石墨烯涂覆光子晶体光纤探讨论文(合集五篇)

时间:2019-12-03 14:44:54下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《石墨烯涂覆光子晶体光纤探讨论文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《石墨烯涂覆光子晶体光纤探讨论文》。

第一篇:石墨烯涂覆光子晶体光纤探讨论文

摘要:碳基材料聚合物拥有增强光纤传感器传感特性的潜力。将碳基材料与光子晶体光纤(PCF)相结合,先将剥除涂覆层的PCF两端与同样剥去涂覆层的单模光纤(SMF)熔接在一起,然后在结构表面涂覆石墨烯层,形成一个基于PCF的马赫-曾德尔干涉仪(MZI)。实验证明,在基于PCF的干涉仪传感器表面涂覆石墨烯材料能够提升传感器的折射率灵敏度。

关键词:光子晶体光纤;石墨烯;等离子体增强化学气相沉积;折射率

光纤马赫-曾德尔干涉仪(MZI)由于高分辨率、高测量精度及制作简单等优点已经在电流[7]、应力[8]和温度[9]传感等领域得到了广泛的应用。目前,基于PCF的光纤MZI结构主要有:基于PCF与单模光纤(SMF)纤芯错位熔接,或PCF空气孔塌陷熔接构成的MZI;对PCF进行腐蚀成锥构成MZI;在PCF上写入长周期光栅构成MZI;利用双芯PCF制作MZI;将PCF熔融拉锥构成MZI。这些基于PCF的MZI传感器具有灵敏度高和制备简单的优点,可以实现折射率、温度和应力等参量的测量。本文提出一种在SMF与PCF熔接形成MZI结构的表面涂覆石墨烯材料的PCF折射率传感器。

1基于PCF的MZI基本原理

基于PCF的MZI(PCF-MZI)是先将PCF的两端分别与SMF熔接在一起[10],熔接过程中通过控制放电量使PCF空气孔保持一定程度的塌陷。当光从SMF端进入第一段塌陷区时,入射光发生衍射并且激发出包层高阶模在包层中进行传输,另一部分光继续在纤芯中传输。当光经过第二个塌陷区时,在包层中传输的一部分光再次耦合进纤芯中传输并发生干涉沉积在裸露的PCF结构表面的石墨烯材料会导致传感元件的传感机制发生变化。石墨烯与其它的碳纳米材料一样具有高折射率和独特的光学特性[7]。石墨烯的高折射率会提高光纤包层的有效折射率,由于包层有效折射率的提升,即使输出光谱的干涉峰或干涉谷波长变化很小,也容易被观测到。

2PCF-MZI传感器的制作

本文提出的PCF-MZI的制作是通过商用熔接机完成的,具体方法如下:分别选用一段SMF和PCF(约5mm),剥除涂覆层,用酒精擦拭干净后,使用光纤切割刀将光纤的端面切平整后放置在光纤熔接机上,使用马达控制功能将SMF和PCF对准后进行放电,放电量约13.5mA,放电时间为1000ms。我们在实验中发现,通过控制放电量、放电时间及电极位置可以控制塌陷长度,从而获得更好的光谱样本。完成上述操作后,通过等离子体增强化学气相沉积(PECVD)将石墨烯沉积在裸露的PCF表面。PECVD法源于化学气相沉积技术,属于利用气相态物质在固体表面进行化学反应、生成固态沉积物的过程,其过程如下:①打开真空泵将管式炉抽真空(真空度约30mTorr),同时打开管式炉的加热源对基片区域加热。②管式炉温度达到700℃时,先通入10sccm的氢气并打开等离子体(200W),对样品表面进行清洁10分钟。清洁结束后,向管式炉内通入生长气体(甲烷:氢气=1∶9sccm),此时仍然保持加热和抽真空,真空度约300mTorr;待炉内压强稳定后打开等离子体(甲烷与氢气的比例、温度及等离子体功率控制薄膜生长速率),薄膜开始生长并计时(不同厚度石墨烯可通过时间进行控制)。③薄膜生长结束后,将等离子体源调低至60W并关闭,停止通入生长气体,关闭加热源,此时仍然保持抽真空。④在抽真空的同时,管式炉中通入氩气(10scmm)直至其冷却,通氩气主要是对已制备样品的保护及加速炉内温度降低。⑤样品冷却好后,从管式炉中取出,保存至密封的胶盒中。⑥关闭机器电源和气瓶各处阀门。PECVD法生长石墨烯有独特优点:可在任意衬底上生长石墨烯,无需催化剂;低温生长;成膜质量好;薄膜厚度易于控制;均匀性和重复性好;高效率,低成本。但也存在缺点:要求较高的真空环境;生长所需气体具有可燃性、爆炸性和易燃性,需采取必要的保护措施。本文的实验中,样本石墨烯沉积层数约为8层,厚度约为2.672nm[11]。上述MZI结构一端的SMF与一个宽带光源连接在一起,另一端与光谱仪连接在一起,直接在光谱仪上观测传输谱。将PCF部分放置在载玻片上,保证结构的稳定性。石墨烯沉积前后传感器传输光谱如图1所示,可以看到石墨烯沉积前干涉谷的位置约在1534nm处,石墨烯沉积后干涉谷的位置发生了少量红移,移动到约1535nm处,并且石墨烯涂覆之后峰值降低约1.5dB。使用PECVD法的石墨烯沉积温度低,对基体的结构和物理性质影响小;膜的厚度及成分均匀性好;膜组织致密、针孔少;膜层的附着力强。

