窄带物联网的地下停车场灯控系统设计论文(推荐五篇)

时间:2019-11-16 15:18:54下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《窄带物联网的地下停车场灯控系统设计论文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《窄带物联网的地下停车场灯控系统设计论文》。

第一篇:窄带物联网的地下停车场灯控系统设计论文

摘要:窄带物联网(NB-IoT)凭借大连接、广覆盖、深穿透、低成本及低功耗等优点,逐渐成为物联网市场的新热点。尤其在传统无线信号无法覆盖的地下停车场,其实时发送数据的能力得到很好地体现。文章以金葫芦GIoT开发套件为基础,利用KDS与VS开发平台,利用窄带物联网设计了一款专门针对地下停车场的灯控系统,实现了智能开灯、智能关灯、远程控制等多种功能。现场使用证明,该系统运行情况及性能良好,极大地提高了地下停车场的管理效率。

关键词:NB-IoT;地下停车场;灯控系统

1概述

2017年6月6日国家工信部办公厅正式下发《关于全面推进移动物联网(NB-IoT)建设发展的通知》,明确了建设与发展NB-IoT-IoT网络的意义,对NB-IoT标准、设备、芯片、模组、测试、应用、网络等方面,部署了了具体任务。特别是,在NB-IoT网络建设方面,要求到2020年全国基站规模达到150万个,实现普遍覆盖。2017年末,要求达到40万个基站建设任务,实现对直辖市、省会城市及其他主要城市的覆盖。这就意味着,NB-IoT技术将迅速生根落地,开花结果[1,2,3]。除此之外,NB-IoT所具备四大特点:一是广覆盖;二是具备支撑海量连接的能力;三是更低功耗;四是更低的模块成本[4,5]。鉴于此,本文利用KDS与VS开发平台,利用窄带物联网,设计了一款专门针对地下停车场的灯控系统,实现了智能开灯、智能关灯、远程控制等多种功能,极大地降低了值班工人的劳动强度,有效提高了地下停车场的管理效率,具有良好的社会效益。

2系统设计方案

根据NB-IoT应用架构,分别从终端、信息邮局、人机交互系统来设计方案。最终设计方案。一是终端:方案选取金葫芦GIoT,方案优势专为NB-IoT设计的集成芯片,具有针对性强、集成度高,开发方便,其含32为ARMCortex-M0+内核的KL36微控制器、GIoT通信模组、三色灯、SWD写入器接口、TTL串口(UART0/UART2)及两排对外接口组成;二是信息邮局:方案选取华为云服务,方案优势是处理速度和传输速度快;三是人机交互系统:方案选取VisualStudio,方案优势是具有开发简单,开发周期短,上手快,大大提高研发效率。

3系统实现

3.1终端程序设计

USB口通电后,红灯亮表示通电正常,LCD显示芯片温度“H0-xx.x”,时间约10秒。接着LCD显示设备唯一标识IMSI;进入主循环,LCD显示时间“hh.mm.ss”,每秒更新一次。在这个过程中,若按下触摸按键TSI3次或时间每隔120秒,终端想云服务器发送一次数据,LCD提示“H1-1007”表示数据发送成功。若显示“F..”则失败,可能是基站信号弱;在数据发送过程中,若能成功连接基站,则在LCD上显示“H1-1003”与“H1-1004”之间会显示提示“H1-xx”,其中xx为当前信号强度(百分比表示)。xx在70以上,通信较为流畅;另外,若需获得运行过程信息,可使用串口通信方式(波特率:115200),使用串口调试工具即可[6]。

3.2云端转发程序设计

通过文献[7]提供的一些技术帮助,最终设计了云端转发程序。

3.3人机交互程序设计

根据工程实际要求,页面中有监测和控制两大功能,最终开发的界面如图3所示[8]。通过在界面上写入0或1就能控制指定区域的灯光开启或关闭。同时可以实时观察到光强数据。

4性能测试

测试项目1,终端-云通讯,测试方法为基本信息、通信信息、光控信息等在终端与云端相互进行传送,测试结果通讯成功;测试项目2,PC-云通讯,测试方法为基本信息、通信信息、光控信息等在PC端与云端相互进行传送,测试结果通讯成功;测试项目3,灯控开关,测试方法为分别在界面指定位置发送0与1,测试结果控制成功。

5结束语

本文以金葫芦GIoT开发套件为基础,利用KDS与VS开发平台,利用窄带物联网设计了一款专门针对地下停车场的灯控系统,实现了智能开灯、智能关灯、远程控制等多种功能。现场使用证明,该系统运行情况及性能良好。

参考文献:

[1]RashmiSharanSinha,YiqiaoWei,Seung-HoonHwang.AsurveyonLPWAtechnology:LoRaandNB-IoT[J].ICTExpress,2017,3(1).[2]戴国华,余骏华.NB-IoT的产生背景、标准发展以及特性和业务研究[J].移动通信,2016,40(07):31-36.[3]孙彪.移动运营商NB-IoT部署策略探讨[J].移动通信,2016,40(23):11-16.[4]李娟,胡晓玲,李自刚.窄带物联网NB-IoT能耗测试浅析[J].电信网技术,2016(08):65-67.[5]陈博,甘志辉.NB-IoT网络商业价值及组网方案研究[J].移动通信,2016,40(13):42-46+52.[6]刘朝华.基于iOS平台车位共享系统设计与实现[J].物联网技术,2017,7(03):101-103.[7]吴平.基于ZigBee和GSM的智能停车系统[J].单片机与嵌入式系统应用,2016,16(04):32-35.[8]李晓路.嵌入式系统人机交互界面开发平台研究[D].烟台大学,2012.

第二篇:基于物联网的智慧农业系统的设计

物联网综合应用实践课程设计

题 目: 基于物联网的智慧农业系统的设计 院(系): 计算机与通信学院 专业年级: 11级物联网1班 姓 名:

郭盛功

学 号: 112801012 指导教师: 马维俊

摘要..................................................................................................................................................3 1 绪论.............................................................................................................................................4

1.1 农业物联网技术.............................................................................................................4

1.1.1 农业物联网产生背景.........................................................................................4 1.2 物联网技术在农业种植环境中的应用.........................................................................5

1.2.1 物联网技术实现农业种植环境的智能化管理.................................................5 1.2.2 物联网技术实现农产品质量安全有效监管.....................................................5 基本原理.....................................................................................................................................6

2.1硬件方面............................................................................................................................6

2.1.1芯片SHT10介绍....................................................................................................6 2.1.2 CC2530介绍..........................................................................................................7 2.2 软件方面.........................................................................................................................9

2.2.1 ZigBee技术..........................................................................................................9 2.2.2 ZigBee特点........................................................................................................11 2.2.3 ZigBee协议栈结构..........................................................................................12 2.2.4 无线传感器网络...............................................................................................15 3 农业物联网种植环境监控系统设计.......................................................................................17 3.1 农业物联网种植环境监控系统关键技术...................................................................17 3.2 农业物联网种植环境监控系统建构...........................................................................17 3.3农业种植监控系统构建..................................................................................................18 3.3.1 系统硬件构建...................................................................................................18 3.3.2 系统软件构建...................................................................................................18 3.3.3 编码...................................................................................................................20 四 总结...........................................................................................................................................22 五 参考文献...................................................................................................................................23 六 致谢信.......................................................................................................................................24

基于物联网的智慧农业系统设计

摘要

智慧农业是农业生产的高级阶段,是集新兴的互联网、移动互联、云计算和物联网技术为一体,依托部署在农业生产现场的各种传感节点(环境温湿度、土壤水分、二氧化碳、图像等)和无线通信网络实现农业生产环境的智能感知、智能预警、智能决策、智能分析、专家在线指导,为农业生产提供精准化种植、可视化管理、智能化决策。

