第一篇:51单片机实验报告
51单片机实验报告 实验一 点亮流水灯 实验现象 Led灯交替亮,间隔大约10ms。
实验代码 #include 〈reg51、h> void Delay10ms(unsigned int c); void main(){)1(elihwﻩ { ﻩ
P0
= 0x00;
Delay10ms(50);
;ffx0 =
0Pﻩ
ﻩ
;)05(sm01yaleDﻩ } } void Delay10ms(unsigned int c){
unsigned char a,b;
for(;c>0;c-—)
{)——b;0〉b;83=b(rofﻩ { ﻩ ﻩ
for(a=130;a〉0;a--);
} ﻩ ﻩ }
} 实验原理
W W hi i le(1)表示一直循环。
循环体内首先将 P0 得所有位都置于零,然后延时约5 5 0 *10=500ms,接着 0 P0 位全置于 1 1,于就是 D LED 全亮了。接着循环,直至关掉电源..延迟函数就是通过多个for r 循环实现得。
实验 2 流水灯(不运用库函数)
实验现象 起初 led 只有最右面得那一个不亮,半秒之后从右数第二个led也不亮了,直到最后一个也熄灭,然后 led 除最后一个都亮,接着上述过程 #include <reg52、h> #include <intrins、h> void Delay10ms(unsigned int c);
main(){
unsigned char LED;
LED = 0xfe;
while(1)
{ ﻩ
;DEL = 0Pﻩ
Delay10ms(50);
;1 〈〈 DEL = DELﻩ)00x0 == 0P(fiﻩ {
ﻩ
;efx0 = DELﻩ
} ﻩ } ﻩ} void Delay10ms(unsigned int c)
{
unsigned char a,b;
for(;c>0;c-—)
{)—-b;0〉b;83=b(rofﻩ { ﻩ ﻩ ﻩ
;)--a;0>a;031=a(rofﻩ
} ﻩ
} ﻩ} 实验原理
这里运用了C语言中得位运算符, , 位运算符左移, , 初始值得二进制为1 111 1 11 0, 之后左移一次变成1 111 1 100 0,当变成0000
0 0000 时通过 f if 语句重置 1 1 11 1 11110、延迟函数在第一个报告已经说出了,不再多说..实验 3 流水灯(库函数版)实验现象
最开始还就是最右边得一个不亮,然后不亮得灯转移到最右边得第二个,此时第一个恢复亮度,这样依次循环.实验代码 #include 〈reg51、h> #include 〈intrins、h〉 void Delay10ms(unsigned int c); void main(void){
unsigned char LED;
;EFx0 = DELﻩ)1(elihwﻩ { ﻩ
P0 = LED;
;)05(sm01yaleDﻩ ﻩ
;)1,DEL(_lorc_ = DELﻩ } ﻩ} void Delay10ms(unsigned int c){
unsigned char a, b;
for(;c〉0;c——)
{ ﻩ
for(b=38;b〉0;b—-)
{ ﻩ ﻩ
;)-—a;0〉a;031=a(rofﻩ
} ﻩ } } 实验原理
利用头文件中得函数,_cro l _(,), 可以比位操作符更方便得进行 2 2 进制得移位操作, , 比位操作符优越得就是,该函数空位 补全时都就是用那个移位移除得数据, , 由此比前一个例子不需要f if 语句重置操作..数码管实验
实验现象 单个数码管按顺序显示0-9与 A-F。
#include<reg51、h> void Delay10ms(unsigned int c);unsigned char code DIG_CODE[16]={0x3F,0x06, 0x5B,0x4F, 0x66, 0x6D, 0x7D, 0x07,0x7F, 0x6F, 0x77, 0x7C, 0x39, 0x5E, 0x79, 0x71}; void main(void){
;0 = i rahc dengisnuﻩ while(1)
{ ﻩ
P0= ~DIG_CODE[i];
ﻩ
;++iﻩ)61 == i(fiﻩ
{
ﻩ
;0 = iﻩ } ﻩ
;)05(sm01yaleDﻩ }
ﻩ
ﻩ} void Delay10ms(unsigned int c)
//Î ó² î 0us
{
unsigned char a, b;
for(;c>0;c—-)
{ ﻩ
for(b=38;b〉0;b--)
{
ﻩ
;)—-a;0〉a;031=a(rofﻩ
} ﻩ }
} 实验原理
根据数码管得点亮原理,依次找到代表 0 0 -9 ,A--F F 得位码,用循环与延迟函数就可以达到要求了。
实验 动态数码管 #include〈reg51、h> #define GPIO_DIG
P0 ﻩ#define GPIO_PLACE P1
unsigned char code DIG_PLACE[8] = { 0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f}; unsigned char code DIG_CODE[17] = { 0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};
unsigned char DisplayData[8];void DigDisplay();void main(void)
{
unsigned char i;
for(i=0; i<8;i++)
{ ﻩ
DisplayData[i] = DIG_CODE[i];
} ﻩ while(1)
{ ﻩ
;)(yalpsiDgiDﻩ }
ﻩ ﻩ} void DigDisplay()
{
;i rahc dengisnuﻩ
;j tni dengisnuﻩ for(i=0;i<8; i++)
{
ﻩ
;]i[ECALP_GID = ECALP_OIPGﻩ ﻩ
;]i[ataDyalpsiD = GID_OIPGﻩ
;01 = jﻩ ﻩ ﻩ
ﻩwhile(j—-);ﻩ
};00x0 = GID_OIPGﻩ ﻩ} 实验原理