3实验结果与讨论

实验将传感结构绷直后固定在载玻台上,并记录此时的透射谱[9],如图2所示。在折射率传感实验中,使用不同参数的折射率匹配液作为折射率测量样本,将折射率匹配液用滴管滴在PCF结构上,记录传感器在不同外部环境下的透射谱。每组实验结束后,使用酒精反复清洗传感结构,将清洗后的透射谱和未浸泡在折射率匹配液中的透射谱进行对比,保证还原光谱后进行下一步测量。实验室的温度设为28℃,以确保温度不影响实验。图3是未涂覆石墨烯的传感器在不同环境折射率下的透射谱,从图中可以看到,随着环境折射率的增加,传感器的透射谱发生漂移,并且峰值随着环境折射率的增加逐渐减小。传感器未涂覆石墨烯前,当环境折射率从1.30RIU增加至1.44RIU时,透射谱中的干涉谷从1554.6nm处漂移到1539.1nm处,漂移了15.5nm,强度从-18.6dB降低到-15.4dB,降低了3.2dB。图4为传感器结构表面涂覆石墨烯后在环境折射率变化下的透射谱,横轴为外界环境折射率系数,纵轴为在折射率系数变化下透射谱中的光谱强度功率。从图3、图4中可以看出,在1.30~1.44RIU范围内折射率灵敏度为21.02dB/RIU。图5为不同外部环境折射率下石墨烯沉积传感器的透射谱,可以看出传感器表面涂覆石墨烯后,当环境折射率从1.30RIU增加至1.44RIU时,透射谱中的干涉谷透射谱中的干涉谷从1541.9nm处漂移到1539.2nm处,漂移了2.7nm,强度从-18.7dB变化到-14.7dB,降低了4dB。图6为不同外部环境折射率下石墨烯涂覆传感器样本干涉谷强度折射率响应曲线,由此可以看出,一部分倏逝波的能量将会和靠近光纤包层的表层模式耦合,导致输出光谱上可观察到的强度减小。表层石墨烯的高折射率会提高光纤包层的有效折射率,从而使光谱变化更容易被观察到。以上实验数据表明:在1.30~1.44RIU范围内有23.41dB/RIU的折射率灵敏度,这是由于石墨烯薄膜自身复杂的有效折射率改变了光纤的边界条件,光在传播过程中从光纤的包层泄漏到石墨烯涂层,耦合空间也由原先的包层扩大至石墨烯涂层;同时,石墨烯薄膜自身固有的光学吸收功能也增加了传播过程中的光损耗,降低了耦合强度。由于涂覆石墨烯的总反射比基本依赖于外部环境的折射率,与拉力和温度关系不大,因此其对外部环境的变化有很强的抗干扰性,也使得这种传感器有完成双参量传感的潜力[12~14],即当另一种因素导致输出光谱的波长发生明显变化时,就有可能完成双参数传感。

4结束语

本文提出并实现了一种将石墨烯涂覆在MZI中PCF表层的折射率传感器。这种传感器通过将PCF两端和SMF熔接出塌陷后,采用PECVD技术将石墨烯沉积在PCF表面上,利用石墨烯的高折射率改变干涉仪的传感机制,使得其可以连续进行折射率测量,并且有双参量传感的潜力,即第二个参数通过改变输出光谱的波长完成传感。本文提出的传感器输出光谱的强度随着外部环境折射率的增大使得非线性减小,在1.30~1.44RIU范围内取得23.41dB/RIU的折射率灵敏度,对比表层没有石墨涂覆的传感器样本,折射率敏感度有所提升。

第二篇:石墨烯纳米材料论文

石墨烯纳米材料 摘要:

石墨烯是继富勒烯、碳纳米管之后发现的一种具有二维平面结构的碳纳米材料,它自2004年发现被以来,成为凝聚态物理与材料科学等领域的一个研究热点。石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文简要介绍了石墨烯的性能特点、制备方法,着重对石墨烯纳米复合材料进行了介绍,对石墨烯纳米材料的制备方法、理化性质、及应用前景进行了详细介绍。关键词:石墨烯纳米材料复合物特性制备应用 引言:

石墨烯自2004年被发现以来,因其优异的电学、力学、热学、光学等性能,已经深深地影响了物理、化学和材料学领域,被广泛应用于复合材料、纳米电子器件、能量储存、生物医学和传感器等范围,表现出巨大的潜在应用前景。石墨烯是近年来发现的新型碳纳米材料,它基本具有碳材料的所有优点,而且还拥有更高的比表面积和导电率,能够克服碳纳米管的一些缺陷,使其成为了一个非常理想的纳米组合成分来制备石墨烯的复合材料。自从石墨烯被发现以来,越来越多科学家开始关注基于石墨烯的复合材料的研究。目前,石墨烯的复合材料己在催化、储能、生物、医药等领域展现出优越的性质和潜在的应用价值。例如,将石墨烯添加到高分子中,可以提高高分子材料的机械性能和导电性能;通过石墨烯与许多不同结构和性质的纳米粒子进行复合,制备出新型石墨烯

一、石墨烯的性能特点

1、导电性

石墨烯稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。

2、机械特性

石墨烯集成电路石墨烯是人类已知强度最高的物质,比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍。哥伦比亚大学的物理学家对石墨烯的机械特性进行了全面的研究。他们选取了一些10—20微米的石墨烯微粒。研究人员先是将这些石墨烯样品放在了一个表面被钻有小孔的晶体薄板上,这些孔的直径在1—1.5微米之间。之后,他们用金刚石制成的探针对这些放置在小孔上的石墨烯施加压力,以测试它们的承受能力。

在石墨烯样品微粒开始碎裂前,它们每100纳米距离上可承受的最大压力居然达到了大约2.9微牛。据科学家们测算,这一结果相当于要施加55牛顿的压力才能使1米长的石墨烯断裂。如果用石墨烯制成包装袋,那么它将能承受大约两吨重的物品。

