第一篇:船舶柴油机监测及故障诊断技术论文
在船舶当中,柴油机是最为重要的部分之一,为船舶的航行提供了重要的动力。在柴油机的运行当中,由于工作条件恶劣,机器结构复杂,并且需要较高的强载度,因而很容易发生故障问题。如果发生故障,会对船舶的正常航行造成影响,带来巨大的经济损失,严重时还可能威胁到整船人员的安全。基于此,在船舶柴油机的运行当中,应当对其进行有效的监测,通过科学的故障诊断技术的运用,保证船舶柴油机良好的工作状态。
一、船舶柴油机的主要故障
在船舶柴油机当中,通常具有较为复杂的结构,因而可能会产生很多不同种类的故障,同时有很多不同的原因会造成船舶柴油机故障,各种故障所发生的频率也不尽相同。以某型号的船舶柴油机为例,其主要的故障类型包括了喷油设备及供油系统、漏油及漏水、漏气、基座、破坏及破裂、涡轮增压系统、曲轴、齿轮及驱动装置、调速器齿轮、气阀及阀座、活塞组件、漏油及润滑系统,以及一些其它的故障问题。
二、船舶柴油机监测与故障诊断技术
(一)油液分析法
在船舶柴油机状态监测和故障诊断当中,可以利用光谱分析法、铁谱分析法对润滑油进行分析[1]。在柴油机的运行中,各个运动副会发生磨损,在不同磨损情况下,会形成不同的微粒,存在于润滑油当中。因此,利用光谱或铁谱对润滑油中的金属微粒进行检测,就能够判断柴油机的故障信息。在实际应用中,光谱和铁谱各自具有不同的监测功能与监测效果。利用光谱法,能够对润滑油中磨损原件的含量进行准确的测定,但是对其形状、磨损类型等,难以进行了解。而利用铁谱法能够对金属微粒的成分、大小、形状等进行了解,但是难以对有色金属进行高灵敏度的判别。对此,可以综合应用光谱和铁谱分析法进行应用。不过需要注意的是,利用这种油液分析法进行监测与诊断,在实时监测、缸位确定等方面存在一定的不足,只能定性描述油液分析结果,具有一定的随机性特点,因此在实际应用中要加以注意。
(二)瞬时转速法
在船舶柴油机的运行当中,对于其工作质量、工作状态等,可以通过观察瞬时转速波动信号加以了解和判断。通过分析瞬时转速波动信号,还能够明确柴油机的故障信息、运行状态等[2]。不过,在瞬时转速法的应用当中,也存在着一定的局限性,虽然瞬时转速波动能够对柴油机中不正常运行的缸位进行确定,但是对于故障原因,难以进行准确的分析。在实际应用当中,为了对一转内的角速度变化进行体现,因而需要采用高精度、高频率响应的瞬时转速测量仪器,相应的监测与故障诊断成本就会比较高。另外,在现场调试、现场安装的过程中,也都会面临着较大的难题。
(三)振动分析法
船舶柴油机在工作当中,会有一定的振动信号产生,利用振动信号能够实现对柴油机的状态监测与故障诊断[3]。在实际应用中,需要进行信息采集、信息分析处理、状态判断预报等操作。采用适当的传感器和放大器等,通过正确的测量方法、传感器和放大器质量与性能的匹配等,对信息进行准确、全面的采集。在柴油机动力学、运动学、结构、原理等方面知识的基础上,通过利用数据处理、信号分析等技术,对采集到的杂乱原始的数据信息进行处理,从而获取直接、敏感的特征参数。采用柴油机维修、运转、制造等方面的经验,基于柴油机失效机理、零部件故障的振动情况,对特征参数进行进一步的分析,实现状态监测与诊断,并对其未来可能的发展趋势进行预测。该技术在实际应用中,需要识别大量范围较广的频率,具有复杂、大量的运动件需要处理等,对于这些问题,在实际应用中都应加以重视。
(四)热力参数分析法
在船舶柴油机的运行当中,对于其工作状态监测和故障诊断来说,热力参数是一个十分重要的判断标准,具体包括了冷却水排放、进出水口温度、滑油温度、排气温度、气缸压力示功图等。在热力参数分析法当中,能够判船舶柴油机的性能情况。其中,示功图当中包含很多信息,据此能够对压缩压力、压力升高率、指示功等进行计算,从而对各缸功率平衡性、燃烧质量等进行监测。在描述船舶柴油机动力性能的过程中,示功图发挥着重要的意义和作用,因此在船舶柴油机监测当中,可对示功图进行良好的应用。在示功图的获取当中,可以利用直接或间接测录法加以实现[4]。其中,直接测录法主要是对缸内压力随曲轴转角变化的情况进行测量,经过整理计算对柴油机工作进程加以体现。间接测录法则是基于柴油机运行中的其它物理量,对缸内气体压力进行识别。这种方法应用在船舶柴油机监测与故障诊断当中,能够取得十分良好的效果。
三、结论
在当前的交通运输领域当中,航运是一个十分重要的部分,拥有着不可比拟的巨大运输量。作为航运当中的重要交通工具,船舶在运行当中,需要依靠柴油机提供动力。而柴油机在实际工作运行当中,由于各种因素的影响,因而容易发生一些故障。对此,应当采取有效的监测与故障诊断技术,确保船舶柴油机良好的运行状态。
参考文献:
[1]严新平,李志雄,张月雷,袁成清,彭中笑.船舶柴油机摩擦磨损监测与故障诊断关键技术研究进展[J].中国机械工程,2013,10:1413-1419.[2]王永坚,陈景锋,杨小明.基于油液分析的船舶尾轴承状态监测与故障诊断[J].集美大学学报(自然科学版),2014,04:285-290.[3]姚晓山,张卫东,周平,朱子梁.基于油液监测的船舶柴油机故障预测与健康管理技术研究[J].武汉理工大学学报(交通科学与工程版),2014,04:874-877.[4]李江华,董胜先.故障树分析法在故障诊断中的应用研究———以船舶柴油机燃油系统故障诊断为例[J].能源与节能,2015,11:128-131+184.