基于Zigbee技术的智慧农业解决方案,成本低廉,是一般人都能负担的价格;控制更简单,让每一位刚接触的人都能轻松使用;功耗更低、组网更方便、网络更健壮,给您带来高科技的全新感受。您的温室大棚规模越大,基于Zigbee技术的智慧农业解决方案在使用中,要准确及时地操控所有设备,最值得关注的应该就是网络信号的稳定性。鉴于温室大棚的网络覆盖区域比较广泛,我们贴心为您呈现物联无线组网!智慧农业能有效连接物联Internet通信网关和超出物联Internet通信网关有效控制区域的其它Zigbee网络设备,实现中继组网,扩大覆盖区域,并传输网关的控制命令到相关网络设备,达到预期传输和控制的效果。基于先进的Zigbee技术,物联无线中继器无需接入网线,就可自行中继组网,扩散网络信号,让您的网络灵活顺畅运行,保障您的所有设备正常运行。主要采集温湿度,从而控制农植物的水分和光照。

关键词:Zigbee,CC2530,智慧农业,云计算,物联网绪论

农业是关系着国计民生的基础产业,我国传统农业在向现代农业发展中面临着确保农产品总量、调整农业产业结构、改善农产品品质和质量,改善生产效益低下、资源严重不足且利用率低、环境污染等问题而不能适应农业持续发展的需要。因此,关于农业物联网技术的研究势在必行。物联网是以感知为目的的,实现人与人、人与物、物与物全面互联的网络。物联网可以很好地应用到诸多领域,农业即是其中之一。

文章在农业物联网的背景下,设计了农业中最为关键的种植环境智能化检测系统,一方面对其中的关键技术种植检测硬件系统和软件系统进行设计,主要包括农业物联网监管系列传感器,无线传感器网络通过模块采集温湿度光照登信息,经由无线收发模块传输数据,通过后台管理实现对环境信息的远程控制,随时进行调整和处理,实现对环境信息的远程控制。另一方面是设计了农业物联网下种植环境监控平台。文章旨在设计出基于物联网技术的农业种植环境监控系统,能够极大地推进高现代农业的自动化、智能化水平,降低资源占有率,提高农产品的生产效率及产品的质量。

1.1 农业物联网技术

1.1.1 农业物联网产生背景

农业信息技术是我国现代农业科技的重要内容,大力推进“信息化与农业现代化融合”是我国现代农业发展方向。“农业物联网”即利用物联网技术,即通过相应的智能传感器设备实时监控农业种植环境,并将各个相应的数据通过数据采集设备,经过无线网络系统传送到信息控制中心,进而对农业种植环境进行调节,智能控制农作物健康生长所需环境如温度、湿度以及光照、土壤温度、含水量,及时灌溉系统。实现农业种植综合生态信息的自动检测,对环境进行自动监控。1.2 物联网技术在农业种植环境中的应用

1.2.1 物联网技术实现农业种植环境的智能化管理

通过在农业种植系统中安装相应的只能控制系统,实现对整农作物种植环境中各个参数的实时监控,及时掌握农作物生长环境的一些参数,并根据参数变化适时调控来掌控农作物最佳的生长环境,将生物信息获取方法应用于无线传感器节点,为温室精准调控提供科学依据。

1.2.2 物联网技术实现农产品质量安全有效监管

农业物联网技术能够通过广泛采用电子标识、条形码、传感器网络、物联网中间件和网络平台技术等关键技术,实现产品从生产、储运、交易信息的透明化和实时监控,从而实现农产品从农田到餐桌的全程可管可控,农产品质量安全有效地监管。基本原理

本实验将使用CC2530读取温湿度传感器SHT10的温度和湿度数据,并通过CC2530内部的ADC得到光照传感器的数据。最后将采样到的数据转换然后在LCD上显示。其中对温湿度的读取是利用CC2530的I/O(P1.0和P1.1)模拟一个类IIC的过程。对光照的采集使用内部的AIN0通道。

2.1硬件方面

2.1.1芯片SHT10介绍

SHT10 是一款高度集成的温湿度传感器芯片,提供全标定的数字输出。它采用专利的CMOSens 技术,确保产品具有极高的可靠性与卓越的长期稳定性。传感器包括一个电容性聚合体测湿敏感元件、一个用能隙材料制成的测温元件,并在同一芯片上,与 14 位的 A/D 转换器以及串行接口电路实现无缝连接。SHT10 引脚特性如下:

1.VDD,GND SHT10 的供电电压为 2.4~5.5V。传感器上电后,要等待 11ms 以越过“休眠”状态。在此期间无需发送任何指令。电源引脚(VDD,GND)之间可增加一个 100nF 的电容,用以去耦滤波。

2.SCK 用于微处理器与 SHT10 之间的通讯同步。由于接口包含了完全静态逻辑,因而不存在最小 SCK 频率。

3.DATA 三态门用于数据的读取。DATA 在 SCK 时钟下降沿之后改变状态,并仅在 SCK 时钟上升沿有效。数据传输期间,在 SCK 时钟高电平时,DATA 必须保持稳定。为避免信号冲突,微处理器应驱动 DATA 在低电平。需要一个外部的上拉电阻(例如:10kΩ)将信号提拉至高电平。上拉电阻通常已包含在微处理器的 I/O 电路中。

向 SHT10 发送命令:

用一组“ 启动传输”时序,来表示数据传输的初始化。它包括:当 SCK 时钟高电平时DATA 翻转为低电平,紧接着 SCK 变为低电平,随后是在 SCK 时钟高电平时 DATA 翻转为高电平。后续命令包含三个地址位(目前只支持“000”,和五个命令位。SHT10 会以下述方)式表示已正确地接收到指令:在第 8 个 SCK 时钟的下降沿之后,将 DATA 拉为低电平(ACK位)。在第 9 个 SCK 时钟的下降沿之后,释放 DATA(恢复高电平)。

测量时序(RH 和 T):

发布一组测量命令(‘00000101’表示相对湿度 RH,‘00000011’表示温度 T)后,控制器要等待测量结束。这个过程需要大约 11/55/210ms,分别对应 8/12/14bit 测量。确切的时间随内部晶振速度,最多有±15%变化。SHTxx 通过下拉 DATA 至低电平并进入空闲模式,表示测量的结束。控制器在再次触发 SCK 时钟前,必须等待这个“数据备妥”信号来读出数据。检测数据可以先被存储,这样控制器可以继续执行其它任务在需要时再读出数据。接着传输 2 个字节的测量数据和 1 个字节的 CRC 奇偶校验。需要通过下拉 DATA 为低电平,uC以确认每个字节。所有的数据从 MSB 开始,右值有效(例如:对于 12bit 数据,从第 5 个SCK 时钟起算作 MSB; 而对于 8bit 数据,首字节则无意义)。用 CRC 数据的确认位,表明通讯结束。如果不使用 CRC-8 校验,控制器可以在测量值 LSB 后,通过保持确认位 ack 高电平,来中止通讯。在测量和通讯结束后,SHTxx 自动转入休眠模式。通讯复位时序:

如果与 SHTxx 通讯中断,下列信号时序可以复位串口:当 DATA 保持高电平时,触发SCK 时钟 9 次或更多。在下一次指令前,发送一个“传输启动”时序。这些时序只复位串口,状态寄存器内容仍然保留。2.1.2 CC2530介绍

CC2530 是基于2.4-GHz IEEE802.15.4、ZigBee 和RF4CE 上的一个片上系统解决方案。其特点是以极低的总材料成本建立较为强大的网络节点。CC2530 芯片结合了RF 收发器,增强型8051 CPU,系统内可编程闪存,8-KB RAM 和许多其他模块的强大的功能。如今CC2530 主要有四种不同的闪存版本:CC2530F32/64/128/256,分别具有32/64/128/256KB 的闪存。其具有多种运行模式,使得它能满足超低功耗系统的要求。同时CC2530运行模式之间的转换时间很短,使其进一步降低能源消耗。

CC2530包括了1个高性能的2.4 GHz DSSS(直接序列扩频)射频收发器核心和1个8051控制器,它具有32/64/128 kB可选择的编程闪存和8 kB的RAM,还包括ADC、定时器、睡眠模式定时器、上电复位电路、掉电检测电路和21个可编程I/O引脚,这样很容易实现通信模块的小型化。CC2530是一款功耗相当低的单片机,功耗模式3下电流消耗仅0.2μA,在32 k晶体时钟下运行,电流消耗小于1μA。