3、饱和吸收

当输入的光波强度超过阈值时,这独特的吸收性质会开始变得饱和。这种非线性光学行为称为可饱和吸收,阈值称为饱和流畅性。给予强烈的可见光或近红外线激发,因为石墨烯的整体光波吸收和零能隙性质,石墨烯很容易就变得饱和。石墨烯可以用于光纤激光器的锁模运作。用石墨烯制备成的可饱和吸收器能够达成全频带锁模。由于这特殊性质,在超快光子学里,石墨烯有很广泛的应用空间。

4、自旋传输

科学家认为石墨烯会是理想的自旋电子学材料,因为其自旋-轨道作用很小,而且碳元素几乎没有核磁矩。使用非局域磁阻效应,可以测量出,在室温状况,自旋注入于石墨烯薄膜的可靠性很高,并且观测到自旋相干长度超过1微米。使用电闸,可以控制自旋电流的极性。

5、电子的相互作用

石墨烯中电子间以及电子与蜂窝状栅格间均存在着强烈的相互作用。科学家借助了美国劳伦斯伯克利国家实验室的“先进光源(ALS)”电子同步加速器。这个加速器产生的光辐射亮度相当于医学上X射线强度的1亿倍。科学家利用这一强光源观测发现,石墨烯中的电子不仅与蜂巢晶格之间相互作用强烈,而且电子和电子之间也有很强的相互作用。

二、石墨烯复合材料制备

由于石墨烯具有高强度、高电导率、高比表面积,用其对聚合物材料进行改性有望得到高性能的聚合物基复合材料,使复合材料具有高电导率、高强度、高热稳定性并具有一定的阻燃性,进一步扩大聚合物材料的应用范围。

先按照目标制备出表面改性的石墨烯,使其具有亲油或亲水性;再讲改性石墨烯与聚合物材料进行复合制备聚合物基/石墨烯复合材料。改性后的石墨烯可以更好地分散于聚合物基体中。此用途的石墨烯可取代价格昂贵的碳纳米管来填充聚合物,使聚合物基复合材料的性能及因公得到进一步提高。

三、常见石墨烯纳米材料

1、石墨烯/无机物纳米材料

石墨烯/无机物纳米材料是石墨烯与无机物复合的纳米材料,它兼具石墨烯与复合的无机物的优良特性。如:①石墨烯/SiO2纳米复合材料,它的电导率比石墨烯增大了很多,透射率也很好;②石墨烯/Pt纳米复合材料,它的催化效果比单纯的Pt要好很多,也可用于制作电极,效果也很好;③石墨烯/TiO2纳米复合材料,它的电阻约为原来的1/8,用于电的传输时,可以大大的减少电的损耗。

所以,石墨烯/无机物纳米材料相对石墨烯而言,许多性能更加优异。

2、石墨烯/聚合物纳米材料

石墨烯/聚合物纳米材料是石墨烯与聚合物复合的纳米材料,它兼具石墨烯与复合的聚合物的优良特性。如:①改性石墨烯/PMMA纳米复合材料,与PMMA相比,其弹性模量增加30%,硬度增加了5%;②石墨烯/聚苯乙烯(PS)纳米复合材料,它的电逾渗阀值与相同体积比的单壁碳纳米管(SWCNT)相当,而且分别SWCNT/聚酰亚胺和SWCNT/聚对亚苯基乙炔基的2倍到4倍;③石墨烯/泡沫有机硅纳米复合材料,它与未添加石墨烯的泡沫有机硅相比,石墨烯(0.25%)/泡沫有机硅纳米复合材料的起始分解温度提高了16OC,热分解终止温度提高了50OC,而且热降解速率也变慢了。

四、石墨烯纳米材料的理论与实际意义

石墨烯本身作为一种新型碳纳米材料,由于其特殊的结构特性使其在电学、力学、热学、光学等方面具有优异的性能,如量子霍尔效应、量子隧穿效应等。由于具有独特的纳米结构和优异的性能,石墨烯可应用于许多的先进材料与器件中,如薄膜材料、储能材料、液晶材料、机械谐振器等;石墨烯是单层石墨,原料易得,所以价格便宜,不像碳纳米管那样价格昂贵,因此石墨烯有望代替碳纳米管成为聚合物基碳纳米复合材料的优质填料。

石墨烯纳米复合材料是在石墨烯的基础上添加上具有特定性能的聚合物或无机物,使其在某一方面或某几方面具有更加优异的特性。这使得它在很多领域都有广阔的应用前景。石墨烯的优秀特性加上聚合物或无机物而形成的石墨烯纳米复合材料将实现高效、经济、环保等技术追求,这将迎来材料界的新革命。参考文献:

(1)杨常玲,刘云芸,孙彦平.石墨烯的制备及其电化学性能[J].电源技术 ,2010,34(2):177-180.(2)谢普,于杰,秦军.石墨烯的制备与表征[J].贵州化工,2010,35(4):20-22.

(3)张好斌,杨勇,卢朝晖.微孔PMAA/石墨烯导电纳米复合材料的制备与结构[C]/ /中国天津2009年全国高分子学术论文报告会.天津,2009.

(4)黄毅,梁嘉杰,张龙.石墨烯功能复合材料的制备及应用[C]/ /中国化学会第 27 届学术年会中日青年化学家论坛.北京:,2010.

(5)杨波,唐建国,刘继宪.石墨烯/苯丙乳液复合导电膜的制备[J].涂料工业,2010,40(9):5-8.