第二篇:避雷器在线监测与故障诊断技术综述
避雷器的在线监测与故障诊断技术
前言:电力系统设备的状态监测和故障诊断是近
10年来发展较快的新技术,具有良好的发展和应用前景。但是,目前状态监测与故障诊断的应用还不普遍,还存在种种问题,包括一些认识上的误区。在实际应用中,有故障预报、故障诊断和状态监测等几个在内容上相近但存在差别的概念。一般来说,他们在内容上没有严格的界限,采用的方法很多都是一样的,都要进行在线检测盒数据分析,而且最终目标也是一致的,即防范于未然。本文主要讲述避雷器的在线监测和故障诊断技术。根据国家电网公司的规划,我国交、直流特高压输电工程的建设步伐将逐步加快。随着电压等级和杆塔高度的提高以及电网规模进一步扩大,电网结构更加复杂,加之近年来我国气候环境变化异常、雷电活动日益频繁,防电问题必将更加突出。
1、避雷器在线监测与故障诊断原理
金属氧化物避雷器在线监测和故障诊断的方法主要有全电流法,阻性电流分量法,功率损耗和元件温度,在参考文献中主要用到全电流法,监测避雷器的泄露电流,在一定程度上判断阻性电流的变化。这种方法简单方便,但在正常情况下,总泄露电流的阻性分量只占容性分量的10%左右,这使得监测到的总泄露电流的有效值或平均值主要取决于容性电流分量。
泄露电流是评估10kV配电网MOA运行状态的有效特征量,可通过监测正在运行的MOA泄露电流有没有发生畸变来评估MOA的运行状态。当10kV配电网的MOA正常运行时,其全泄露电流较小,只有微安级,且为工频正弦波;老化后的MOA的泄露电流幅值增大,且波形发生严重畸变,不再是标准的工频正弦波。10kV配电网中氧化锌的泄露电流及其微弱,很容易被噪声淹没,单纯从没有处理过的原始波形上无法区别正常避雷器和老化避雷器。消噪后的泄露电流可以为氧化锌避雷器运行状态的在线评估提供幅值和波形两个有效数据。
2、在线监测与故障诊断基本方法
通过改进阈值的小波消噪算法对10kV配电网避雷器的泄露电流信号进行消噪处理,并验证了本文所提出的算法在消噪效果上的优势,为配电网避雷器在线监测的工程实际应用提供了指导。改进阈值的平移不变量小波消噪算法原理,阈值的选取是利用小波阈值去噪的关键步骤,通常采用硬阈值法和软阈值法。近年来,有人提出采用软硬阈值法相结合的思路,本文中姑且称为软硬折中阈值法,其计算式见文献。另外,在一些特殊的情况下,10kV配电网氧化锌避雷器的泄露电流信号的不连续邻域中,采用阈值方法时其信号会再某一目标水平内上下浮动,这种现象称为伪吉布斯现象。此外,由于传统的阈值法缺乏平移不变性,因此极易在去噪后产生振铃效应。利用平移不变量小波去噪的方法能够很好的抑制伪吉布斯现象,其具体算法为:先把包含噪声的待处理信号循环平移n次,采用阈值法进行去噪处理,再对去噪结果取平均值,即“平移-去噪-平均”。改进后的阈值函数,采用硬阈值法得到的小波系数会出现不连续点,产生伪吉布斯现象,重构后的信号震荡较大,采用软阈值法得到的函数连续性好,但小波系数始终存在一定的偏差,导致重构信号的误差较大,软硬折中阈值法虽然可以结合二者的优点,但其阈值函数仍存在不连续点。阈值的选择既不能过大,也不能过小。若阈值过大,则会过滤掉原来不该被消除的有用信号,使信号严重失真;若阈值过小,则不能达到消噪的根本目的。在小波变换中,原始信号与污染噪声的传播特性有本质区别,每层小波系数所对应的阈值与污染噪声的小波系数传播特性应该是一致的。
由于我国6-10kV系统为中性点不接地系统,地电位升无法通过变压器中性点耦合到母线上,电网GPR过高可能会反击到低压避雷器上。而避雷器额定电压选取的原则是参考系统的最大工频过电压,通常不会考虑到地电位升高的问题。这样,当地网GPR过高导致反击到避雷器两端的电压超过其工频耐受电压时,就可能导致其被击穿而放电,发生避雷器爆炸事故。对于位于高电阻率地区的发变电站,如果放宽对接地电阻的要求时,需要按照站内低压避雷器所能承受的反击过电压来决定。但目前国内外尚未有文献对低压避雷器所能承受的最大地网反击过电压做系统的研究工作,通常只是根据避雷器的工频耐受特性,简单的套用解析公式进行估算。
3、案例分析