CC2530芯片使用直接正交上变频发送数据。基带信号的同相分量和正交分量由DAC转换成模拟信号,经过低通滤波,变频到所设定的信道上。当需要发送数据时,先将要发送的数据写入128B的发送缓存中,包头是通过硬件产生的。最后经过低通滤波器和上变频的混频后,将射频信号被调制到2.4GHz,后经天线发送出去。CC2530有两个端口分别为TX/RX,RF端口不需要外部的收发开关,芯片内部已集成了收发开关。

CC2530的存储器ST-M25PE16是4线的SPI通信模式的FLASH,可以整块擦除,最大可以存储2M个字节。工作电压为2.7v到3.6v。

CC2530温度传感器模块反向F型天线采用TI公司公布的2.4GHz倒F型天线设计。天线的最大增益为+3.3dB,天线面积为25.7×7.5mm。该天线完全能够满足CC2530工作频段的要求(CC2530工作频段为2.400GHz~2.480GHz)。

图1.CC2530芯片引脚

CC2530芯片引脚功能

AVDD1 28 电源(模拟)2-V–3.6-V 模拟电源连接 AVDD2 27 电源(模拟)2-V–3.6-V 模拟电源连接 AVDD3 24 电源(模拟)2-V–3.6-V 模拟电源连接 AVDD4 29 电源(模拟)2-V–3.6-V 模拟电源连接 AVDD5 21 电源(模拟)2-V–3.6-V 模拟电源连接 AVDD6 31 电源(模拟)2-V–3.6-V 模拟电源连接

DCOUPL 40 电源(数字)1.8V 数字电源去耦。不使用外部电路供应。DVDD1 39 电源(数字)2-V–3.6-V 数字电源连接 DVDD2 10 电源(数字)2-V–3.6-V 数字电源连接 GND-接地 接地衬垫必须连接到一个坚固的接地面。GND 1,2,3,4 未使用的连接到GND P0_0 19 数字I/O 端口0.0 P0_1 18 数字I/O 端口0.1 P0_2 17 数字I/O 端口0.2 P0_3 16 数字I/O 端口0.3 P0_4 15 数字I/O 端口0.4 P0_5 14 数字I/O 端口0.5 P0_6 13 数字I/O 端口0.6 P0_7 12 数字I/O 端口0.7 P1_0 11 数字I/O 端口1.0-20-mA 驱动能力 P1_1 9 数字I/O 端口1.1-20-mA 驱动能力 P1_2 8 数字I/O 端口1.2 P1_3 7 数字I/O 端口1.3 P1_4 6 数字I/O 端口1.4 P1_5 5 数字I/O 端口1.5 P1_6 38 数字I/O 端口1.6 P1_7 37 数字I/O 端口1.7 P2_0 36 数字I/O 端口2.0 P2_1 35 数字I/O 端口2.1 P2_2 34 数字I/O 端口2.2 P2_3 33 数字I/O 模拟端口2.3/32.768 kHz XOSC P2_4 32 数字I/O 模拟端口2.4/32.768 kHz XOSC RBIAS 30 模拟I/O 参考电流的外部精密偏置电阻 RESET_N 20 数字输入 复位,活动到低电平RF_N 26 RF I/O RX 期间负RF 输入信号到LNA RF_P 25 RF I/O RX 期间正RF 输入信号到LNA XOSC_Q1 22 模拟I/O 32-MHz 晶振引脚1或外部时钟输入 XOSC_Q2 23 模拟I/O 32-MHz 晶振引脚2 2.2 软件方面

2.2.1 ZigBee技术

蜜蜂在发现花丛后会通过一种特殊的肢体语言来告知同伴新发现的食物源位置等信息,这种肢体语言就是ZigZag行舞蹈,是蜜蜂之间一种简单传达信息的方式。借此意义Zigbee作为新一代无线通讯技术的命名。在此之前ZigBee也被称为“HomeRF Lite”、“RF-EasyLink”或“fireFly”无线电技术,统称为ZigBee。

简单的说,ZigBee是一种高可靠的无线数传网络,类似于CDMA和GSM网络。ZigBee数传模块类似于移动网络基站。通讯距离从标准的75m到几百米、几公里,并且支持无限扩展。

ZigBee是一个由可多到65000个无线数传模块组成的一个无线数传网络平台,在整个网络范围内,每一个ZigBee网络数传模块之间可以相互通信,每个网络节点间的距离可以从标准的75m无限扩展。

与移动通信的CDMA网或GSM网不同的是,ZigBee网络主要是为工业现场自动化控制数据传输而建立,因而,它必须具有简单,使用方便,工作可靠,价格低的特点。而移动通信网主要是为语音通信而建立,每个基站价值一般都在百万元人民币以上,而每个ZigBee“基站”却不到1000元人民币。每个ZigBee网络节点不仅本身可以作为监控对象,例如其所连接的传感器直接进行数据采集和监控,还可以自动中转别的网络节点传过来的数据资料。除此之外,每一个ZigBee网络节点(FFD)还可在自己信号覆盖的范围内,和多个不承担网络信息中转任务的孤立的子节点(RFD)无线连接。

ZigBee技术是一种具有统一技术标准的短距离无线通信技术,其物理层和数据链路层协议为IEEE 802.15.4协议标准,网络层和安全层由ZigBee联盟制定,应用层的开发应用根据用户的应用需要,对其进行开发利用,因此该技术能够为用户提供机动、灵活的组网方式。

根据IEEE 802.15.4协议标准,ZigBee的工作频段分为3个频段,这3个工作频段相距较大,而且在各频段上的信道数据不同,因而,在该项技术标准中,各频段上的调制方式和传输速率不同。它们分别为 868MHz,915MHz和2.4GHz,其中2.4GHz频段上分为16个信道,该频段为全球通用的工业、科学、医学(indus-trial,scientific and medical,ISM)频段,该频段为免付费、免申请的无线电频段,在该频段上,数据传输速率为 250Kb/s;另外两个频段为915/868MHz,其相应的信道个数分别为10个和1个,传输速率分别为40Kb/s和ZOKb/s,868MHz和 915MHz无线电使用直接序列扩频技术和二进制相移键控(BPSK)调制技术。2.4GHz无线电使用DSSS和偏移正交相移键控(O-QPSK)。

在组网性能上,ZigBee可以构造为星形网络或者点对点对等网络,在每一个ZigBee组成的无线网络中,连接地址码分为16b短地址或者64b长地址,可容纳的最大设各个数分别为216和264个,具有较大的网络容量。在无线通信技术上,采用CSMA-CA方式,有效地避免了无线电载波之间的冲突,此外,为保证传输数据的可靠性,建立了完整的应答通信协议。

ZigBee设备为低功耗设各,其发射输出为 0~3.6dBm,通信距离为30~70m,具有能量检测和链路质量指示能力,根据这些检测结果,设各可以自动调整设各的发射功率,在保证通信链路质量的条件下,最小地消耗设各能量。

为保证ZigBee设备之间通信数据的安全保密性,ZigBee技术采用了密钥长度为128位的加密算法,对所传输的数据信息进行加密处理。

2.2.2 ZigBee特点

ZigBee技术则致力于提供一种廉价的固定、便携或者移动设各使用的极低复杂度、成本和功耗的低速率无线通信技术。这种无线通信技术具有如下特点:

(1)数据传输速率低

只有10~250Kb/s,专注于低传输速率应用。无线传感器网络不传输语音、视频之类的大数据量的采集数据,仅仅传输一些采集到的温度、湿度之类的简单数据。

(2)功耗低

工作模式情况下,ZigBee技术传输速率低,传输数据量很小,因此信号的收发时间很短,其次在非工作模式时,ZigBee节点处于休眠模式,耗电量仅仅只有1μW。设各搜索时延一般为 30ms,休眠激活时延为15ms,活动设备信道接人时延为15ms。由于工作时间较短、收发信息功耗较低且采用了休眠模式,使得ZigBee设各非常省电,ZigBee节点的电池工作时间可以长达6个月到2年左右。同时,由于电池时间取决于很多因素,例如电池种类、容量和应用场合,ZigBee技术在协议上对电池使用也作了优化。对于典型应用,碱性电池可以使用数年,对于某些工作时间和总时间(工作时间+休眠时间)之比小于t%的情况,电池的寿命甚至可以超过1年。(3)数据传输可靠

ZigBee的介质链路层(以MAC层)采用CSMA-CA碰撞避免机制。在这种完全确认的数据传输机制下,当有数据传送需求时则立刻传送,发送的每个数据包都必须等待接收方的确认信息,并进行确认信息回复,若没有得到确认信息的回复就表示发生了碰撞,将再传一次,采用这种方法可以提高系统信息传输的可靠性。同时为需要固定带宽的通信业务预留了专用时隙,避免了发送数据时的竟争和冲突。同时ZigBee针对时延敏感的应用做了优化,通信时延和休眠状态激活的时延都非常短。(4)网络容量大

ZigBee的低速率、低功耗和短距离传输的特点使它非常适宜支持简单器件。ZigBee定义了两种器件:全功能器件(FFD)和简化功能器件(RFD)。网络协调器(coordinator)是一种全功能器件,而网络节点通常为简化功能器件。如果通过网络协调器组建无线传感器网络,整个网络最多可以支持超过65 000个ZigBee网络节点,再加上各个网络协调器可互相连接,整个ZigBee网络节点的数目将十分可观。

(5)自动动态组网、自主路由

无线传感器网络是动态变化的,无论是节点的能量耗尽,或者节点被敌人俘获,都能使节点退出网络,而且网络的使用者也希望能在需要的时候向已有的网络中加人新的传感器节点。(6)兼容性

ZigBee技术与现有的控制网络标准无缝集成。通过网络协调器自动建立网络,采用CSMA-CA方式进行信道接入。为了可靠传递,还提供全握手协议。

(7)安全性

ZigBee提供了数据完整性检查和鉴权功能,在数据传输中提供了三级安全性。第一级实际是无安全方式,对于某种应用,如果安全并不重要或者上层已经提供足够的安全保护,器件就可以选择这种方式来转移数据。对于第二级安全级别,器件可以使用接人控制清单(ACL)来防止非法器仵获取数据。

在这一级不采取加密措施。第三级安全级别在数据转移中采用属于高级加密标准(AES)的对称密码。AES可以用来保护数据净荷和防止攻击者冒充合法器件。

(8)实现成本低

模块的初始成本估计在6美元左右,很快就能降到1.5~2.5美元,且ZigBee协议免专利费用。无线传感器网络中可以具有成千上万的节点,如果不能严格地控制节点的成本,那么网络的规模必将受到严重的制约,从而将严重地制约无线传感器网络的强大功能。2.2.3 ZigBee协议栈结构

ZigBee技术的协议栈结构很简单,不像诸如蓝牙和其他网络结构,这些网络结构通常分为7层,而ZigBee技术仅分为4层。

在ZigBee技术中,PHY层和 MAC层采用IEEE 802.15.4协议标准,其中,PHY层提供了两种类型的服务:即通过物理层管理实体接口对PHY层数据和PHY层管理提供服务。PHY层数据服务可以通过无线物理信道发送和接收物理层协议数据单元来实现。

PHY层的特征是启动和关闭无线收发器,能量监测,链路质量,信道选择,清除信道评估,以及通过物理介质对数据包进行发送和接收。同样,MAC层也提供了两种类型的服务:通过MAC层管理实体服务接人点向MAC层数据和MAC层管理提供服务。MAC层数据服务可以通过PHY层数据服务发送和接收MAC层协议数据单元。

MAC层的具体特征是:信标管理,信道接入,时隙管理,发送确认帧,发送连接及断开连接请求。除此以外,MAC层为应用合适的安全机制提供一些方法。

ZigBee技术的网络/安全层主要用于ZigBee的WPAN的组网连接、数据管理以及网络安全等;应用层主要为ZigBee技术的实际应用提供一些应用框架模型等,以便对ZigBee技术进行开发应用。

图2 ZigBee协议栈结构图

1.物理层

物理层由半双工的无线收发器及其接口组成,主要作用是激活和关闭射频收发器;检测信道的能量;显示收到数据包的链路质量;空闲信道评估;选择信道频率;数据的接受和发送。

2.媒体访问控制层

媒体访问控制(MAC)层建立了一条节点和与其相邻的节点之间可靠的数据传输链路,共享传输媒体,提高通信效率。在协调器的MAC层,可以产生网络信标,同步网络信标;支持ZigBee设备的关联和取消关联;支持设备加密;在信道访问方面,采用CSMA/CA信道退避算法,减少了碰撞概率;确保时隙分配(GTS);支持信标使能和非信标使能两种数据传输模式,为两个对等的MAC实体提供可靠连接。

3.网络层

网络层负责拓扑结构的建立和维护网络连接,主要功能包括设备连接和断开网络时所采用的机制,以及在帧信息传输过程中所采用的安全性机制。此外,还包括设备的路由发现和路由维护和转交。并且,网络层完成对一跳(one—hop)邻居设备的发现和相关结点信息的存储。一个ZigBee协调器创建一个新网络,为新加入的设备分配短地址等。并且,网络层还提供一些必要的函数,确保ZigBee的MAC层正常工作,并且为应用层提供合适的服务接口。

网络层要求能够很好地完成在IEEE 802.15.4标准中MAC子层所定义的功能,同时,又要为应用层提供适当的服务接口。为了与应用层进行更好的通信,网络层中定义了两种服务实体来实现必要的功能。这两个服务实体是数据服务实体(NLDE)和管理服务实体(NLME)。网络层的NLDE通过数据服务实体服务访问点(NLDE—SAP)来提供数据传输服务,NLME通过管理服务实体服务访问点(NLME—SAP)来提供管理服务。NLME可以利用NLDE来激活它的管理工作,它还具有对网络层信息数据库(NIB)进行维护的功能。在这个图中直观地给出了网络层所提供的实体和服务接口等。

NLDE提供的数据服务允许在处于同一应用网络中的两个或多个设备之间传输应用协议数据单元(APDU)。NLDE提供的服务有:产生网络协议数据单元(NPDU)和选择通信路由。选择通信路由,在通信中,NLDE要发送一个NPDU到一个合适的设备,这个设备可能是通信的终点也可能只是通信链路中的一个点。NLME需提供一个管理服务以允许一个应用来与协议栈操作进行交互。NLME需要提供以下服务:①配置一个新的设备(configuring a new device)。具有充分配置所需操作栈的能力。配置选项包括:ZigBee协调器的开始操作,加入一个现有的网络等。

4.应用层

应用层包括三部分:应用支持子层(APS)、ZigBee设备对象(ZDO)和应用框架(AF)。应用支持子层的任务是提取网络层的信息并将信息发送到运行在节点上的不同应用端点。应用支持子层维护了一个绑定表,可以定义、增加或移除组信息;完成64位长地址(IEEE地址)与16位短地址(网络地址)一对一映射;实现传输数据的分割与重组;应用支持子层连接网络层和应用层,是它们之间的接口。这个接口由两个服务实体提供:APS数据实体(APSDE)和APS管理实体(APSME)。APS数据实体为网络中的节点提供数据传输服务,它会拆分和重组大于最大荷载量的数据包。APS管理实体提供安全服务,节点绑定,建立和移除组地址,负责64位IEEE地址与16位网络地址的地址映射[4]。

ZigBee设备对象负责设备的所有管理工作,包括设定该设备在网络中的角色(协调器、路由器或终端设备),发现网络中的设备,确定这些设备能提供的功能,发起或响应绑定请求,完成设备之间建立安全的关联等。用户在开发ZigBee产品时,需要在ZigBee协议栈的AF上附加应用端点,调用ZDO功能以发现网络上的其他设备和服务,管理绑定、安全和其他网络设置。ZDO是一个特殊的应用对象,它驻留在每一个ZigBee节点上,其端点编号固定为0。