依然找到相应数字与字母得编码, , 由于必须通过快速扫 描利用视觉暂留来实现数码管得显示, , 分段码与位码,不断扫描。最后如果更换数字得话, , 需要消隐操作,防止数码管重复显示所带来得不清楚..实验 外部中断 实验现象
每按一下独立按键,就会在数码管显示屏上+1.#include 〈 reg51、h 〉 #include
sbit LS138B=P2^3;sbit LS138C=P2^4;
unsigned int LedNumVal_1,LedNumVal_2,LedOut[8];Unsigned char code Disp_Tab[]= {0x3f,0x06,0x5b,0x4f, 0x66,0x6d , 0x7d,0x07,0x7f,0x6f , 0x40};
void delay(unsigned int i)
{
char j;
for(i;i > 0; i--)
for(j = 200;j > 0;j—-);} void main(void)
{
unsigned char i;
P0=0xff;
P1=0xff;
P2=0xff;
IT0=1;
EX0=1;
IT1=1;
EX1=1;
EA=1;
while(1)
{
LedOut[0]=Disp_Tab[LedNumVal_1%10000/1000];
LedOut[1]=Disp_Tab[LedNumVal_1%1000/100]|0x80;
ﻩ
LedOut[2]=Disp_Tab[LedNumVal_1%100/10];
LedOut[3]=Disp_Tab[LedNumVal_1%10];
;]0001/00001%2_laVmuNdeL[baT_psiD=]4[tuOdeLﻩ
LedOut[5]=Disp_Tab[LedNumVal_2%1000/100];
LedOut[6]=Disp_Tab[LedNumVal_2%100/10];
LedOut[7]=Disp_Tab[LedNumVal_2%10];
for(i=0;i<8; i++)
{
;]i[tuOdeL = 0Pﻩ
switch(i)ﻩ
ﻩ
{
ﻩcase 0:LS138A=0;LS138B=0;LS138C=0; break; case 1:LS138A=1; LS138B=0;LS138C=0;break; case 2:LS138A=0; LS138B=1; LS138C=0;break; case 3:LS138A=1; LS138B=1;LS138C=0; break;case 4:LS138A=0;LS138B=0;LS138C=1;break;case 5:LS138A=1; LS138B=0; LS138C=1;break;case 6:LS138A=0;LS138B=1; LS138C=1; break;
case 7:LS138A=1;LS138B=1; LS138C=1; break;
}
;)051(yaledﻩ } ﻩ
} } void
counter0(void)interrupt 0
using 1 {
EX0=0;
LedNumVal_1++;
EX0=1; } void
counter1(void)interrupt 2 using 2 {
EX1=0;
LedNumVal_2++;
EX1=1;} 实验原理 对于数码管得显示采用 138译码器,通过 switch 语句与数字一一对应,通过 P3、2 P3、3外部中断接口使数码管成功计数。外部中断函数为 INT0与INT1。
第二篇:单片机实验报告
目录
第一章单片机简介....................................................2 第二章
实验要求..................................................3 第三章实验设备......................................................3 第四章实验安排......................................................4 第五章实验内容......................................................4
LED灯实验.......................................................4 步进马达试验....................................................5 独立按键控制LED实验............................................7 矩阵键盘实验....................................................9 静态数码管实验.................................................12 动态数码管实验.................................................14 NE555脉冲发生器实验(定时/计数器).............................16 RS232串口通信实验(接收与发送)..................................21 第六章收获体会.....................................................25
单片机实验报告
第一章单片机简介
单片机也被称为微控制器(Microcontroller),是因为它最早被用在工业控制领域。单片机由芯片内仅有CPU的专用处理器发展而来。最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。单片机是靠程序运行的,并且可以修改。通过不同的程序实现不同的功能,尤其是特殊的独特的一些功能,这是别的器件需要费很大力气才能做到的,有些则是花大力气也很难做到的。一个不是很复杂的功能要是用美国50年代开发的74系列,或者60年代的CD4000系列这些纯硬件来搞定的话,电路一定是一块大PCB板!但是如果要是用美国70年代成功投放市场的系列单片机,结果就会有天壤之别!只因为单片机的通过你编写的程序可以实现高智能,高效率,以及高可靠性!