以发、变电站10kV系统额定电压为17kV的电站型避雷器为例,其1s工频耐受电压约为额定电压的1.25倍,即21.25kV,由于10kV系统的相电压为5.8kV,则通过公式可以计算出其最大允许的稳态地电位升为8.58kV。然而,一般入地短路电流直流分量衰减的时间常数为0.05s左右,在4个周期即0.2s以后就基本衰减为0,如果避雷器1s的工频耐压仍然采用暂态的最大值来校验显然是不合适的。而且从继电保护的角度来看即使考虑后备保护,故障也一般可以在0.5s以内切除,耐受时间取为1s也稍偏严格。另外在避雷器被击穿后,地网通过击穿的避雷器向线路对地电容充电,导致母线电压迅速上升,作用在避雷器两端的电压将急剧下降。
以氧化锌避雷器为研究对象,对地网电位升高时吸收能量进行系统的研究,并通过与避雷器的允许通流容量进行对比,从而得到避雷器对地电位升的反击耐受能力。通过建立仿真模型,对仿真结果进行分析,可以得出从短路时刻直至5s故障切除过程中通过A相避雷器的电流在初始阶段由于地网GPR的直流分量较大,避雷器中的放电电流也相对较大,最大值为61.94A,持续时间大约为4ms。随着直流分量的衰减,其后放电电流减小至<1A。在整个故障过程中B相和C相避雷器中的放电电流均只有mA数量级,远小于A相避雷器的放电电流,这主要是因为短路时刻地网GPR与A相母线电压相位相反,作用在A相避雷器上的电压远大于B相和C相避雷器上的电压。即使在进入了稳态阶段,避雷器中的放电电流和两端电压的正负半周方向产生了一定程度的偏移。从仿真图中可以看出,随着地网GPR的升高,避雷器产生的吸收能量先缓慢增加。当地网GPR上升到一定的区域后,吸收能量将急剧增加,这是因为此时虽然线路电容充电减小了稳态时避雷器两端的电压,但其值仍然大于避雷器的放电电压。也就是说,此时避雷器不仅在初始阶段会产生放电脉冲,而且在地网的GPR直流分量衰减后的稳态过程中仍然有强大的放电电流,从而导致整个故障期间积累的吸收能量急剧增加。
总结:国内外超特高压输电线路的进行统计表明,雷击事故在线路故障中占有很大的比例,也是特高压输电线路跳闸事故的主要原因。日本50%以上的超高压电力系统事故是由雷击引起的,统计到的54次特高压线路跳闸中,雷击引起的跳闸共53次;美国、俄罗斯等12个国家的275-500kV输电线路连续3a的运行资料表明,雷害事故占总事故的60%。国家电网公司的统计表明,由于雷击造成的线路跳闸数占总线路跳闸数的40.5%。可见避雷器发生故障的几率很大。金属氧化物避雷器的电阻阀片的主要成分为氧化锌,该物质有着非常优越的非线性特性,并具有响应快、通流容量大、性能稳定等特点,因此在发输配电网中得到了广泛应用。10kV配电网中的避雷器被击穿时会造成一点接地故障,当出现2个不同相的避雷器同时发生接地故障时,会引起开关保护发生动作进而造成大面积停电。特殊情况下,受损的避雷器发生爆炸,极易导致周围其他设备发生损坏。国内对避雷器的故障检测通常是每2a拆下避雷器进行预防性试验。但由于配电网避雷器数量太多,每次检测都要消耗大量的人力、财力并断电,且配电网避雷器常常采用复合绝缘材料外套,很难从外观上发现避雷器短路接地,因此传统的避雷器检测技术很难在第一时间检测到故障点所在位置,不利于配电网的安全运行。随着在线监测技术的迅猛发展,研究人员发现通过监测一些参数可以知道避雷器的运行状况,而通过泄露电流来反应避雷器运行情况的方法经过无数次的实践后被认为
是一个简便而又可靠的方法。准确获得完整清晰的泄露电流波形对判断避雷器运行状态起着决定性作用。因此避雷器的在线监测和故障诊断技术在当今智能变电站的重要的组成部分,同时也是智能电网建设的决定性因素。
参考文献:
(1)谭波,杨建军,鲁海亮,文习山,接地网电位升对10 kV避雷器的反击仿真分析,高电压技术 第39卷第5期2013年5月31日
(2)张博宇,苏宁,吕雪斌,张翠霞,殷禹,陈立栋,带串联间隙1 000 kV特高压交流输电线路避雷器关键技术参数分析,高电压技术第39卷第3期2013年3月31日
(3)董莉娜,胡可,王微波,夏云峰,胡琴,胡建林,小波消噪在10 kV金属氧化物避雷器在线检测中的应用,高电压技术第40卷第3期2014年3月31日