(6)张晓艳,李浩鹏,崔晓莉.TiO2/石墨烯复合材料的合成及光催化分解水产氢活性[J].无机化学学报2009,25(11):1903-1907

第三篇:石墨烯相变材料论文

石墨烯相变材料的研究

摘要:随着热管理及热存储技术的发展,储热技术逐渐扮演着越来越重要的角色,于此同时寻找高性能的储热材料也成为了研究热潮。近年来,相变材料的发展为储热技术带来了福音,相比于其他热导率低,储热性能差的储热材料,相变材料有着天然的优势。而在相变材料中,石墨烯相变材料是如今发现的储热性能最优异的相变材料,通过将石墨烯作为填充材料,相变材料的储热能力大大提升。

关键词: 热存储 相变材料 储热材料 石墨烯 前言:

在热能的存储和利用过程中,常常存在于在供求之间在时间上和空间上不匹配的矛盾,如太阳能的间歇性,电力负荷的峰谷差,周期性工作的大功率器件的散热和工业余热利用等。相变储能材料通过材料相变时吸收或释放大量热量实现能量的储存和利用,可有效解决能量供求在时间和空间上不匹配的矛盾。因此,相变储能技术被广泛应用于具有间歇性或不稳定性的热管理领域,如航空航天大功率器件的管理,周期性间歇式电子工作器件的散热,太阳能利用,电力的“移峰填谷”,工业废热余热的回收利用,民用建筑的采暖及空调的节能领域等。近年来,相变储能技术成为能源科学和材料科学领域中一个十分活跃的前沿研究方向。

相变储能材料具有储能密度大储能释能过程近似恒温的特点。但多数相变储能材料存在热导率低,换热性能差等缺点。采用具有高导热,低密度,耐腐蚀和化学稳定性好等优点的碳材料对其进行强化传热,可有效提高系统换热效率。常用的固-液定型相变储能材料实际上是一类复合相变材料,主要是由两种成分组成:一是工作物质;二是载体基质。工作物质利用它的固-液相变进行储能工作物质可以是各种相变材料,如石蜡,硬脂酸,水合盐,无机盐和金属及其合金材料。载体基质主要是用来保证相变材料的不流动性和可加工性,并对其进行强化传热。

石墨烯是一种新型碳材料,它具有由单层碳原子紧密堆积而成的二维蜂窝状紧密堆积结构。它是构建其他维度炭质材料的基本单元。石墨烯本身具有非常高的导热系数,并兼具密度小,膨胀系数低和耐腐蚀等优点有望成为一种理想型散热材料。将石墨烯作为强化传热载体,有可能克服单一相变材料热导率低的缺点,缩短复合体系热响应时间,提高换热效率实现复合材料传热和储热一体化。

本文通过查阅大量文献以及亲自做实验得出了一些数据和结论。正文

1.根据同济大学田胜力、张东、肖德炎、向阳等人2006年在《材料开发与应用》上发表的文章,他们对脂肪酸相变储能材料的热循环行为进行了系统的研究试验。试验选用了化学纯的癸酸、月桂酸、肉豆蔻酸和棕榈酸等四种脂肪酸为研究对象,利用差示扫描量热技术(DSC)测定了经过56次、112次、200次和400次反复热循环的相变材料的融化温度和融化潜热,加速热循环试验结果显示:癸酸融化温度范围变窄了4℃左右,肉豆蔻酸融化温度范围变宽了3℃左右,月桂酸和棕榈酸的融化温度范围变化不明显,其中以棕榈酸的融化温度变化最小。随着热循环次数的增加,相变材料的融化初始温度和融化潜热变化较小,且是没有规律的。在400次左右的热循环范围内,这些脂肪酸具有较好的热稳定性,有作为潜热储存材料的应用潜力。且此四种脂肪酸的融化温度在30℃到60℃之间,适于用作绿色建筑材料及其他室温范围内的潜热储存过程。考虑到相变材料的使用时间可能更长,因此要测试以上脂肪酸长期作为潜热储存材料的稳定性和可行性,需要更多次数的加速热循环实验来验证。而Ahmet Sari在研究纯度为工业级的月桂酸、肉豆蔻酸、棕榈酸是发现,经过1200次热循环后,这些脂肪酸的融化温度均逐渐降低,降低最大值为6.78℃,并且,脂肪酸的融化温度变宽了。这与上文实验结果有所出入,可能是由于脂肪酸原材料的纯度和产地不同造成的。因此,原料的选取对材料的性能有很大影响。

2.2012年1月20日,中国科学院上海硅酸盐研究所的黄富强等人申请了他们的最新专利:三维石墨烯/相变储能复合材料及其制备方法。三维石墨烯/相变储能复合材料的特征在于石墨烯与相变储能材料原位复合,其中以具有三维结构的多孔石墨烯作为导热体和复合模板,以固-液相变的有机材料作为储能材料和填充剂。可以采用兼具曲面和平面特点的泡沫金属作为生长基体,利用CVD方法制备出具有三维连通网络结构的泡沫状石墨烯材料。通过该方法制备的石墨烯材料完整的复制了泡沫金属的结构,石墨烯以无缝连接的方式构成一个全连通的整体,具有优异的电荷传导能力,巨大的比表面积,孔隙率和极低密度。并且,这种方法可控性好,易于放大,通过改变工艺条件可以调控石墨烯的平均层数,石墨烯网络的比表面积,密度和导电性。以金属模板CVD法制备的三维石墨烯泡沫具有丰富的孔结构特征,其比表面积高,孔壁孔腔高度连通,为基体材料提供可复合填充的空间。若将三维多孔石墨烯和相变材料复合,相变储能材料被分隔在各个孔腔,与石墨烯壁紧密结合,有效热接触面积大幅度提高,高度连通的石墨烯三维导热网络通道将快速实现系统换热。另一方面多孔石墨烯的毛细吸附力将液态相变储能材料局域化,可有效防止渗透。