单片机诞生于20世纪70年代末,经历了SCM、MCU、SoC三大阶段。
1.SCM即单片微型计算机(Single Chip Microcomputer)阶段,主要是寻求最佳的单片形态嵌入式系统的最佳体系结构。“创新模式”获得成功,奠定了SCM与通用计算机完全不同的发展道路。在开创嵌入式系统独立发展道路上,Intel公司功不可没。
2.MCU即微控制器(Micro Controller Unit)阶段,主要的技术发展方向是:不断扩展满足嵌入式应用时,对象系统要求的各种外围电路与接口电路,突显其对象的智能化控制能力。它所涉及的领域都与对象系统相关,因此,发展MCU的重任不可避免地落在电气、电子技术厂家。从这一角度来看,Intel逐渐淡出MCU的发展也有其客观因素。在发展MCU方面,最著名的厂家当数Philips公司。
Philips公司以其在嵌入式应用方面的巨大优势,将MCS-51从单片微型计算机迅速发展到微控制器。因此,当我们回顾嵌入式系统发展道路时,不要忘记Intel和Philips的历史功绩。
3.单片机是嵌入式系统的独立发展之路,向MCU阶段发展的重要因素,就是寻求
单片机实验报告
应用系统在芯片上的最大化解决;因此,专用单片机的发展自然形成了SoC化趋势。随着微电子技术、IC设计、EDA工具的发展,基于SoC的单片机应用系统设计会有较大的发展。因此,对单片机的理解可以从单片微型计算机、单片微控制器延伸到单片应用系统。
MCS51系列微控制器应用广泛,在家电、汽车甚至航空等领域都有其活跃的身影。然而,普通51系列微控制器内部资源有限,像我用Proteus构建微控制器虚拟实验室选用的AT89C52只有三个定时器、一个全双工的串行口和中断控制,并且其数据处理能力有限,不适合对大量数据进行复杂分析和运算。
因此,在不重新选型(可选用SoC)的前提下,为实现我们所需要的功能,就需要进行外围扩展。针对微控制器的特点,我们首先考虑串行扩展,因为微控制器的I/O引脚有限,并行扩展一则外围芯片面积比较大,二则对抑制EMI不利。
第二章 实验要求
1.学习Keil C51集成开发工具的操作及调试程序的方法,包括:仿真调试与脱机运行间的切换方法
2.熟悉TD-51单片机系统板及实验系统的结构及使用
3.进行MCS51单片机指令系统软件编程设计与硬件接口功能设
4. 学习并掌握Keil C51软件联机进行单片机接口电路的设计与编程调试
5.完成指定MCS51单片机综合设计题
第三章实验设备
1.HC600S-51单片机开发板 2.Keil C51 3.普中自动下载软件
第四章 实验安排
1.LED灯实验
单片机实验报告
2.步进马达试验
3.独立按键控制LED实验 4.矩阵键盘实验 5.静态数码管实验 6.动态数码管实验
7.NE555脉冲发生器实验(定时/计数器)8.RS232串口通信实验(接收与发送)
第五章 实验内容
一、LED灯实验
1.基本要求
利用位移循环指令实现LED灯的闪烁 2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线图
4.电路原理图
单片机实验报告
5.程序
#include
main(){unsigned int i;while(1)
{for(i=0,P0=1;i<4;i++){d(500);P0=(P0<<2);}}}
二、步进马达试验
1.基本要求
编程实现马达的正反转,调速等功能 2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线图(图一)
单片机实验报告
图一 图二
4.电路原理图
上图图二 5.程序
#include “reg52.h” #define speed 2 sbit PH1 = P1^0;
//定义管脚 sbit PH2 = P1^1;sbit I01 = P1^2;sbit I11 = P1^3;sbit I02 = P1^4;sbit I12 = P1^5;
void delay(int time);
void Go(){ //A
PH1 = 0;//PH1为0 则A线圈为反向电流
I01 = 0;I11 = 0;
//以最大电流输出
PH2 = 0;//PH2为0 则B线圈为反向电流
I02 = 1;I12 = 1;
//输出0 delay(speed);//圈为反向电流
I01 = 1;//输出0 I11 = 1;
PH2 = 1;//PH2为1 则B线圈为正向电流
I02 = 0;//以最大电流输出
I12 = 0;
delay(speed);//B PH1 = 1;
//PH1为1 则A线圈为
正向电流
I01 = 0;
//以最大电流输出
I11 = 0;
PH2 = 1;//PH2为1 则B线圈为正
向电流
I02 = 1;//输出0 I12 = 1;
delay(speed);
PH1 = 1;
//PH1为1 则A线圈为正向电流
I01 = 1;I11 = 1;
PH2 = 0;
//PH2为0 则B线圈为反向电流
I02 = 0;I12 = 0;delay(speed);}
void delay(int time){
int i,j;
for(j=0;j <= time;j++)
for(i =0;i <= 120;i++);}
void main(){
while(1)
{
Go();//步进电机运行
} }
单片机实验报告
三、独立按键控制LED实验
1.基本要求
通过编程控制8个独立按键分别控制8个LED灯的开关 2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线图(图一)
图一 图二
4.电路原理图 上图图二 5.程序
#include
P1口
#define uchar unsigned char #define uint unsigned int
void Delayms(unsigned int c);
//延时10ms uchar Key_Scan();void main(void){
unsigned char ledValue, keyNum;
ledValue = 0x01;
while(1)
{
keyNum = Key_Scan();//扫描键
盘
switch(keyNum)
{
case(0xFE):
//返回按
键K1的数据
ledValue = 0x01;
break;
单片机实验报告
case(0xFD):
ledValue = 0x02;
break;case(0xFB):
ledValue = 0x04;
break;case(0xF7):
ledValue = 0x08;
break;case(0xEF):
ledValue = 0x10;
break;case(0xDF):
ledValue = 0x20;
break;case(0xBF):