AF应用框架是应用层与APS层的接口。它负责发送和接收数据,并为接收到的数据寻找相应的目的端点。2.2.4 无线传感器网络

WSN是wireless sensor network的简称,即无线传感器网络。

无线传感器网络就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统,其目的是协作地感知、采集和处理网络覆盖区域中被感知对象的信息,并发送给观察者。传感器、感知对象和观察者构成了无线传感器网络的三个要素。

微机电系统(Micro-Electro-Mechanism System,MEMS)、片上系统(SOC,System on Chip)、无线通信和低功耗嵌入式技术的飞速发展,孕育出无线传感器网络(Wireless Sensor Networks,WSN),并以其低功耗、低成本、分布式和自组织的特点带来了信息感知的一场变革。无线传感器网络就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳自组织网络。

很多人都认为,这项技术的重要性可与因特网相媲美:正如因特网使得计算机能够访问各种数字信息而可以不管其保存在什么地方,传感器网络将能扩展人们与现实世界进行远程交互的能力。它甚至被人称为一种全新类型的计算机系统,这就是因为它区别于过去硬件的可到处散布的特点以及集体分析能力。然而从很多方面来说,现在的无线传感器网络就如同远在1970年的因特网,那时因特网仅仅连接了不到200所大学和军事实验室,并且研究者还在试验各种通讯协议和寻址方案。而现在,大多数传感器网络只连接了不到100个节点,更多的节点以及通讯线路会使其变得十分复杂难缠而无法正常工作。另外一个原因是单个传感器节点的价格目前还并不低廉,而且电池寿命在最好的情况下也只能维持几个月。不过这些问题并不是不可逾越的,一些无线传感器网络的产品已经上市,并且具备引人入胜的功能的新产品也会在几年之内出现。

无线传感器网络所具有的众多类型的传感器,可探测包括地震、电磁、温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等周边环境中多种多样的现象。基于MEMS的微传感技术和无线联网技术为无线传感器网络赋予了广阔的应用前景。这些潜在的应用领域可以归纳为:军事、航空、反恐、防爆、救灾、环境、医疗、保健、家居、工业、商业等领域。

农业物联网种植环境监控系统设计

3.1 农业物联网种植环境监控系统关键技术

物联网技术应用在农业种植环境监控系统控制中,关键技术为一下两部分:意识感知层的进行无线数据感知与采集,而是通过网络传输层远程智能化控制对采集到的数据通过计算机分析,控制农作物生长所需的空气、温度、水分等,进而实现精准农业。

3.2 农业物联网种植环境监控系统建构

基于物联网技术的农业种植环境监控系统如

图3 基于物联网技术的农业种植环境监控系统框图

基于物联网技术的农业种植监控系统核心包括以下几部分:

感知层:数据感知与采集,实现种植环境中的土壤湿度、空气温度湿度、光照及自动灌溉系统的实时感知的试纸传送到ZigBee协调器节点上;

应用层:该系统负责对采集的数据进行存储、信息处理和控制指令的下达,为用户提供分析 决策依据,用户可随时随地提供电脑灯终端进行查询。3.3农业种植监控系统构建

3.3.1 系统硬件构建

1)无线节点模块:ZigBee是基于IEEE802.11.4协议的一簇展集,主要针对于低成本、低功耗的射频应用一部分是网关协调器及传感节点; 2)传感及控制模块:温度传感器、湿度传感器、光照强度传感器; 3)电源板:提供无线节点模块和传感控制模块连接,同时为系统供电。农业种植环境监控系统硬件构建如图2所示。

图4 农业种植环境监控系统硬件构建

在以上设计的硬件系统中,以MCU为控制中心,电池模块对系统供电和连接,传感及控制模块对种植环境进行实施检测采集数据,通过ZigBee无线网络进行数据和信息并比对标准生长环境参数,各个硬件模块经由无线收发模块传输数据,实现对环境信息的远程控制。3.3.2 系统软件构建

系统的软件设计工作主要有:传感器节点程序设计如3所示,ZigBee协议栈程序设计如图4所示。

图5 传感器节点程序设计

图6 网络协调器软件流程图

3.3.3 编码

void main(){ int wendu;int shidu;char s[16];UINT8 adc0_value[2];float shuzi = 0;SET_MAIN_CLOCK_SOURCE(CRYSTAL);// 设置系统时钟源为 32MHz 晶体振荡器

GUI_Init();// GUI 初始化

GUI_SetColor(1,0);// 显示色为亮点,背景色为暗点

GUI_PutString5_7(25,6,“OURS-CC2530”);//显示 OURS-CC2530 GUI_PutString5_7(10,22,“Temp:”);GUI_PutString5_7(10,35,“Humi:”);GUI_PutString5_7(10,48,“Light:”);LCM_Refresh();while(1){ th_read(&tem,&hum);//从采集模块读取温度和湿度的数据

sprintf(s,(char*)“%d%d C”,((INT16)((int)tempera / 10)),((INT16)((int)tempera % 10)));//将采集的温度结果转换为字符串格式

GUI_PutString5_7(48,22,(char *)s);//显示采集的温湿度的结果

LCM_Refresh();sprintf(s,(char*)“%d%d %%”,((INT16)((int)humidity / 10)),((INT16)((int)humidity % 10)));//将采集的湿度结果转换为字符串的格式

GUI_PutString5_7(48,35,(char *)s);//显示采集结果 LCM_Refresh();

四 总结

本次为期两周的课程设计中,主要目的是设计一个基于物联网的农业种植环境温湿度数据采集系统。该系统是一个采用CC2530无线单片机进行温湿度的数据采集,并且结合Zigbee协议架构进行编程的设计,主要是基于CC2530的温湿度数据采集系统模块的设计,并在IAR集成环境开发环境中进行基于Zigbee架构的编程,节点模块的调试,最后,实现无线传感网络的构建。在基于Zigbee无线传感器节点模块上,可以实现数据的实时采集,处理以及传输等功能。

本设计可以实现在谷仓内的温湿度检测,工厂厂房内不同区域的温湿度控制以及大面积的温室培养等功能。

本次课程设计的完成,让我结道,在以后的工作中,还可以继续从以下几个方面着手,进行研究和改进:

1、减少节点的能量消耗。在无线传感网络中某个节点失效,不会导致整个网络瘫痪,减少节点的能量消耗是不可避免要面对的问题之一。

2、减少路由发现过程中的开销。这其实也是减少节点的能量消耗的一种措施,尽量减少在路由发现过程中所损失的能量。

3、路由选择。路由优化选择可以尽量避免不必要的路由请求的广播以及信息传输,做到这一点不仅可以提高效率,也可以在减少能量消耗方面做出贡献。

五 参考文献

[1] 孙利民 《无线传感器网络》.清华大学出版社.2005.[2] 张拓.无线多点温度采集系统的设计.武汉:武汉理工大学,2009.[3] 陈旭.基于zigbee的可移动温度采集系统.武汉:武汉科技大学,2009 [3] 雷纯 《基于ZigBee 的多点温度采集系统设计与实现》.自动化技术与应用.2010,29(2)43~47.[5] 王翠茹 《基于ZigBee技术的温度采集传输系统》.仪表技术与传感器.2008.No.7.103~105.[6] 景军锋《基于ZigBee 技术的无线温度采集系统》.微型机与应用.2009.No.23.33~35.[7] 《Zigbee协议栈中文说明》.[8] 《IAR使用指南》.周立功单片机有限公司.[9] 《Zigbee技术实用手册》.西安达泰电子.[10] 《IAR 安装与使用》.成都无线龙通讯科技有限公司.六 致谢信

这次课程设计,给我留下了很深的印象。虽然只是短暂的两周,但在这期间,却让我受益匪浅。

通过这次课程设计,使我物联网应用系统有了全面的认识,对课本的知识又有了深刻的理解,在之前物联网应用系统的学习以及完成课后的作业的过程中,对其有了一些基础的了解和认识。本次经过两周的课程设计,让我对物联网应用系统有了更深的理解,我把课上的理论知识运用到实际中去,让我更近一步地巩固了课堂上所学的理论知识,并能很好地理解与掌握物联网应用系统中的基本概念、基本原理、基本分析方法。

总的来说,通过这次课程设计使我了解了物联网应用系统的设计原理,设计步骤等方面有了了解。提高了分析和实践能力。同时我相信,进一步加强对物联网应用系统的学习与研究对我今后的学习将会起到很大的帮助!