3.2012年6月来自于中国科学院能源转换材料重点实验室,上海硅酸盐研究所的周雅娟,黄富强等人发表了一篇名为太阳能材料和太阳能电池的论文,这篇论文重点讲解了他们最新研制出的一种由石墨烯三维气凝胶(GA)和硬脂酸(OA)组成的相变材料。GA是通过石墨烯氧化物在热水表面反应制得,三维石墨烯网络的空隙尺寸只有几微米而且薄壁墙是石墨烯片层堆积而成,OA通过GA的毛细管力牵引下进入到GA中。GA/OA复合材料的热稳定性达到了2.635W/mk,是OA的14倍。GA/OA复合材料的短暂升温和冷却过程是在为热能量存储做准备。GA是一种低密度材料因此在复合材料中仅占15%的比重,这种复合材料能够大大减少或消除材料内部的热电阻,表现出一种高储热的能力,达到181.8J/g,与独立的OA材料非常接近,研究中发现,大多数相变材料的热储存能力都较低,为了提高材料的热传递能力,金属泡沫添加剂进入了专家们的视野,然而他们进一步发现金属泡沫添加剂与原材料不兼容。经过数次实验得出的结论,石墨烯材料具有很好的热稳定性和热传递能力,并且与原材料兼容。由石墨烯片层组成的三维网络结构在相变材料领域有着巨大的潜力。

4.来自于浙江杭州辐射研究所的邢芳,李悟凡等人发表了关于烷烃类相变材料的文章。烷烃及其混合物由于自身的中低温度热能量储存能力已经被广泛应用于相变材料中。在这些烷烃中,熔化温度为37度的二十烷已经出现在诸如电子领域的基于能量储存的被动热管理技术中。为了提高二十烷的热导性,将石墨烯纳米片添加进二十烷这个课题正在试验中。这种复合相变材料是将石墨烯纳米片均匀分布在液体的二十烷中。通过扫描量热计测量它的热融合和融化点,我们发现在10度的时候热传导能力整整增加了4倍,这表明石墨烯纳米片相对于传统的一些填充来说有着更好的表现。石墨烯纳米片的两维平面形态降低了热表电阻,这也是为什么它效果这么好的原因。扩大的石墨烯片层有着高导电性和低密度性,能有效地增强相变材料的热性能。

5.同济大学材料科学与工程学院的田胜力、张东、肖德炎等人利用多孔石墨的毛细管作用吸附硬脂酸丁酯制成了一种定形相变材料的相变温度、相变潜热和热稳定性,得出硬脂酸丁酯含量的临界值。研究表明,硬脂酸丁酯与纳米多孔石墨形成的定形相变材料相变温度合适、相变潜热较大、热稳定性好,是适合于在建筑墙体中使用的相变材料。对不同含量的硬脂酸丁酯/多孔石墨复合材料利用差热扫描仪进行DSC测试显示,相变复合材料的峰值温度为26℃,与纯硬脂酸丁酯的熔点相同,即定形相变材料的熔点不变,为硬脂酸丁酯的熔点。定形材料的潜热随硬脂酸丁酯含量的变化而变化,硬脂酸丁酯含量越高,定形相变材料的相变潜热越大,近似呈线性关系。此定形相变材料的蓄热性能、均匀性和热稳定性好,具有较大的相变潜热,其相变温度在26℃,适合做室温相变材料,有助于建筑节能。此定形相变材料中硬脂酸丁酯的含量又一个渗出临界值,当硬脂酸丁酯质量含量达到90%时,有细微渗出,使用时建议把含量控制在85%以内。这种定形相变材料在经过多次热循环之后其相变潜热变化较小,具有良好的热稳定性。因此,硬脂酸丁酯/多孔石墨相变材料是较好的可应用于建筑墙体的相变材料。

6.2013年,新乡学院能源与燃料研究所的周建伟等人以氧化石墨烯为基质、硬脂酸为储热介质用液相插层法成功制备了硬脂酸/氧化石墨烯相变复合材料。其中以氧化石墨烯维持材料的形状、力学性能,把硬脂酸嵌在片层结构的氧化石墨烯基质中,通过相变吸收和释放能量,提高其储热、导热性能和循环性能。该相变材料具有适宜的相变温度和较高的相变潜热,相变材料与基质具有较好的相容性,在相变过程中没有液体泄漏现象,复合相变储热材料储/放热时间比硬脂酸减少,且热稳定性良好。实验表明,硬脂酸质量分数为40%的硬脂酸/氧化石墨烯复合相变材料的相变温度为67.9℃,相变潜热为289.2J/g。经过连续冷热循环试验发现,复合相变材料的储热/放热时间比纯硬脂酸缩短,相变温度和相变潜热变化较小,表明硬脂酸/氧化石墨烯复合相变材料具有良好的热稳定性和兼容性。因此,通过此方法一方面将硬脂酸局限在片层结构中,解决了相变过程中的渗出泄露问题;另一方面,利用氧化石墨烯良好的热传导性提高复合相变材料的传热效率,弥补了硬脂酸在导热、换热方面的缺陷。

7.2013年10月12日到10月16日,在上海举办的中国高分子学术论文报告会上,四川大学高分子材料科学与工程学院亓国强等人提出了他们的最新成果:聚乙二醇/氧化石墨烯定型相变储能材料的制备与性能研究,研究发现聚乙二醇(PEG)是一种性能优良的固-液相变储能材料。相变过程中会发生熔体流动泄露,故需要对其进行封装,但封装又会降低其热导率,影响工作效率,增加成本。因而加入另一种物质作为支撑定型材料,制备复合定型相变材料成为另一种选择。但通常过高的添加量会严重影响材料的储能性能。于是通过向 PEG 中加入氧化石墨烯(GO)作为定型支撑材料,用溶液共混法在 GO 含量仅为 8%时成功制备了 PEG/GO 定型相变储能材料。该材料在超过熔点一倍时仍保持形状稳定。GO 的加入对相变材料熔点基本没有影响,但在低含量下促进结晶,当含量高于 4wt%时阻碍结晶的进行。相变潜热随 GO 含量的提升有所下降,但在能维持材料定型的最低含量(8wt%)时,仍高达 135 J/g,可以有效应用于储能领域。该材料在经历 200 次升降温循环后,相变温度和相变潜热变化不大,较稳定,具有良好的可重复使用性。