ledValue = 0x40;
break;case(0x7F):
ledValue = 0x80;
//返回按键K2的数据
//返回按键K3的数据
//返回按键K4的数据
//返回按键K5的数据
//返回按键K6的数据
//返回按键K7的数据
//返回按键K8的数据
break;default:
break;
}
GPIO_LED = ledValue;//点亮LED灯
}
}
uchar Key_Scan(void)//键盘扫描函数 { uchar i,n=0xff;
if(P1==0xff)goto Scan_r;//无键按
下,返回
goto Scan_r;Scan_1:
while(P1!=0xff);//等待键释放
Delayms(10);Scan_r:
return n;}
void Delayms(uint x){
uint n;
for(;x>0;x--)
{
for(n=0;n<123;n++)
{;}
} }
四、矩阵键盘实验
1.基本要求
编程由16个矩阵按键控制数码管显示相应的数值 2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。
3.接线图
单片机实验报告
见下图图一
图一 图二
4.电路原理图
见上图图二 5.程序
#include
uchar ScanKey(void);void Delayms(uint x);main(){ unsigned char ledValue;uchar i;ledValue = 0x01;loop: i = ScanKey();
switch(i)
{ case 0xee:
ledValue = ~0x3F;
break;
case 0xde:
ledValue = ~0x06;
break;
case 0xbe:
ledValue = ~0x5B;
break;
case 0x7e:
ledValue = ~0x4F;
break;
case 0xed:
ledValue = ~0x66;
break;
case 0xdd:
ledValue = ~0x6D;
break;
单片机实验报告
case 0xbd:
ledValue = ~0x7D;
break;
case 0x7d:
ledValue = ~0x07;
break;
case 0xeb:
ledValue = ~0x7F;
break;
case 0xdb:
ledValue = ~0x6F;
break;
case 0xbb:
ledValue = ~0x77;
break;
case 0x7b:
ledValue = ~0x7C;
break;
case 0xe7:
ledValue = ~0x39;
break;
case 0xd7:
ledValue = ~0x5E;
break;
case 0xb7:
ledValue = ~0x79;
break;
case 0x77:
ledValue = ~0x71;
break;
}
GPIO_LED = ledValue;i=0;goto loop;}
void Delayms(uint x){uint n;for(;x > 0;x--)
{ for(n=0;n<123;n++)
{;}
} }
uchar ScanKey(void)//键盘扫描函数 { uchar i,n=0xff;
P1=0xf0;
if(P1==0xf0)goto Scan_r;//无键按下,返回
for(i=0,P1=0xfe;i<4;i++)
{ if((P1&0xf0)!=0xf0)
{ Delayms(10);
if((P1&0xf0)!=0xf0)
{ n=
P1;
goto
Scan_1;}
}
P1=(P1<<1)+1;
//扫描下
一行
} goto Scan_r;Scan_1:
单片机实验报告
P1=0xf0;while((P1&0xf0)!=0xf0);//等待键
释放
Delayms(10);
Scan_r:
P1=0xff;return n;} }
五、静态数码管实验
1.基本要求
编程使数码管显示字符0-F 2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线框图(图一)
图一
单片机实验报告
图二
4.电路原理图
见上图图二 5.程序
#include
{~0x3F,~0x06,~0x5B,~0x4F,~0x66,~0x6D, ~0x7D,~0x07,~0x7F,~0x6F,~0x77,~0x7C,~0x39,~0x5E,~0x79,~0x71};main(){
unsigned int LedNumVal;//定义变量 while(1)
{
// 将字模送到P0口显示
LedNumVal++;
P0 = LED7Code[LedNumVal%16];
Delayms(1000);
//调用延时程序
}
}
单片机实验报告
void Delayms(uint x){uint n;for(;x > 0;x--)
{ for(n=0;n<123;n++)
{;}
} }
六、动态数码管实验
1.基本要求
编程实现8个数码管的动态扫描。通过P22、P23、P24控制3-8译码器来对数码管进行位选,通过P0口经过573的驱动控制数码管的段选,通过P13控制573的使能端,为低电平时573才会有输出。2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线图(图一)
图一 图二
单片机实验报告
图三
4.电路原理图
见上图图
二、图三 5.程序
#define uint unsigned int void Dsplay();void Delayms(uint x);uchar mDS[6];uchar code cDsCode[]=
{0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xf8,0x80,0x90};
void main(){ uchar i;
for(i=0;i<6;i++)mDS[i]=i+1;
loop:
Dsplay();
goto loop;}
void Dsplay()//动态扫描显示
{uchar i;
for(i=0,P2=0x01;i<6;i++)
{ P1=cDsCode[mDS[i]];//输出段
Delayms(1000);
P2=P2<<1;
//选通下一位
}
P2=0x00;
//关闭位选通 }
void Delayms(uint x){uint n;for(;x > 0;x--)
{ for(n=0;n<123;n++)
{;}
} }
七、NE555脉冲发生器实验(定时/计数器)
1.基本要求
2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线图