(4)Daiana Antonio da Silva, Eduardo Coelho Marques da Costa, Jorge Luiz De Franco, Marcel Antonionni, Rodolfo Cardoso de Jesus, Sanderson Rocha Abreu, Kari Lahti, Lucia Helena Innocentini Mei, Jose Pissolat, Reliability of directly-molded polymer surge arresters: Degradation by immersion test versus electrical performance, Electrical Power and Energy Systems 53(2013)488-498(5)George R.S.Lira, Edson G.Costa, Tarso V.Ferreira, Metal-oxide surge arrester monitoring and diagnosis by self-organizing maps, Electric Power Systems Research, 2014, Vol.108(6)Maximilian Nikolaus Tuczek and Volker Hinrichsen, Recent Experimental Findings on the Single and Multi-Impulse Energy Handling Capability of Metal-Oxide Varistors for Use in
High-Voltage Surge Arresters, IEEE TRANSCATIONS ON POWER DELIVERY, VOL.23, NO.1, JANUARY 2013.
第三篇:浅析船舶柴油机节能减排技术解读
浅析船舶柴油机节能减排技术
随着世界范围内的能源危机和环境污染问题的日益严重,人们对于发动机在节约能源和控制污染物排放方面的要求日趋严格。虽然船舶柴油机主要在大洋作业,对地区生态环境影响较小,但是必然促使全球有害物总量上升;且全球石油资源日趋紧张,提高资源利用率是全球各国的共同责任,因此船机节能减排技术是当今的一个重大课题,本文主要分机内和机外两大类来阐述船用柴油机节能减排技术的发展路线。机内节能减排措施
机内主要是通过改善燃烧来达到节能减排的目的,本文主要从油、气及燃烧的角度,介绍涡轮增压、高压共轨、先进燃烧三大技术,其他还有加水技术、充量调节、米勒循环、电控液压气阀传动机构技术等。1.1 涡轮增压技术
1.1.1 基于余热回收的涡轮增压技术
众所周知,柴油机与涡轮增压器作为流通特性不同的两个热力系统,它们的匹配是有矛盾的,低负荷时涡轮增压器无法提供柴油机需要的增压压力;高负荷时,涡轮发出的功又会过多。所以可以将涡轮增压器的连接轴与一高速发电机相连,该发电机同时具有电动机的功能(如图1),高负荷时,发电机将增压器多余的轴功转化为电能,起到排气能量回收的作用;低负荷时,与压气机轴相连的发电机工作在电动机模式,补偿不足的涡轮功,提高增压压力,改善了柴油机的低负荷性能和启动工况性能。进而实现节能减排的目的。
涡轮连接轴图1 涡轮增压器与发电机的连接
发电机
图2 工作原理示意图
1.1.2 两级涡轮增压技术
两级增压系统的结构通常是在柴油机的排气管上由一个较小的高压级增压器和一个较大的高压级增压器串联连接组成,并且通过一些辅助措施,使增压压力在一定范围内可调。如图3所示为两级增压系统示意图,柴油机废气首先经过带废气旁通阀的高压级涡轮膨胀做功,然后经过低压级涡轮膨胀做功;而新鲜进气则经过低压级压气机压缩后进入高压级压气机,由于此时压缩空气的温度与压力都较高,因此在高压级压气机与柴油机进气管之间增加中冷器来降低进气温度,从而增加柴油机进气充量的密度与流量,经过中冷器冷却的进气最后进入进气管。
图3 两级增压系统示意图