8.远在大洋彼岸,来自于加州大学河滨分校,加利福尼亚大学的Pradyumna Goli, Stanislav Legedza, Aditya Dhar 等人一直在进行关于锂电池的研究。锂电池在在移动通讯和交通动力中扮演着重要角色,但是由于其自身的自加热作用使得使用寿命大大缩短,为了解决这一问题,学者们经过大量实验发现锂电池的可靠性通过将石墨烯作为填充材料能够大大的改善。传统的热管理电池由于其相位只在一个很小的温度范围内变化,减小了电池内温度的上升,故只能依赖于潜在的储热能。而将石墨烯掺入碳氢化合物相变材料中可以将其导电能力提高到原来的两个数量级倍,同时还保持潜储热能力。显热-潜热相结合的热传导组合能够大大地减少锂电池内部温度的上升。储热-热传导的方法即将在锂电池和其他类型电池的热管理领域引领一场变革。

9.2008年4月24日来自于首尔崇实大学工学院建筑系的Sumin Kim a, Lawrence T.Drzal b等人研制出了一种具有高导电性和高储热能力的相变材料。使用剥离的石墨烯纳米片,石墨烯相变材料可以提高在液晶中的高导电性,热稳定性以及潜储热能力。在扫描电子显微镜显示下,石墨烯相变材料均匀分布在液晶中,而良好的均匀分布意味着高导电能力。石墨烯复合相变材料的热稳定能力在石墨烯内部结构的帮助下得到提升。而且,由于相变材料的电热稳定性,石墨烯复合相变材料具备了可持续再生能力。石墨烯相变复合材料在差示扫描热量法的热曲线中有两个峰,第一次在固-固过渡阶段,温度较低,峰显示为35.1度;第二次是固-液相变阶段时温度较高,峰显示为55.1度。石墨烯可以在保有其潜储热能力的情况下提高材料的热稳定性。相变材料具有高储热,低成本,无毒和无腐蚀性等特点而具有美好的前景。最近,一些无机,有机以及它们的混合物正在被应用于相变材料中,成为热门的研究课题。

10.Fazel Yavari等人在2011年也就石墨烯作为改性添加剂改良十八醇相变材料在《Physical chemistry》上发表了文章。和很多有机相变材料一样,十八醇也具有热导率低,换热性能差,以及存在泄漏问题等缺点。Fazel Yavari等人的研究表明,由于石墨烯低密度、高导热的特点,添加很低含量的石墨烯,就可以达到显著提高热导率、改良十八醇的目的。然而由于部分相变材料分子被限制在石墨烯层间空隙中,在工作温度范围并没有发生相变,从而使加入石墨烯后的复合材料的相变焓低于原相变材料,造成储热能力的损失。实验中,当石墨烯含量(质量分数)达到4%时,材料的热导率增加到原来的2.5倍,此时其相变焓只降低了15.4%。而如果用银纳米线代替石墨烯,要达到同等的热导率,需要使其含量达到45%,并带来高达50%的相变焓损失。综合实验表明,相比于其它微型添加材料,石墨烯能在不造成明显储热损失的前提下明显改良有机相变材料的热性能,为通过潜热的储存/释放实现热管理和热保护提供了新的可行性方案。

11.Jia-Nan Shi ,Ming-Der Ger等人2013年在期刊《CARBON》上发表文章,阐述了有关石墨烯提高石蜡导热系数的研究成果。实验另辟蹊径,对比了剥离石墨薄片和石墨烯作为改性添加剂对于石蜡相变材料的不同影响。实验结果表明,剥离石墨薄片带来的热导率增量更高,石墨含量为10%的石蜡/石墨薄片复合材料的热导率为纯石蜡的十余倍。石墨烯表现出了极好的导电性,石蜡/石墨烯的电导率要远高于石蜡/石墨薄片,但是其热导率的增量比石墨薄片小。原因在于,虽然单层石墨烯热导率极高,但是石墨烯片层间微小空隙内存在的大量界面严重阻碍了热传导。同时,实验也发现,石墨烯在定形方面的作用要远过于石墨薄片。石墨含量2%的石蜡/石墨烯相变复合材料中,石蜡能在185.2℃高温下保持形态,这远远超过了石蜡相变的温度范围。而石蜡/石墨薄片复合材料中石蜡只能保持形态到67.0℃。少量的石墨烯和剥离石墨薄片都能作为低成本、高效率的改性添加剂应用于石蜡相变材料的导热和定形方面的改良。

12.马来西亚的Mohammad Mehrali等人对石蜡/石墨烯相变复合材料进行了系统的研究和测试。该项目应用了SEM、FT-IR、TGA、DSC等设备对制得的石蜡/石墨烯复合材料的材料特性和热学性能进行了测试和分析。所测试的石蜡质量分数为48.3%的样品在相变过程中无泄漏现象发生,为定形相变材料。SEM图像显示石蜡嵌入了石墨烯片层间的孔隙。FT-IR分析结果显示石蜡与石墨烯之间没有化学反应发生。试验进行了2500次熔化/凝固热循环检测来确认其热可靠性和化学稳定性。TGA测试结果显示,氧化石墨烯增强了复合材料的热稳定性。该相变复合材料的热导率从0.305(W/mk)显著提升到0.985(W/mk)。测试结果表明,石蜡/氧化石墨烯复合材料具有良好的热学性能、热可靠性、化学稳定性和导热性,很适合做热管理和热储存材料。总结:

相变储能材料,通过材料相变时吸收或释放大量热量实现能量的储存和利用,以其巨大的相变潜热,在未来的能源利用和热管理领域具有很广泛的开发和应用价值。而大多数相变材料存在的导热率抵、换热性能差、相变过程发生泄漏等缺陷使其很难直接被应用于生产生活中。因此,需要一种改性填充材料来增加相变材料的导热换热性能,同时需要对相变材料进行定形和封装。而石墨烯材料的发现和研究成果的公布,给相变材料的研究和应用指明了道路。一方面,石墨烯的高导热性能很好地改善了相变材料的热性能,同时,其良好的化学稳定性和热学可靠性使其作为改性添加剂不与相变材料本体发生化学反应;另一方面,低密度、高强度的石墨烯结构能够使复合材料在较低石墨烯含量下就达到所要求的定形效果,因此,相比其他改性添加剂,石墨烯对相变材料的相变温度、相变潜热和储热能力的减益效果要小得多。正是从这两方面出发,石墨烯作为导热定形的改性材料,在相变储能材料领域得到广泛认可和应用。大量实验采用了以相变材料作为工作物质,通过其相变过程储/放热,同时以石墨烯作为载体基质,增加材料导热性能和不流动性的实验思路进行相变导热材料的设计、制备和改良。相信随着对石墨烯研究的深入和石墨烯制备工艺的进步,石墨烯会以更突出的性能改良相变材料,从而获得更有实践和应用价值的石墨烯/相变复合储能材料,为能源可持续和热管理领域带来更大的发展,为人类创造出更科学、更环保、更舒适的生活环境。

参考文献:

【1】田胜力, 张东, 肖德炎, 等.脂肪酸相变储能材料热循环行为的试验研究[J].材料开发与应用,2006,21(1):9—12.【2】亓国强 李亭 杨伟 谢邦互 杨鸣波 聚乙二醇/氧化石墨烯定型相变储能材料的制备与性能研究 成都 四川大学高分子科学与工程学院 2013 【3】Yajuan Zhong Mi Zhou Fuqiang Huang Tianquan Lin Dongyun Wan Solar Energy Materials and Solar Cells Beijing State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, 2013 【4】Xin Fang,†,‡ Li-Wu Fan,*,†,‡ Qing Ding,†,‡ Xiao Wang,†,‡ Xiao-Li Yao,†,‡ Jian-Feng Hou,† Zi-Tao Yu,†,§Guan-Hua Cheng,∥ Ya-Cai Hu,† and Ke-Fa Cen§ Increased Thermal Conductivity of Eicosane-Based Composite PhaseChange Materials in the Presence of Graphene Nanoplatelets Zhejiang 2012 【5】田胜力, 张东, 肖德炎.硬脂酸丁酯/多孔石墨定形相变材料的实验研究[J].节能,2005,11:5—6.【6】周建伟, 程玉良, 王储备 等.硬脂酸/氧化石墨烯复合相变储热材料研究[J].化工新型材料,2013,41(6):47—49.【7】黄富强 仲亚娟 陈剑 万冬云 毕辉 三维石墨烯/相变储能复合材料及其制备方法 上海市长宁区定西路1295号 中国科学院上海硅酸盐研究所 2012 【8】Pradyumna Goli, Stanislav Legedza, Aditya Dhar, RubenSalgado, Jacqueline Renteria and Alexander A.BalandinGraphene-Enhanced Hybrid PhaseChange Materials for ThermalManagement of Li-Ion Batteries USA Nano-Device Laboratory, Department of Electrical Engineering and Materials Scienceand Engineering Program, Bourns College of Engineering, University of California 2013

【9】Sumin Kim a,Ã, Lawrence T.Drzal b Solar Energy Materials & Solar Cells USA Department of Architecture, College of Engineering, Soongsil University, Seoul 156-743, Republic of Korea Composite Materials and Structures Center, College of Engineering, Michigan State University, East Lansing, 2008 【10】Fazel Yavari, Hafez Raeisi Fard, Kamyar Pashayi,etc.Enhanced Thermal Conductivity in a Nanostructured Phase Change Composite due to Low Concentration Graphene Additives[J].J.Phys.Chem.C 2011, 115, 8753–8758.【11】Jia-Nan Shi , Ming-Der Ger , Yih-Ming Liu.Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives[J].CARBON,51(2013): 365—372.【12】Mohammad Mehrali, Sara Tahan Latibari, Mehdi Mehrali.Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite[J].Energy Conversion and Management,67(2013): 275—282.

第四篇:碳纳米材料与技术论文报告-石墨烯电光性质

石墨烯的电光性质

(磁学与超导 上海)

随着对石墨烯的研究的深入,石墨烯经历了艰难的寻找制备手段,到现在的丰富的制备方法,目前比较热门的制备方法有,撕胶带法/轻微摩擦法,最普通的是微机械分离法,直接将石墨烯薄片从较大的晶体上剪裁下来;碳化硅表面外延生长,该法是通过加热单晶碳化硅脱除硅,在单晶(0001)面上分解出石墨烯片层;金属表面生长,主要是利用生长基质原子结构“种”出石墨烯;氧化减薄石墨片法,即石墨烯也可以通过加热氧化的办法一层一层的减薄石墨片,从而得到单、双层石墨烯,等等。对于研究的性质也有很多方面,比如,原结构,电子性质,这里主要是电子传输;光学性质;自旋传输;异常量子霍尔效应;石墨烯氧化物;化学改性;热性能;机械性能等。当然,石墨烯潜在应用也有很多,作为研究磁光方向的研究生,当然关注的是电子性质和光学性质,下面就主要探讨这两个方面。

关键字:石墨烯,电子性质,光学性质,磁光

1.电子性质

下面我先讨论一下电子性质。石墨烯的性质与大多数常见的三维物质不同,纯石墨烯是一种半金属或零能隙半导体。理解石墨烯的电子结构是研究其能带结构的起始点。科学家根据石墨烯能带结构图,很早就察觉,对于低能量电子,在二维的六角形布里渊区的六个转角附近,能量-动量关系是线性关系:,其中,是能量,是约化普朗克常数,与分别为波矢量的x-轴分量与y-轴分量。