4.电路原理图
5.程序
#include
CYMOMETER
”};uchar code EN_CHAR2[16]={“FREQ:
HZ”};
单片机实验报告
void TIMER_Configuration();//初始化定时器 ulong Freq;
//用来存放要显示的频率值 ulong TimeCount;//用于计算1S钟的
void main(){ uchar i, freqValue[6];
LcdInit();TIMER_Configuration();for(i=0;i<16;i++){
LcdWriteData(EN_CHAR1[i]);}
LcdWriteCom(0xc0);//第二行显示
for(i=0;i<16;i++){
LcdWriteData(EN_CHAR2[i]);}
while(1){
if(TR0==0)
//当计数器停下的时候,表明计数完毕
{
Freq = Freq + TL1;
//读取TL的值
Freq = Freq +(TH1 * 256);//读取TH的值
LcdWriteCom(0xc8);
//--求频率的个十百千万十万位--//
freqValue[0]='0'+Freq%1000000/100000;
freqValue[1]='0'+Freq%100000/10000;
freqValue[2]='0'+Freq%10000/1000;
freqValue[3]='0'+Freq%1000/100;
freqValue[4]='0'+Freq%100/10;
freqValue[5]='0'+Freq%10;
for(i=0;i<5;i++)//从最高位开始查找不为0的数开始显示(最低位为0显示0)
{
if(freqValue[i]==0x30)
{
freqValue[i]=0x20;//若为0则赋值空格键
}
else
单片机实验报告
{
break;
}
}
for(i=0;i<6;i++)
{
LcdWriteData(freqValue[i]);
}
Freq=0;//将计算的频率清零
TH1=0;//将计数器的值清零
TL1=0;
TR0=1;//开启定时器
TR1=1;//开启计数器
} } }
void TIMER_Configuration(){ TMOD=0x51;TH0=0x3C;TL0=0xB0;ET0=1;ET1=1;EA=1;TR0=1;TR1=1;} void Timer0()interrupt 1 { TimeCount++;if(TimeCount==20)//计时到1S {
TR0=0;
TR1=0;
TimeCount=0;
}
//--12MHZ设置定时50ms的初值--// TH0=0x3C;TL0=0xB0;} void Timer1()interrupt 3 {
单片机实验报告
//--进入一次中断,表明计数到了65536--// Freq=Freq+65536;
}
#include“lcd.h”
void Lcd1602_Delay1ms(uint c)
//误差 0us {
uchar a,b;for(;c>0;c--){
for(b=199;b>0;b--)
{
for(a=1;a>0;a--);
}
}
} #ifndef LCD1602_4PINS //当没有定义这个LCD1602_4PINS时 void LcdWriteCom(uchar com)
//写入命令 { LCD1602_E = 0;
//使能
LCD1602_RS = 0;
//选择发送命令
LCD1602_RW = 0;
//选择写入
LCD1602_DATAPINS = com;
//放入命令
Lcd1602_Delay1ms(1);//等待数据稳定
LCD1602_E = 1;
//写入时序
Lcd1602_Delay1ms(5);
//保持时间
LCD1602_E = 0;} #else
void LcdWriteCom(uchar com)
//写入命令 { LCD1602_E = 0;//使能清零
LCD1602_RS = 0;//选择写入命令
LCD1602_RW = 0;//选择写入
LCD1602_DATAPINS = com;// Lcd1602_Delay1ms(1);LCD1602_E = 1;//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;Lcd1602_Delay1ms(1);
单片机实验报告
LCD1602_DATAPINS = com << 4;//发送低四位
Lcd1602_Delay1ms(1);
LCD1602_E = 1;//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;} #endif #ifndef LCD1602_4PINS
void LcdWriteData(uchar dat)
//写入数据 { LCD1602_E = 0;//使能清零
LCD1602_RS = 1;//选择输入数据
LCD1602_RW = 0;//选择写入
LCD1602_DATAPINS = dat;//写入数据
Lcd1602_Delay1ms(1);
LCD1602_E = 1;
//写入时序
Lcd1602_Delay1ms(5);
//保持时间
LCD1602_E = 0;} #else void LcdWriteData(uchar dat)
//写入数据 { LCD1602_E = 0;//使能清零
LCD1602_RS = 1;
//选择写入数据
LCD1602_RW = 0;
//选择写入
LCD1602_DATAPINS = dat;
Lcd1602_Delay1ms(1);LCD1602_E = 1;//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;LCD1602_DATAPINS = dat << 4;//写入低四位
Lcd1602_Delay1ms(1);LCD1602_E = 1;//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;} #endif #ifndef LCD1602_4PINS void LcdInit()
//LCD初始化子程序 { LcdWriteCom(0x38);//开显示
单片机实验报告
LcdWriteCom(0x0c);//开显示不显示光标
LcdWriteCom(0x06);//写一个指针加1 LcdWriteCom(0x01);//清屏
LcdWriteCom(0x80);//设置数据指针起点 } #else void LcdInit()
//LCD初始化子程序 { LcdWriteCom(0x32);//将8位总线转为4位总线