在此要特别感谢我的指导老师的指导与督促,同时感谢他的谅解与包容。求学历程是艰苦的,但又是快乐的。

第三篇:基于物联网技术的智能农业系统设计计划书

智能能农业物联网计划书

一、智能农业概述

在农业生产过程中,农作物的生长与自然界的多种因素息息相关,其中包括大气温度、大气湿度、土壤的温度湿度、光照强度条件、CO2浓度、水分及其他养分等等。传统农业作业过程中,对这些影响农作物生长的参数进行管理,主要依靠人的感知能力,存在着极大的不准确性,农业生产也就成为一种粗放式管理,达不到精细化管理的要求。

随着科学技术的发展,伴随着城镇化改革的进行,在农业生产过程中,越来越多的劳动力被解放出来,劳动力成本不断增加,传统农业无法进一步的发展,也逐渐滞后于社会的发展。因此,对传统农业的要求在不断提高,将先进技术应用于农业将得到广泛推广,智能农业随之产生。

托普物联网指出所谓的智能农业,指的是将人工智能技术应用于农业领域的一项高新技术。智能农业系统覆盖了从影响农业生产的自然参数的采集,到利用知识推理和计算机技术进行参数分析,最终通过农业专家系统指导农业生产的整个生产管理链。智能农业主要涉及的关键技术包括检测技术、嵌入式技术、通信技术等。

也有人认为智能农业是指在相对可控的环境条件下,采用工业化生产,实现集约高效可持续发展的现代超前农业生产方式,就是农业先进设施与露地相配套、具有高度的技术规范和高效益的集约化规模经营的生产方式。它集科研、生产、加工、销售于一体,实现周年性、全天候、反季节的企业化规模生产;它集成现代生物技术、农业工程、农用新材料等学科,以现代化农业设施为依托,科技含量高,产品附加值高,土地产出率高和劳动生产率高,是我国农业新技术革命的跨世纪工程。

智能农业产品通过实时采集温室内温度、土壤温度、CO2浓度、湿度信号以及光照、叶面湿度、露点温度等环境参数,自动开启或者关闭指定设备。可以根据用户需求,随时进行处理,为设施农业综合生态信息自动监测、对环境进行自动控制和智能化管理提供科学依据。通过模块采集温度传感器等信号,经由无线信号收发模块传输数据,实现对大棚温湿度的远程控制。智能农业还包括智能粮库系统,该系统通过将粮库内温湿度变化的感知与计算机或手机的连接进行实时观察,记录现场情况以保证量粮库的温湿度平衡。

二、智能农业系统的优势特性:

(1)反馈控制

反馈控制是实现控制系统稳定、可靠及自动化的关键技术,智能农业系统在系统的架构上看,也必须是反馈控制系统,而且是负反馈控制系统,形成的是闭环控制。从农业参数的采集、处理到MCU调控,应该形成闭环负反馈系统,否则将失去智能化的特性,失去自动控制的特点。

(2)自主控制

自主控制指的是系统的控制核心具备自适应的调整能力,包括自学习能力和自整定能力。农业系统本身是一个非线性系统,其外在扰动和内在扰动无规律可言,在建立对这些无规律的参数实现调控的系统时,就需要使得其具备自主控制的能力,以实时处理非线性数据。

三、智能农业系统设计概述

为了对农业生产起到指导作用,智能农业系统需要对主要的农业生产影响因素进行监测和控制。整套系统主要利用传感器技术、通信技术及计算机技术实现其功能。利用传感器对不同的影响因素进行信号的采集,并做初步的处理后,通过无线通信技术传输到上位计算机中,由计算机进行数据的分析和管理,并经过时间上的数据积累,与农业专家一起,构建具备初步完善的专家数据平台,给农业生产带来指导性作用。同时,为了调节不适合农业作物生长的因素,仍然需要一套完备的下位机控制系统,实现被监测参数的调节和完善。智能农业系统整体组成框图如下图所示。

物联网智能农业系统所使用的传感器需要满足农业生产的要求,实现数据的实时采集。本系统采用的都是国外进口专业传感器,具有稳定性好、精度高等特点,在实际应用过程中,效果显著。通信部分则采用无线通信方式,农业基地的空旷性给无线通信的实现带来了便利,有线通信反而会对农业生产产生影响。M2M汇聚节点作为所有参数的集中点,采用了32位的ARM处理器来实现,采用了TINYOS操作系统进行资源的管理,性能更稳定。PC机上位机监测管理系统则利用目前较新的Silverlight组件来实现,.Net的应用更为完美。

四、智能农业关键技术

1.传感器:

低成本、环境适应性、可靠性、微功耗、安全性

频率选择、天线技术、低功耗技术、封装技术,定位与跟踪、防碰撞与安全技术等。

3.网络互联:

分布式传感器 → 汇聚节点,采用ZigBee,适于环境变化的多跳、自组织通信技术,互联网接入。

4.智能信息处理:

逻辑思维→

形象思维;知识工程;云服务;人机和谐;现代信息服务产业。

五、智能农业的应用领域

1.资源:农地整治重大工程监管;基本农田数量、等级、利用效率、环境质量网络化管理;农用水资源管理

2.环境:农田土壤、地表与地下 水环境、光热、小气候 3.生产:作物生产:土壤理化参数、水、肥、保、苗

设施农业: 生物环境控制与管理信息系统

养殖生产: 个性化生理、健康、喂养监测管理 2.RFID:

4.农产品与食品:产地环境、产品储存、物流、营销 5.农业装备:服务作业调度、工况监控、远程诊断服务

六、总结

智能农业运用了物联网技术,云计算技术,移动互联网技术等多种技术的融合,眼神,拓展,提升了农业智能化水平。通过物联网技术感知有关土壤水分,肥力,作物苗情,通过感知技术,地理信息系统,全球定位系统实施情况做出生产决策。通过互联网技术将信息传送到云计算中心,计算出结果再送到智能终端。这些技术日渐成熟,并且逐步的应用到了智能农业的生产之中,提高了农业生产的管理效率,提升了农业产品的附加值,加快了智慧农业建设的步伐。

第四篇:物联网-基于物联网的物流定位与追踪系统的设计剖析

摘要

随着物联网技术的快速发展,物联网在各个领域都得到了广泛的应用,本文对基于物联网的物流定位与追踪系统的设计这一课题进行研究和讨论。还简单介绍了物联网技术在物流行业中的发展历程、应用现状及发展趋势。加快物联网技术在物流领域的应用,对于实现物流可视化、智能化和信息化具有重要意义。

关键字:物联网,物流

目录

1.概述.......................................................................................................2 2.设计方案..............................................................................................2 2.1 原理说明...........................................................................................2 2.2 体系构架...........................................................................................3 2.3 详细步骤........................................................................................4 2.3.1 RFID信息采集...........................................................................4 2.3.2 GPS/GSM定位............................................................................5 2.3.3 定位和追踪的实现....................................................................6 3.发展趋势...............................................................................................6 4.总结........................................................................................................7 参考文献....................................................................................................8

基于物联网的物流定位与追踪系统的设计 1.概述

物联网是指通过各种信息传感设备,实时采集任何需要监控、连接、互动的物体或过程等各种需要的信息,与互联网结合形成的一个巨大网络。其目的是实现物与物、物与人,所有的物品与网络的连接,方便识别、管理和控制