是费米速度,这引至电子和空穴的有效质量(effective mass)都等于零。1,2因为这线性色散关系,电子和空穴在这六点附近的物理行为,好似由狄拉克方程描述的相对论性自旋1/2粒子。2所以,石墨烯的电子和空穴都被称为狄拉克费米子,布里渊区的六个转角被称为“狄拉克点”,又称为“中性点”。在这位置,能量等于零,载子会从空穴变为电子,从电子变为空穴。

电子传输测量结果显示,在室温状况,石墨烯具有惊人的高电子迁移率(electron mobility),其数值超过15,000 cm2V−1s−1。从测量得到的电导数据的对称性显示,空穴和电子的迁移率应该相等。在10K和100K之间,迁移率与温度几乎无关,3可能是受限于石墨烯内部的缺陷所引发的散射。在室温和载子密度为1012cm−2时,石墨烯的声子散射体造成散射,将迁移率上限约束为200000cm2V−1s−1。与这数值对应的电阻率为10−6Ω·cm,稍小于银的电阻率1.59 ×10−6Ω·cm。在室温,电阻率最低的物质是银。所以,石墨烯是很优良的导体。对于紧贴在氧化硅基板上面的石墨烯而言,与石墨烯自己的声子所造成的散射相比,氧化硅的声子所造成的散射效应比较大,这约束迁移率上限为40000cm2V−1s−1。4

虽然在狄拉克点附近,载子密度为零,石墨烯展示出最小电导率的存在,大约为数量级。造成最小电导率的原因仍旧不清楚。但是,石墨烯片的皱纹或在SiO2基板内部的离子化杂质,可能会引使局域载子群集,因而容许电传导。有些理论建议最小电导率应该为

。但是,大多数实验测量结果为

数量级,而且与杂质浓度有关。在石墨烯内嵌入化学掺杂物可能会对载子迁移率产生影响,做实验可以侦测出影响程度。曾经有人将各种各样的气体分子(有些是施体有些是受体)掺入石墨烯,他们发觉,甚至当化学掺杂物浓度超过1012cm−2时,载子迁移率并没有任何改变。5另一组实验者将钾掺入处于超高真空(ultra high vacuum)、低温的石墨烯,他们发现钾离子的物理行为与理论相符合,迁移率会降低20倍。假若,将石墨烯加热,除去钾掺杂物,则迁移率降低效应是可逆的。

由于石墨烯的二维性质,科学家认为电荷分数化(低维物质的单独准粒子的表观电荷小于单位量子)会发生于石墨烯。因此,石墨烯可能是制造量子计算机所需要的任意子元件的合适材料。2.光学性质

最后我们了解一下石墨烯中的光学性质。根据理论推导,悬浮中的石墨烯会吸收的白光;其中是精细结构常数。一个单原子层物质不应该有这么高的不透明度(opacity),单层石墨烯的独特电子性质造成了这令人惊异的高不透明度。更令人诧异的是,这不透明度只与精细结构常数有关,而精细结构常数通常只出现于量子电动力学,很少会在材料学领域找到它。由于单层石墨烯不寻常的低能量电子结构,在狄拉克点,电子和空穴的圆锥形能带(conical band)会相遇,因而产生高不透明度结果。实验证实这结果正确无误,石墨烯的不透明度为,与光波波长无关。但是,由于准确度不够高,这方法不能用来决定精细结构常数的度量衡标准。

近来,有实验示范,在室温,通过施加电压于一个双闸极双层石墨烯场效晶体管,石墨烯的能隙可以从0 eV调整至0.25 eV,大约5微米波长。6通过施加外磁场,石墨烯纳米带的光学响应也可以调整至太赫兹频域。7 3.总结

石墨烯作为一个新型材料,其独特的二维的六角形型结构,使得石墨烯的电子和空穴都可看做狄拉克费米子,六角处能量等于零,载子从空穴变为电子,从电子变为空穴。另外,由于石墨烯的二维性质,使得石墨烯中很可能发生电荷分数化(低维物质的单独准粒子的表观电荷小于单位量子),这样石墨烯就可能是制造量子计算机所需要的任意子元件的合适材料。单层石墨烯的独特电子性质造成了令人惊异的高不透明度;另外,通过施加外磁场,石墨烯纳米带的光学响应也可以调整至太赫兹频域。石墨烯这些独特的电子性质和光学性质,为我们打开了研究物性和新型材料的大门。

主要参考文献: Wallace, P.R.The Band Theory of Graphite.Physical Review.1947, 71: 622 Semenoff, G.W.Condensed-Matter Simulation of a Three-Dimensional Anomaly.Physical Review 2 Letters.1984, 53: 5449.Novoselov, K.S.et al..Two-dimensional gas of massless Dirac fermions in graphene.Nature.2005, 438(7065): 197–200 Chen, J.H.et al., Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2, Nature Nanotechnology.2008, 3(4): 206 5 Schedin, F.et al..Detection of individual gas molecules adsorbed on graphene.Nature Mater.2007, 6(9): 652–655 6 Zhang, Y.et al..Direct observation of a widely tunable bandgap in bilayer graphene.Nature.11 June 2009, 459(7248): 820–823 7 Junfeng Liu, A.R.Wright, Chao Zhang, and Zhongshui Ma.Strong terahertz conductance of graphene nanoribbons under a magnetic field.Appl Phys Lett.29 July 2008, 93: 041106–041110

下载石墨烯涂覆光子晶体光纤探讨论文(合集五篇)word格式文档
下载石墨烯涂覆光子晶体光纤探讨论文(合集五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