LcdWriteCom(0x28);//在四位线下的初始化
LcdWriteCom(0x0c);//开显示不显示光标
LcdWriteCom(0x06);//写一个指针加1 LcdWriteCom(0x01);//清屏
LcdWriteCom(0x80);//设置数据指针起点 } #endif
八、RS232串口通信实验(接收与发送)
1.基本要求
a.通过实验了解串口的基本原理及使用,理解并掌握对串口进行初始化; b.使用串口调试助手(Baud 9600、数据位
8、停止位
1、效验位无)做为上位机来做收发试验;
c.利用串口调试助手中字符串输入进行数据发送,接受窗口显示收到的数据。2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线图
单片机实验报告
4.电路原理图
5.程序
#include
LcdWriteData(ChCode[i]);} UsartConfiguration();while(1){
if(RI == 1)
//查看是否接收到数据
{
receiveData = SBUF;//读取数据
单片机实验报告
RI = 0;
//清除标志位
LcdWriteCom(0xC0);
LcdWriteData('0' +(receiveData / 100));
// 百位
LcdWriteData('0' +(receiveData % 100 / 10));// 十位
LcdWriteData('0' +(receiveData % 10));
// 个位
} } } void UsartConfiguration(){ SCON=0X50;
//设置为工作方式1 TMOD=0X20;//设置计数器工作方式2 PCON=0X80;
//波特率加倍
TH1=0XF3;
//计数器初始值设置,注意波特率是4800的TL1=0XF3;TR1=1;
//打开计数器 }
#include“lcd.h”
void Lcd1602_Delay1ms(uint c)
//误差 0us {
uchar a,b;for(;c>0;c--){
for(b=199;b>0;b--)
{
for(a=1;a>0;a--);
}
}
} #ifndef LCD1602_4PINS //当没有定义这个LCD1602_4PINS时 void LcdWriteCom(uchar com)
//写入命令 { LCD1602_E = 0;
//使能
LCD1602_RS = 0;
//选择发送命令
LCD1602_RW = 0;
//选择写入
LCD1602_DATAPINS = com;
//放入命令
Lcd1602_Delay1ms(1);//等待数据稳定
LCD1602_E = 1;
//写入时序
单片机实验报告
Lcd1602_Delay1ms(5);
//保持时间
LCD1602_E = 0;} #else
void LcdWriteCom(uchar com)
//写入命令 { LCD1602_E = 0;//使能清零
LCD1602_RS = 0;//选择写入命令
LCD1602_RW = 0;//选择写入
LCD1602_DATAPINS = com;Lcd1602_Delay1ms(1);LCD1602_E = 1;//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;Lcd1602_Delay1ms(1);LCD1602_DATAPINS = com << 4;//发送低四位
Lcd1602_Delay1ms(1);LCD1602_E = 1;//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;} #endif
#ifndef LCD1602_4PINS
void LcdWriteData(uchar dat)
//写入数据 { LCD1602_E = 0;//使能清零
LCD1602_RS = 1;//选择输入数据
LCD1602_RW = 0;//选择写入
LCD1602_DATAPINS = dat;//写入数据
Lcd1602_Delay1ms(1);LCD1602_E = 1;
//写入时序
Lcd1602_Delay1ms(5);
//保持时间
LCD1602_E = 0;} #else void LcdWriteData(uchar dat)
//写入数据 { LCD1602_E = 0;
//使能清零
LCD1602_RS = 1;
//选择写入数据
LCD1602_RW = 0;//选择写入
LCD1602_DATAPINS = dat;
Lcd1602_Delay1ms(1);LCD1602_E = 1;
//写入时序
Lcd1602_Delay1ms(5);
单片机实验报告
LCD1602_E = 0;LCD1602_DATAPINS = dat << 4;//写入低四位
Lcd1602_Delay1ms(1);LCD1602_E = 1;
//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;} #endif
#ifndef LCD1602_4PINS void LcdInit()
//LCD初始化子程序 { LcdWriteCom(0x38);//开显示
LcdWriteCom(0x0c);//开显示不显示光标
LcdWriteCom(0x06);//写一个指针加1 LcdWriteCom(0x01);//清屏
LcdWriteCom(0x80);//设置数据指针起点 } #else void LcdInit()
//LCD初始化子程序 { LcdWriteCom(0x32);//将8位总线转为4位总线
LcdWriteCom(0x28);//在四位线下的初始化
LcdWriteCom(0x0c);//开显示不显示光标
LcdWriteCom(0x06);//写一个指针加1 LcdWriteCom(0x01);//清屏
LcdWriteCom(0x80);//设置数据指针起点 } #endif
单片机实验报告
第六章 收获体会
本次微控制器综合设计基本上使用了所选微控制器的所有资源,进一步熟悉和加深了对中断、定时器和串行通信的理解和使用。我觉得软件实验就是让我们初学者熟悉keil的使用,然后复习下汇编的思想和掌握程序的流程,所以软件实验可以很快的完成,并且慢慢熟悉调试的强大功能。硬件设计中,仿真让我很有感触,感觉蛮好玩的,可以摒弃麻烦的实验硬件自己在寝室玩而且不受硬件状态的限制,即便出错了也不会损坏。当然更重要的是这种好习惯,仿真完后再去在实验板上验证会比直接要来的确切而且便捷,至少不要老是去插拔线。在做实验中在同学指导下我试用C语言来编写程序,确实发现比汇编语言容易编写也容易理解,以前的实验还是有参考资料的习惯,现在什么都开始自己写感觉还是很有成就感的,当然这是基于程序本身就那么几行很容易编写,也不是说参考不好。总而言之,这学期的单片机实验还是收获颇丰的。相信在以后的实验学习实践工作中都会有个潜移默化的作用的。