物流业是物联网很早就参与进来的行业之一,很多先进的现代物流系统已经具备了信息化、数字化、网络化、集成化、智能化、柔性化、敏捷化、可视化、自动化等先进技术特征。很多物流系统和网络也采用了最新的红外、激光、无线、编码、认址、识别、定位、无接触供电、光纤、数据库、传感器、RFID、卫星定位等高新技术,这种集光、机、电、信息等技术为一体的新技术在物流系统的集成应用就是物联网技术在物流业应用的体现。

本文将对基于物联网的物流定位与追踪系统的设计这一课题进行研究和讨论。

2.设计方案

2.1 原理说明

物流信息定位服务(Location Based Service,LBS)是统一信息系统(Unified Information System,UIS)利用无线终端和无线网络的有机配合,运用GPS

(Global Positioning Syste,全球定位系统)、GIS(Geographical Information System,地理信息系统)、Internet融合计算机电信集成技术

(Computer Telecommunication Integration,CTI)

与GSM(Global System for Mobile Communications,全球移动通讯系统),通过物联网(Internet Of Things,IOT)设备读写出物流实时位置信息,在统一信息系统中 实现物流定位和用户的信息交互。根据物联网技术物物相连的泛在链接特点,通过射频识别技术(Radio Frequency Identification,RFID)与传感设备,实现物流流程各环节的智能化识别、定位、跟踪、监控和管理。定位系统运用遥感系统、GIS、GPS/GSM、数据库、通信、网络技术异构构成建物流信息定位系统,实现了感知物流与传感网络的泛在链接与无址化管理,实现了感知物流与传感网络的泛在链接与无址化管理,从而脱离单一固定网络的束缚,用户随时以的手机、掌上电脑、PDA或互联网等为工具,实现物流定位信息的安全查询与管理。

图2-1 物品流动与监控技术示意图

2.2 体系构架

基于物联网的物流统一信息GPS/GSM定位系统主要采用RFID、GPS/GSM和GIS相结合,实现物流信息的实时定位,并将定位结果通过GSM、WEB等方式反馈到用户手机、PDA或WEB网页上,使物流服务存在于无所不在的泛在链接网络之中。系统主要有三层架构:接入层、传输层和应用层,形成定位信息的监测中心和移动终端服务中心。

图2-2 系统架构图

第一层,接入层。接入层主要通过带有RFID功能的GPS/GSM读写器对安放有RFID信息的物流物品进行信息读取。GPS/GSM移动终端主要由RFID射频识别模块、GPS模块、GSM模块和CPU模块构成,实时通过物流中的RFID进行GPS信息定位,并将定位信息通过GSM发送到统一信息系统。

第二层,交换层。交换层主要由GSMmodem、ISMG、WiFi、Internet等设备组成,完成接入层双向互动信息传输工作。

第三层,应用层。应用层的主要功能是对传输层传回来的信息进行处理,然后以网页或通过手机等方式给用户显示Google 等数字地图上相应位置及追踪器物流的运动轨迹。

2.3 详细步骤 2.3.1 RFID信息采集

GPS/GSM读写器的RFID射频识别是一种非接触式的自动识别技术,它通过射频信号自动识别目标物流对象并获取相关数据,可识别高速运动物体并可同时识别多个标签,用于控制、检测和跟踪物体,并与GPS/GSM技术融合实现物流信息定位。系统由RFID阅读器和物流货物中的RFID标签(应答器)组成,通过耦合元件实现RFID信号无接触读取,并在耦合通道中,使用防碰撞程序,实现标签信息传递与数据交换。

耦合类型有两种:一是电感耦合,频率有13.56MHz、225kHz和125kHz,是一种变压器模型,通过空间高频交变磁场实现耦合,适合于中、低频工作的近距离RFID系统,作用距离小于1m;二是电磁反向散射耦合,频率有5.8GHz、2.45GHz、915MHz、433MHz,是一种雷达原理模型,通过发射出去的电磁波反射目标信息,适合于高频、微波工作的远距离射RFID系统,作用距离为3-l0m。

GPS/GSM阅读器采用自动启动与条件触发两种工作模式,条件触发以短信、GPRS等方式实现设备控制。GPS/GSM读写器电路模块在信息触发的状态下启动信息采集电路,控制继电器闭合,使RFID阅读器进入工作状态,按信息指令的类别搜集物流货物信息,并通过GSM把GPS、物流信息发送到统一信息系统,系统接收到数据后与GIS等程序融合计算出物流的位置信息。

2.3.2 GPS/GSM定位

基于物联网的物流统一信息GPS/GSM定位系统中数据通信采用了GSM的SMS(短消息)业务功能,实现被定位RFID物流货物与统一信息系统数据控制中心之间的数据传输链路。GSM利用信令信道传输SMS,不需要人工拨号建立统一信息系统与物流货物之间的连接,直接把带有物流信息、GPS信息的短消息发送到服务中心,再由统一信息系统完成更高一级的系统计算与指令。GPS/GSM专业模块采用AT指令来控制整个系统的运行,包括设备的初始化、短信息的收发、GPS定位信息的提取等。

GPS的空间部分是由24 颗工作卫星组成,位于距地表20200km的上空,以4×6均匀分布6 个轨道,轨道倾角为55°。GPS导航系统工作原理与步骤:①测出接收机到已知位置卫星之间的距离,通过卫星信号到用户的时间乘以光速得到;②综合4颗卫星的数据;③根据卫星星历中查出卫星位置;④计算接收机的具体位置。

计算物流运输工具的位置时,可以采用三点定位原理,首先测得接收机与三个GPS卫星之间的距离,然后通过三点定位方式确定接收机的位置。

2.3.3 定位和追踪的实现

在基于物联网的统一信息系统中,GPS/GSM读写器与统一信息系统的通信方式采用GSM短信业务方式完成。GPS/GSM读写器采集RFID数据后加上目的地址按照通讯协议进行编码传送到短消息服务中心,再由短消息服务中心发送到物流统一信息系统监控中心;统一信息系统监控中心收到信息后也用相应的通讯协议进行解码,从而获得物流位置、状态等信息。

基于物联网的统一信息系统物流信息定位是GPS、GSM/GPRS、RFID融合应用的远程定位系统。通过移动短信服务或GPRS 数据传输将物流当前所在的经纬度传送给统一信息系统,用户可以直接在相关网页或通过手机收到平台显示的Google 等数字地图上相应定位位置及物流运动轨迹。在系统的测试中,实现了无障碍、无盲点、全天候、定位精度高的测试,平均误差3-7米。

3.发展趋势

根据研究,未来物联网在物流业应用将出现如下四大趋势:

1、智慧供应链与智慧生产融合,随着标签与传感器网络的普及,物与物的互联互通,将给企业的物流系统、生产系统、采购系统与销售系统的智能融合打下基础,网络的融合必将产生智慧生产与智慧供应链的融合,企业物流完全智慧的融入企业经营之中,打破工序、流程界限,打造智慧企业。

2、智慧物流网络开放共享,融入社会物联网 物流与人们生活密切相关,渗透在我们的方方面面,不仅产品追溯系统,今后其他的物流系统也将根据需要融入社会物联网络或与专业智慧网络互通,如:智慧物流与智能交通、智慧制造、智能安防、智能检测、智慧维修、智慧采购等系统融合等,从而为社会全智能化的物联网发展打下基础,智慧物流也成为人们智慧生活的一部分。

3、多种物联网技术集成应用于智慧物流,目前在物流业应用较多的感知手段主要是RFID和GPS技术,今后随着物联网技术发展,传感技术、蓝牙技术、视频识别技术、M2M技术等多种技术也将逐步集成应用于现代物流领域,用于现代物流作业中的各种感知与操作。

4、物流领域物联网创新应用模式将不断涌现,物联网是聚合、集成的创新理念,物联网带来的智慧物流革命远不是我们能够想到的这几种模式,群众是真正的英雄,随着物联 网的发展,更多的创新模式会层出不穷的不断涌现,这才是未来智慧物流大发展的基础。