当柴油机在低速工况运行时,废气放气阀关闭,废气经由高压级直接流向低压级,两个压气机同时做功,虽然废气流量较小,废气能量不高,然而进气经过高、低压级压气机压缩后,进气压力相比单级仍然会有大幅的上升,进气流量也进一步增加,从而提高了柴油机的低速扭矩并改善低速排放。当柴油机在高速工况运行时,高压级增压器的废气放气阀开启,一部分废气不经过高压级直接流向低压级做功,以降低高压级的废气流量与做功能力,使增压压力不至于超过设定的最高压力极限。由于废气能量较大,低压级增压器也能保持较高的效率,提高高速工况的进气量,以满足柴油机高、低工况的运行要求。高压级废气放气阀也可根据实际需要选择传统气动阀或者可调节电控阀进行无级调节。
柴油机采用两级增压后,由于进气压力上升,进气流量也大幅上升,可改善缸内混合气的质量,NOx并不显著增加,而微粒的排放量却会降低,特别是低速大负荷时的微粒排放明显减小,改善柴油机的低速油耗。1.2 高压共轨技术
共轨系统的组成原理如图4所示。在该系统中,高压油泵前端的齿轮泵将燃油从油箱里抽出,再通过燃油滤清器送入高压油泵升压并输送到共轨管,最后经高压油管进入喷油器。共轨管上安装的共轨压力传感器、压力调节阀和电控装置形成闭合的压力控制回路,从而确保所需的供油压力。电控单元ECU根据柴油机工况(转速、负荷、空气温度、冷却液温度等)和共轨压力计算出最佳的喷油时间和喷油量,发出驱动信号并通过驱动电路控制喷油器的电磁阀,获得最佳的喷油效果,以达到优化柴油机燃烧的目的。
高压共轨柴油机燃油喷射电控系统实现了柴油机喷油过程中喷油压力、喷油量、喷油定时和喷油规律分别单独控制,从而大大增加了柴油机优化的自由度,为柴油机进一步提高性能、降低排放提供了更广阔的空间。
图4 高压共轨系统原理示意图
1.3 先进燃烧技术
1.3.1 均质预混合燃烧(HCCI)
HCCI它是指大量燃料和稀释物(空气和再循环废气等)在进气过程中预先混合成均质混合气,当压缩行程活塞运动到上止点附近时,均质混合气自燃着火的一种燃烧过程。HCCI燃烧方式结合了柴油机压燃和汽油机均质混合气点火燃烧的特点,基本特征是均质、压燃和低温火焰燃烧。与传统的点燃式发动机相比,它取消了节气门,泵气损失小,混合气多点同时着火,燃烧持续期短,可以得到与压燃式发动机相当的较高热效率;与传统柴油机相比,由于混合气是均质的,燃烧反应几乎是同步进行,没有火焰前锋面,燃烧火焰温度低(低于2000K),且HCCI燃烧方式可以同时保持较高的动力性和燃油经济性,不受燃油和氧化物分离面混合比的限制,也没有点火式燃烧的局部高温反应区,因此可以同时降低NOX和PM;另外由于HCCI燃烧只与本身的物理化学性质有关,它的着火和燃烧速率只受燃料氧化反应的化学反应动力学控制,受缸内流场影响较小,同时均质预混的混合气组织也比较简单,因此,在发动机上实施HCCI燃烧模式还可以简化发动机燃烧系统和喷油系统的设计。1.3.2 低温燃烧技术
柴油机低温燃烧是一种新型的燃烧方式,近年来在国内外得到了广泛研究,其降低排放的机理如图5所示。低温燃烧与HCCI燃烧不同,它对混合气的均质程度没有特殊要求,主要通过引入超高比率的冷却过的EGR降低燃烧温度,使缸内燃烧过程在Φ-T图上的路线避开NOx和碳烟的生成区,实现NOx和碳烟零排放所需的GER率一般高达70%以上。
图5 柴油机低温燃烧原理图 机外节能减排措施 机外措施本文主要介绍尾气后处理,废热回收,采代用燃料等技术,其他还有燃油的预处理技术等。2.1 尾气后处理技术 2.1.1 SCR 用还原剂对含NOx的气体进行催化还原处理,使之有选择地和气体中的NOx进行反应,而不和氧气发生反应,称为选择性催化还原(Selective Catalytic Reduction,SCR)。可以与柴油机尾气中的NOx发生催化还原反应的还原剂有两类:一类是液氨、氨水和尿素等含氨基(NH3)的物质;另一类是烷烃、烯烃、醇类和柴油等含碳氢的物质。本文主要介绍尿素SCR技术。
图6是尿素SCR后处理系统的基本组成。典型的尿素SCR系统包括催化剂、尿素喷射系统以及各种传感器。尿素水溶液通过喷射系统,定量地喷入排气管中,尿素分解生成NH3。在SCR催化剂表面,NOx被NH3还原生成N2。尿素SCR的工作过程从时空上可以分解为尿素喷雾分解过程和SCR催化反应过程,这两部分需要综合考虑,才能达到良好地使用效果。
图6 尿素SCR系统示意
2.1.2 低温等离子体辅助催化还原技术