第三篇:单片机实验报告
单片机实验报告
一、实验目的
1.熟练使用Keil、Protues两款软件 2.通过上机操作,增强个人动手实践能力 3.加深对理论知识的理解
4.培养运用汇编语言进行初步编写程序的能力
二、实验内容
1.将片外RAM3050-306FH中数据转移至片内70-8FH中。
要求:可以从Keil或Protues上看到RAM的数据转移结果。2.设计一个外部中断触发流水灯系统:当外部中断来临时,启动流水灯,即令P2口的LED轮流循环点亮。
要求:开发板或Prrotues演示
3.将片内存储器80H中存放的BCD码转换为ASCII码,要求使用表格查询技术。
要求:在Keil或Protues上看到数据转换结果。
4.各使用中断方式和查询方式设计一个方波发生器,频率为50HZ。
要求:Protues使软件间示波器显示方波。
三、实验程序
1.将片外RAM3050-306FH中数据转移至片内70-8FH中
ORG 0000H AJMP MAIN 上电,转向主程序
ORG 0030H 主程序入口
MAIN: MOV DPTR,#3050H 数据指针指向地址3050H MOV A,#04H 将立即数04H送A寄存器
MOV R0,#20H NEXT: MOVX @DPTR,A INC DPTR 数据指针DPTR自加一
DJNZ R0,NEXT 判断是否跳转到NEXT或继续向下执行
MOV DPTR,#3050H MOV R0,#70H MOV R2,#20H NEXT1: MOVX A,@DPTR MOV @R0,A INC DPTR INC R0 DJNZ R2,NEXT1
SJMP $ 等待
END 2.设计一个外部中断触发流水灯系统:当外部中断来临时,启动流水灯,即令P2口的LED轮流循环点亮 ORG 0000H SJMP MAIN 上电,转向主程序
ORG 0003H 外部中断0向量入口
AJMP INSER ORG 0030H 主程序入口
MAIN: SETB EX0 SETB IT0
SETB EA CPUHERE: SJMP HERE ORG 0200H INSER: MOV R2,#08H MOV A,#01H NEXT: MOV P2,A LCALL DELAY RL A DJNZ R2,NEXT NEXT或继续向下执行
RETI DELAY: MOV R3,#0FFH DEL2: MOV R4,#0FFH DEL1: NOP
允许外部中断0中断 选择边沿触发方式 开中断 等待中断 设置循环次数 赋初值,设置高电平亮 将初值送往P2口 延时 左移一位
判断循环次数,是否跳转到中断返回 延时程序 DJNZ R4,DEL1 DJNZ R3,DEL2 RET END 3.将片内存储器80H中存放的BCD码转换为ASCII码,要求使用表格查询技术 ORG 0000H LJMP MAIN ORG 0030H主程序起始地址 MAIN: MOV 80H,#05H 将立即数50H转送内存单元80H MOV A,80H 将内存单元80H中的内容送寄存器A MOV DPTR,#TAB MOVC A,@A+DPTR A寄存器内容加指针偏移量后送A寄存器 MOV 80H,A RET TAB: DB 30H,31H,32H,33H,34H DB 35H,36H,37H,38H,39H 4.1中断方式产生50HZ方波
ORG 0000H
AJMP MAIN
ORG 0030H 主程序入口 MAIN: MOV TMOD,#10H 设置定时器工作模式为模式1 MOV TH1,#0D8H 装入T1计数初值
MOV TL1,#0F0H
SETB ET1 开中断
SETB EA CPU开中断
SETB TR1 启动定时器T1 HERE: SJMP HERE 等待中断 ORG 001BH T1中断向量地址
CLR TF1 将TF1清零
CPL P2.0 P2.0取反输出
MOV TH1,#0D8H 重装初值
MOV TH0,#0F0H
RETI;中断返回
END 4.2 查询方式产生50HZ方波
ORG 0000H
AJMP MAIN
ORG 0030H 主程序入口
MAIN: MOV TMOD,#10H 设置定时器的工作模式为模式1 SETB TR1 启动定时器T1 LOOP: MOV TH1,#0D8H 装入T1计数初值
MOV TH0,#0F0H JNB TF1,$ T1没有溢出则等待
CLR TF1
产生溢出,清标志位
CPL P2.0 P2.0取反输出
SJMP LOOP 循环
END
四、实验结果截图
1.2
3.4.1
4.2
第四篇:单片机实验报告
实验
四、中断交通灯实验
林立强
1000850116
一、实验目的
1、了解MCS-51单片机的组成、中断原理,中断处理过程、外部中断的中断方式。
2、掌握中断响应及处理的编程方法。
二、实验原理
MCS-51的中断系统中有5个中断源:外部中断INTO,INT1,定时器/计数器TO、T1中断和串口UART中断,它们对应不同的中断矢量。如表:
IE是中断允许寄存器,其中EXO,ETO,EX1,ET1,ES分别是上述5个中断的允许控制位,EA位是中断总允许位,每个中断只有在相应中断允许且总中断也允许的情况下,才能得到中断响应。80XX51的5个中断都可以设为高低2个优先级,IP是中断优先级寄存器,其中PXO,PTO,PX1,PT1,PS位分别对应5个中断的优先级设置,置“1”时设为高优先级中断,为“0”时是低优先级中断。在有中断嵌套要求时,低优先级中断可被高优先级所中断。当同一级的中断同时到来时,先响应中断矢量排在前面的中断。
三、实验电路
电路原理图如下,所需元件为:AT89C51、SW-SPDT、LED-RED、LED-GREEN、LED-YELLOW、RES、TRAFFICLIGHTS
四、实验内容
参照实验电路,设计交通灯控制系统。模拟交通信号灯控制:一般情况下正常显示,东西-南北交替放行,各方向通行时间为30秒。有救护车或警车到达时,两个方向交通信号灯全为红色,以便让急救车或警车通过,设通行时间为10秒,之后交通恢复正常。用单次脉冲模拟急救车或警车申请外部中断。
1、在生成HEX文件后,用Proteus软件对电路图进行计算机仿真;
2、程序下载到单片机实验板上验证;(实验板数码管的驱动程序见附件)。
五、程序流程图
仿真图:
紧急情况:
源程序:
ORG 0000H
AJMP START
ORG 0023H //串口中断地址
AJMP SBR1
START:MOV TMOD,#00100000B
//定时器方式2
