使用面广,市场容量大,如采用高硫焦生产活性炭将有一定的竞争力。
七、前景
活性炭是一种多孔性碳质吸附材料,具有比表面积大、吸附能力好、选择性高、物理和化学上的稳定性优异等特性,被广泛用于医药、食品、电子、化工、农业、国防等各个领域,成为国民经济发展中不可缺少的重要的吸附剂。通常生产活性炭的原料主要是木质原料和优质煤等。随着我国退耕还林、封山育林工程及政策的实施,制备活性炭的木质原料相对缺乏,这无疑是对我国活性炭行业的巨大挑战,开拓新的原材料势在必行。煤是当今广泛采用的一种制备活性炭的原料,但是煤的灰分和杂质过高,难处理,不易获得低灰分、高强度、耐腐蚀的优质活性炭。石油焦是石油炼制过程中的一种副产物,资源丰富,价格低廉,碳含量高,通常生产1t活性炭需用石油焦约2t(用木材达12—15t),因此石油焦制造活性炭得率高、成本低。另外,石油焦的灰分和挥发分含量低,生产的活性炭杂质少,可用于生产中高档炭,产品可以与木质炭相媲美,从而缓解我国活性炭原料紧张局面。
八、价格及产量
目前我国石油焦年产量约为500万t,价格1000元/t左右。石油焦大都作为低价值的燃料,加工深度很低,极其浪费。如果能将其作为活性炭的生产原料,将会是很好的出路。目前石油焦为原料生产活性炭的研究大都采用传统加热方法,虽也能制得高比表面积活性炭,但是存在着生产能耗较大,设备腐蚀严重等问题,因此开发高效、节能、无污染的新技术成为目前优质活性炭制备中的主要问题。