将低温等离子体(non-thermal plasma,简称NTP)技术与催化技术相结合(non-thermal plasma assisted catalyst简称NPAC),不仅可以提高催化剂对转化的化学反应活性,而且可以降低低温等离子体的能耗,实现对柴油机污染物排放的有效控制,其机理阐述如下。
NTP在放电过程中会激发产生大量的高能电子,这些高能电子可以打断多种气体的化学键,从而在等离子体气相反应区内产生大量的不饱和键,这些不饱和键在空气中被氧化形成活性基体,其代表性的反应如下:
e+O2—O*+O* O*+O2—O3 e+H2O—OH*+H* H2O+OH*—2OH 当柴油机废气进入NTP气相反应区时,PM中主要成分C在氧化性活性基体作用下生成CO和CO2,NO转化为NO2,HC氧化生成为HC*,随后在催化剂的作用下,NO2被还原为N2,HC被转化为CO2和H2O,主要反应如下:
C+O*—CO C+O3—CO2+O* NO+O—NO2 NO+OH—NO2+H2O e+NO+O2+HC—NO2+HC* NO2+HC—N2+CO2 +H2O 式中e为高能电子;O*为O基;OH*为OH基;HC*为HC的中间产物。2.2 废热回收技术
对于船用大功率柴油机,有一种特殊的机外净化有害排放的技术:废热回收(Waste Heat Recovery,WHR)技术。WHR技术将尾气中的废热引入锅炉或蒸汽涡轮,与柴油机组成联合循环,可以改善整个系统的热效率,降低油耗。WHR技术基本上不改变柴油机的工作过程,但是由于提高了船舶动力系统的整体热效率,会使单位功率的NOx排放降低。
WHR系统结构简图如图7所示。为使采用WHR技术的柴油机产生更多的废气能量,可以重新匹配涡轮增压器,并采用进气管直接从环境大气中供给发动机进气的方式,而非从机舱进气。一般船用柴油机设计上可接受的最高进气温度为45℃,相应于热带气候下船舶轮机舱的温度,如果直接从大气中供给进则进气温度将不会不超过35℃。较低的进气温度使得涡轮增压器可以重新匹配以获得更高的废气能量,而柴油机的热负荷却保持在较低的水平,即原来设计的进气温度为45℃时的水平,这样就可以避免因提高废气能量而危及柴油机的可靠性。
图7 WHR系统结构简图
把废气的能量引入锅炉或蒸汽涡轮,产生电能,可回收约相当于柴油机功率11%的电能,用于助力推进或供应船舶服务。废气能量的回收使整个系统的能源利用率显著提高,各种有害气体(CO2、NO、SO等)的比排放相应地同比例降低。2.3 代用燃料
为了解决能源危机和环境污染这两个主要问题,在全世界范围内掀起了寻找内燃机清洁燃料的热潮,世界各国都投入了大量的资金和人力,开展了广泛的研究和开发工作,积极开发新能源,寻找可替代石油产品的代用燃料。到目前主要的研究方向有天然气、醇类燃料、氢燃料等,其中天然气以其资源丰富、价格便宜、燃烧排放污染少等突出优点,倍受人们青睐,被认为是21世纪最有发展前途的清洁代用燃料之一。下面按供气方式的不同介绍一下天然气发动机的几种技术:
⑴进气道混合器预混合供气方式:发动机供气系统包含一个与化油器类似的部件混合器,燃气与空气靠缸内负压被吸入混合器混合后进入汽缸燃烧。这种方式的优点是结构简单,价格较低。但是由于不能精确的控制燃料供给,而且无法进行闭环控制,难于精确地控制空燃比,因而难于达到较高的排放水平,不能充分发挥天然气改善排放性能的潜力。
⑵电控单点喷射系统(SPI):是在进气总管上装一个中央喷射装置,用一到两只喷嘴集中喷射,气体喷入进气管与空气混合后由进气歧管分配到各个气缸中进行燃烧作功。系统可以由电脑控制进行燃料喷射,燃料供应准确、均衡、稳定性好。但是燃料在吸入各个汽缸前要经过各个进气歧管,造成燃料浓度的不均衡,影响发动机的稳定性能。该种喷气系统结构简单、工作可靠、成本低廉、维修调整方便,而且对原车的改装较小,改装成本较低,特别适合于小排量的发动机。
⑶电控多点喷射系统(MPI):是在每个气缸进气口处装一只喷嘴,由ECU控制按照一定的模式分别对各个汽缸进行专门喷射。该种喷射方式由于燃料在进入汽缸前行程最短,可以实现对空燃比按周期和按缸进行控制,具有良好的响应性,所以燃料供应准确度、均衡性、稳定性、排放性都优于单点电喷,但比单点电喷结构复杂、成本较高。多点喷射系统的喷射模式有以下三种:
同时喷射:由ECU控制所有气缸喷嘴同时喷射,喷射的频率根据发动机运行工况的不同,可以是一个工作循环喷一次,也可以是喷两次或四次;
分组同时喷射:将所有气缸分成几组,发动机每转一转只有一组喷射,各组轮流进行喷射;
顺序喷射(SFI):各缸分别按照各自的喷气正时,发动机每循环喷一次。可以保证按照发动机各缸的进气行程同步地进行喷气,有利于燃气与空气的混合;同时,由于其控制的实时性强,使得空燃比的控制更为精确,有利于提高发动机的动力性并改善了排放性能。但是,顺序喷射会导致喷气阀驱动电路的增加及ECU软、硬件设计的复杂化,对微处理器的性能要求更高,使电子控制系统的成本增加,所以一般只在排量较大的高档车上使用,以较高的价格换取较好的动力性。
⑷缸内直接喷射:MPI及SPI两种喷射方式均属于进气道喷射,属于缸外喷射。气缸内直接喷射则是将气体直接喷入气缸内。缸内气体喷射完全实现了燃料供给的质调节,对空气冲量几乎没有影响,为进一步完善发动机各项性能提供有利条件。缸内气体喷射具有缸外进气阀处喷射的所有优点,但结构复杂,对技术要求高。现在只有美国、日本、德国等少数国家在开发及应用该项技术,还没能广泛应用于汽车发动机上。小结
要达到良好的节能减排效果,靠单一的技术一般很难实现,常常是多个技术的并用,如涡轮增压+高压共轨+后处理。下面是拟的船舶柴油机总的发展途径:
船用低速柴油机方面攻克关键零部件制造技术和工艺进一步提高国产化率降低制造成本,提高国产化部件质量,提升产品竞争力。加强对低速柴油机专有技术,如经济性、排放、故障诊断、电液控制系统、智能化控制系统等先进技术进行消化吸收和研究,形成自主研制的能力。通过消化和分析已引进的国外最新一代许可证产品,梳理其设计思想、设计方法和实现途径以及需要突破的关键技术,开展小缸径船用低速柴油机关键设计技术论证和设计开发研究。
船用中速柴油机方面,拟在现有自主品牌中速柴油机开发研制的基础上,深入开展自主知识产权船用中速柴油机系列化产品的开发研制,全面掌握中速柴油机系列的设计方法,同时加强部分核心部件(高压共轨、增压器、电控单元、轴瓦等)的自主研制,提高关键配套件的国产化率。
船用高速柴油机方面,借鉴和应用自主品牌中速柴油机开发研制的思路、方法和手段,开展自主知识产权船用高速柴油机开发研制,掌握船用高速柴油机总体设计和关键零部件设计技术。
重点开展船用发动机高压共轨技术、高增压技术、智能控制技术、高效燃烧技术、排放控制技术、气体发动机技术、能量综合利用技术等研究及开发应用,研究并掌握柴油机智能化控制单元的技术性能和关键技术,具备开发自主知识产权的大功率船用发动机智能控制系统的能力;开展气体发动机、双燃料发动机及替代清洁燃料发动机设计开发;研究船用发动机排放控制关键技术,掌握船舶排放控制机内技术和前后处理技术(EG R、SCR、喷水等),以适应越来越严格的船舶排放法规要求,开展船用发动机能量综合利用系统开发,掌握其关键设计技术,进一步提高船舶动力系统的综合效率和减少有害排放物的总排放量,达到节约能源、减少环境污染的目的。
读书的好处
1、行万里路,读万卷书。
2、书山有路勤为径,学海无涯苦作舟。
3、读书破万卷,下笔如有神。
4、我所学到的任何有价值的知识都是由自学中得来的。——达尔文
5、少壮不努力,老大徒悲伤。
6、黑发不知勤学早,白首方悔读书迟。——颜真卿
7、宝剑锋从磨砺出,梅花香自苦寒来。
8、读书要三到:心到、眼到、口到
9、玉不琢、不成器,人不学、不知义。
10、一日无书,百事荒废。——陈寿
11、书是人类进步的阶梯。
12、一日不读口生,一日不写手生。
13、我扑在书上,就像饥饿的人扑在面包上。——高尔基
14、书到用时方恨少、事非经过不知难。——陆游
15、读一本好书,就如同和一个高尚的人在交谈——歌德
16、读一切好书,就是和许多高尚的人谈话。——笛卡儿
17、学习永远不晚。——高尔基
18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。——刘向
19、学而不思则惘,思而不学则殆。——孔子
20、读书给人以快乐、给人以光彩、给人以才干。——培根
第四篇:船舶防污染技术论文