MOV TL1,#0FDH //9600bps/11.0592MHz
MOV TH1,#0FDH
SETB TR1
MOV SCON,#01100000B //方式1
MOV R0,#20H
MOV R1,#40H
ACALL SOUT
SJMP $
SBR1: JNB RI,SEND
ACALL SIN
SJMP NEXT SEND: ACALL SOUT NEXT: RETI
SOUT: MOV A,@R0
MOV C,P
CPL C
MOV ACC.7,C
INC R0
MOV SBUF,A
CLR TI
RET
SIN: MOV A,SBUF
MOV C,P
CPL C
ANL A,#7FH
MOV @R1,A
INC R1
CLR RI
RET
PLAY: MOV A,R7
MOV B,#10
RET
TAB: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH,77H,7CH,39H,5EH,79H,71H
// 0
A B C D E F
END
第五篇:单片机实验报告
单片机实验一
实验报告
课程名称: 姓
名: 系
别: 专
业: 年
级: 学
号: 指导教师:
单片机原理及应用实验
陈璐 信息系
电气工程及其自动化
2012级 120712041 李莉
2015 年 月 25
日
1.实验目的和要求
1)熟悉Keil 软件界面,以及编辑、编译、运行程序的步骤;
2)熟悉Proteus软件界面,掌握用Proteus画仿真图的方法。2.主要仪器设备
Keil 软件与Proteus仿真软件 3.实验设计要求
利用单片机、1个开关和1个发光二极管,构成一个简单的开关检测系统的仿真电路图。单片机P3.0引脚接按钮开关,P1.0引脚接发光二极管的阴极。当开关闭合时,发光二极管亮;开关打开时,发光二极管灭;按钮开关与发光二极管没有任何电气上的联系。
单片机对开关K的状态的检测由程序检测P3.0引脚的输入电平。当开关K闭合,即P3.0脚输入低电平;当开关K打开,即P3.0脚输入高电平。使用发光二极管,阳极接+5V,阴极接P1.0端口。当程序控制P1.0输出高电平时,发光二极管D1灭;当程序控制P1.0输出低电平时,发光二极管D1亮。4.操作方法与实验步骤
(1)Keil C51软件使用
在Keil C51集成开发环境下,建立一个工程并编辑以下源程序,熟悉Keil C51集成开发环境下各种菜单、命令的使用。
#include “reg51.h” #define uchar unsigned char #define uint unsigned int sbit in=P3^0;sbit out=P1^0;void main(void){ while(1){ in=1;if(in= =0)out=0;else out=1;} }(2)建立新文件
进入Proteus ISIS界面,单机主菜单项【文件】→“新建设计”选项,就会弹出“新建设计”窗口,窗口中提供了多种模版选择。其中横向图纸为Landscape,纵向图纸为Portrait,DEFAULT为默认模版。单击选择的模版图标,再单击“确定”按钮,即建立一个该模版的空白文件。如果直接单击“确定”按钮,即选用系统默认的DEAFAUILT模版。
单击保存按钮,在弹出的对话框“保存ISIS设计文件”中输入文件名再单击“保存”,则完成新建设计文件的保存操作,其后缀自动为“.DSN”。
(3)设定绘图纸大小 单击菜单中的【系统】→“设置图纸大小”,选择所需图纸的尺寸位A4。
(4)选取元器件并添加到对象选择窗口中
单击器件选择按钮,弹出选取元器件对话框。在其左上角“关键字”一栏中输入元器件名称“AT89C51”,则出现关键字匹配的元器件列表。选中AT89C51所在行或单击AT89C51所在行后,再单击“确定”按钮,便将元器件AT89C51加入到ISIS对象选择窗口中。按此操作方法逐一完成其他元器件的选取。本设计中使用的各元器件的关键字相应为“AT89C51”、“BUTTON”(按钮开关)、“CAP”(瓷片电容)、“CAP-ELEC”(电解电容)、“CRYSTAL”(晶振)、“RES”(电阻)等。被选取的元器件加入到ISIS对象选择窗口中。(5)放置、移动、旋转元器件
单击ISIS对象选择窗口中的元器件名,蓝色条出现在该元器件名上。把鼠标指针移到编辑区某位置后,单击就可放置元器件于该位置,每单击一次,就放置一个元器件。如果要移动元器件,先右击元器件使其处于选中状态,再按住鼠标左键进行拖动,达到目标处后,松开鼠标即可。如要调整元器件方向,先将指针指在元器件上单击鼠标右键选中,再单击相应的旋转按钮。若多个对象一起移动或转向,可选择相应的块操作命令。(6)放置电源、地(终端)
单击工具箱的终端模式按钮,然后在对象选择窗口中单击POWER来选中电源,然后使用元器件调整工具按钮进行方向调整,最后在编辑区中单击放置电源。(7)电路图布线
单击元器件引脚间、线间等接线处,自动生成连线。(8)电气检测
单击电器检查快捷键按钮,根据电气检查列表的指示修改设计中的错误,完成实验。5.实验内容及实验数据记录
每当按下K时,LED灯就会发光。
C2U130pF19XTAL1P0.0/AD0P0.1/AD1P0.2/AD2P0.3/AD3P0.4/AD4P0.5/AD5P0.6/AD6P0.7/AD7P2.0/A8P2.1/A9P2.2/A10P2.3/A11P2.4/A12P2.5/A13P2.6/A14P2.7/A15P3.0/RXDP3.1/TXDP3.2/INT0P3.3/INT1P3.4/T0P3.5/T1P3.6/WRP3.7/RD*********617X112MHz18XTAL2D1R24.7K930pFRSTR4220293031C310uFPSENALEEAKR310K10K12345678P1.0P1.1P1.2P1.3P1.4P1.5P1.6P1.7AT89C51LED-GREENC1R1220 6.实验数据处理与分析
每当按下K时,in(p3.0)I/O口就会变为低电平,该信号使得CPU给out(p3.0)I/O口发送低电平,使得LED灯发亮。7.实验过程中遇到的问题及解决方法
一开始安装软件的时候最后一步设置完通信设置时,鼠标点击“好”,但是屏幕一直显示“通信错误”的提示,经过重复操作,还是没有成功,结果是因为“端口选择”处选择错了,改正后最终安装成功。8.心得体会
对于这次单片机实验不仅巩固了以前所学过的知识,而且学到了很多在书本上没有学到过的知识,掌握了一种系统的研究方法,可以进行一些简单的编程。通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,从而提高自己的实际动手能力和独立思考的能力。同时在设计的过程中发现了自己的不足之处,例如对以前所学过的知识理解得不够深刻,掌握得不够牢固等,在以后的学习中尤其应该注意。