4.总结

物联网发展推动者中国智慧物流的变革,随着物联网理念的引入,技术的提升,政策的支持,相信未来物联网将给中国物流业带来革命性的变化,中国智慧物流将迎来大发展的时代。

参考文献

[1]刘云浩.物联网导论.科学出版社,2010 [2]朱文和.基于物联网技术实现供应链全过程的智能化物流配送服务,2010年 第13期.[3]姜彬.谈物联网在我国物流领域的应用,2011 [4]孙克武.基于物联网的物流产业发展研究,2013 8

第五篇:基于物联网的智慧校园系统的设计与实现(南京李建元)

基于物联网的智慧校园系统的设计与实现

(一)物联网概念的提出

物联网的概念是在1999年提出的。物联网的英文名称叫“The Internet of things”,简言之,物联网就是“物物相连的互联网”。

2003年,美国《技术评论》提出传感网络技术将是未来改变人们生活的十大技术之首;

2005年,国际电信联盟发布了《ITU互联网报告2005:物联网》,正式提出了“物联网”的概念。国际电信这份报告曾描绘“物联网”时代的图景:当司机出现操作失误时汽车会自动报警;公文包会提醒主人忘带了什么东西;衣服会“告诉”洗衣机对颜色和水温的要求等等。美国总统奥巴马就职以后,在他和工商领袖举行的圆桌会议上,“智慧地球”的概念被提出,其中包括美国要形成智慧型基础设施“物联网”,被美国人认为是振兴经济、确立竞争优势的关键战略。

2009年2月24日消息,IBM大中华区首席执行官钱大群在2009IBM论坛上公布了名为“智慧的地球”的最新策略。

2009年8月7日,温家宝总理在江苏无锡调研时,对微纳传感器研发中心予以高度关注,提出了把传感网络中心设在无锡、辐射全国的想法。温家宝总理指出“在传感网发展中,要早一点谋划未来,早一点攻破核心技术”,“在国家重大科技专项中,加快推进传感网发展”,“尽快建立中国的传感信息中心,或者叫„感知中国‟中心 ”。

2010年是物联网概念迅速升温、业务高速发展的一年。专家预测,物联网产业将是下一个万亿元级规模的产业,甚至超过互联网30倍,中国物联网产业潜力无穷。

2011年3月5日,十一届全国人大四次会议国务院总理温家宝作的2011年政府工作报告中着重提出:要加快物联网的研发应用。(二)物联网的相关技术

物联网的实现主要分为三个层次:

第一是传感系统(设备层),通过各种技术手段,来实现和物相关的信息识别和采集;

第二是通信网络(信号传输和获取层),包括现在的互联网、通信网、广电网以及各种接入网和专用网,目的是对采集来的信息进行可靠传输和处理;

第三是应用和业务(业务应用层),即输入输出控制终端,可基于现有的手机、个人电脑等终端进行。

其中传感技术和通信技术实现了前两个层次,主要由无线射频识别(RFID)、传感网技术等技术构成,而第三个层次则是以软件为主的数据处理技术。

国内外众多高校、科研院所、各大知名企业先后开展了无线传感器网络的研究,这些都为无线传感器网络进一步的发展以及最终的商业化奠定了坚实的基础,虽然在基础技术层面已经获得了重大突破,而基于物联网技术能够为用户提供哪些独特的服务,才是物联网最终能否广泛应用的关键。目前许多物联网示范应用的方向之一就是与校园管理活动的融合,用于促进智慧校园/数字化校园建设工作的推进。

(三)系统功能要求

考虑到各校的实验室配置条件的限制,本赛题将以基于物联网技术的顶层应用开发作为主要内容,即假设在物联网技术基础上所需的各类信息均可以获取。

本系统要求针对校园中的两项主要活动进行设计,可以选取下面提供的两项活动(活动内容允许调整),也可以自行选择其他活动,但是至少完成两项具有代表性的功能设计,完成一个完整的系统设计。1.教室管理

假设:可以通过物联网技术获得关于教室使用状态的所有信息

要求:自行设计信息的存储内容与格式(数据库结构),包括需要通过物联网技术获取的信;分析用户可能需要用到的信息,允许用户通过PC终端查询所有教室的实时使用情况,以及其他所需信息和服务。2.车位管理

假设:可以通过物联网技术获得关于车位使用状态的所有信息

要求:自行设计信息的存储内容与格式(数据库结构),包括需要通过物联网技术获取的信息;分析用户可能需要用到的信息,允许用户通过PC终端查询所有车位的实时使用情况,以及其他所需信息和服务。

(四)系统设计要求

1.要求建立B/S结构的系统,展示系统基本功能,光盘仅作为成果备份。2.要求各队自行建立可以正常访问的作品网站,提供域名和账号口令(如果需要的话),用于评审期间访问。

3.建议的开发环境:IIS+SQL server+ASP,但不仅限于此。提示和备注:

去年本赛题从论坛、QQ交流情况以及最终的提交作品来看,比较普遍的问题有两个:

1.是否需要考虑传感网、通信网的结合问题

这个问题是大家最困惑也是问的最多的问题,从我们平时接触到的宣传来看,物联网最引人注目的功能就是在于传感网和通信网的结合,这部分功能本身正在探索之中,实现起来的工作量也比较大,所以本次大赛中对于这部分功能不做强调,而是假设监测对象的基本信息可以获得,在此基础上如何利用这些信息提供服务。所以各位选手一要考虑你认为哪些信息是你希望获取的,二要考虑这些信息获取后如何加以利用。(例如是仅仅告诉用户某个停车场目前有五个空闲车位,还是用图形表示出这五个空闲车位的具体位置?)。

当然,如果你能够在你的作品中完成这部分的功能,将会为你加分不少(去年有几个团队实现了这个功能,希望本届选手能够再接再厉,获得更大的突破)。

2.是否局限于这两项功能

教室管理、车位管理是必须完成的部分,如果你认为这两项功能你已经做好了,而且做的比较完善,仍然有时间和精力,在此条件下你可以根据自己的兴趣再选作其他功能。参赛选手可以根据自己学校的特色自行设计其他的智能系统。如:经济和财政学院可以选择“智慧银行”,交通学院可以选择“智慧交通”,医学院可以选择“智慧医疗”,建筑大学选择“智能家居”,另外,在同学们每天上课过程中有没有想过更好的老师授课、学生听课的更加智慧的方式,可以开发智慧授课系统,比如“智慧课堂”,只要启动你的智慧,定会有别样的创意。

本赛题中关于需要获取哪些信息的设计是后续工作的基础,在此基础上能够为用户提供哪些服务是系统的特色。所以全面的信息、良好的客户定位、丰富多样的功能是吸引用户的关键

注意事项:

1.关于系统用户

建议考虑三类基本用户:学校的管理人员、校内用户、校外用户。注意每类用户的需求有什么样的差异。除此以外还可以考虑一些特殊用户,例如校内用户是否区分教师、学生、管理人员。

2.关于开发文档部分

文档一定要结构完整、逻辑清晰,如实记录你的成果的开发过程。如果希望附上程序或部分程序,请单独放在一个文件中,不要和开发文档放在一起。

文档中必须包含系统分析、系统设计、系统实现(开发环境)、系统测试等内容。

具体细节请各自留意,例如要有目录、页码,图表要有编号,全文章节编号要规范、一致。

开发文档中尤其需要说明你的作品的特色所在,对于成员分工也应当有明确说明。

3.关于系统演示

最终提交程序时一定要有安装、使用方法的说明;

要考虑到远程能够正常访问,对于各种特殊情况能够正常处理,避免由于程序异常导致无法正常访问的情况。

界面要简明、友好,需要用户操作之处请加上简要说明,模拟数据要符合一般现实(例如教室编号不要用ABCD等全字符表示)。最好附上一个简要的用户手册,说明系统使用方法。

下载窄带物联网的地下停车场灯控系统设计论文(推荐五篇)word格式文档
下载窄带物联网的地下停车场灯控系统设计论文(推荐五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