船舶防污染技术论文
防止船舶污染技术及发展趋势
船舶与海洋工程学院
轮机
海洋是生命的摇篮,海洋为人类提供了各种各样的生活必需品。但人类在向海洋索取各种资源和便利的同时,也对海洋环境造成了污染。
浩瀚的海洋为运输提供了广阔、便捷的载体。航运业承担了90%世界贸易的运输量,为人类生活品质的提高和世界经济的发展提供了保障。如果没有航运业,不能实现如此大规模国际贸易和大量的原材料、产品在世界范围内的运输。在各种运输方式中,相比较空运和公路运输,以能源消耗指标的千克/千吨公里的CO2排放量计算,航运是公路运输的1/3-1/4、是空运的1/20-1/30。航运业以其运量大、低耗高效、安全和环保的表现,使其成为最具可持续发展潜力的运输方式。即使从污染威胁最大的油类物质运输来看,根据权威机构的统计数据显示,世界上所有海上的油类运输量99.9996%是以安全和对环境不产生任何影响的方式运输
[1]。
国际海事组织(IMO)最初关注的主要问题是船舶安全。从1959年IMO刚开始行使职能,作为1954年油污公约的管理人开始关注污染问题,到目前为止,IMO一共通过了51个公约和议定书,其中直接与环境保护相关的是23个(包括海上救助和残骸清除公约)。
和船舶污染有关的公约和议定书可分为3类:防止污染;污染干预和响应;污染的责任和赔偿。本文仅限于探讨和防止船舶污染有关的国际海事公约及相关的技术。
防止船舶污染公约的制定和实施对技术的需求
防止船舶造成海洋污染的公约主要有:MARPOL
73/78针对来自船舶油类物质、有毒液体物质、包装有害物质、生活污水、船舶垃圾和船舶排放的大气污染物。该公约已经应用于占世界99%商船总吨位的船舶。除MARPOL
73/78以外,还有《2001年国际控制船舶有害的防污底系统公约》(以下简称防污底公约)针对有害的船舶防污漆、《2004年国际船舶压载水及其沉积物控制和管理公约》(以下简称压载水公约)针对携带外来生物和病原体的船舶压载水,以及《2009年香港国际安全与无害环境拆船公约》(以下简称拆船公约)涉及船舶退役后拆解中的安全、环保和健康问题。
在防止船舶污染海洋的相关公约中,科学技术作为制定公约和履行公约的技术支撑,使公约中的技术标准明确、可行;公约的制定和修改又为科学技术的发展提供契机和推动力。
首先科学技术的成果被航运业采用、推动航运业的技术进步,成为制定和修改公约的强有力技术基础,没有科学技术很难对船舶污染进行控制,比如:防污底公约的制定是为了限制对环境危害大的防污漆的使用,但要禁止含TBT防污漆的使用是要有替代措施作为先行;2007年生效的MARPOL
73/78附则II修正案中关于货舱残余物的要求比原来的规定低许多,这是在泵吸设备和管系布置技术性能提高的基础上才能实现的;MARPOL
73/78附则VI对于燃油含硫量逐步减少的要求是根据船用燃油的技术发展。
有时国际海事公约的制定超前于技术发展,例如:2004年在制定压载水公约、要求船舶安装压载水管理系统时,国际上并没有成熟的压载水处理技术和商用设备提供给船舶。压载水公约出台后,国际社会很快投入人力物力开展研发,致力于解决外来生物和病原体入侵的威胁。到目前为止已有多个厂商推出了经过型式认可的压载水管理系统,IMO认为基本上可以满足2010年适用船舶的需要。
在防污染公约制定和提出相关的技术要求时,IMO除了依靠本身的技术力量、还借助于联合国的海洋污染科学专家组(GESAMP)解决制定和审议公约、履约中的技术问题。如:GESAMP-BWWG联合技术组负责审议使用活性物质压载水管理系统的技术问题并向委员会提出批准/或不批准的建议;
GESAMP-
EHS联合技术组负责船运有害物质危害性的评定。
防止船舶污染公约及技术的基本原则
船舶产生污染物有两种途径:船舶正常营运产生的操作性污染;船舶各种事故造成的事故性污染。还有当船舶退役后的拆解造成的污染。
船舶操作性污染是指船舶在正常营运自身会产生一些污染物,其中一部分是由货物残余物导致的,如:油船和化学品船货舱的洗舱水、压载水;一部分是由船舶自身产生的,如:机舱含油污水、燃油的油渣、生活污水、船舶垃圾、船舶产生的大气污染物;由于在不同水域营运、以压载水作为媒介造成外来水生生物和病原体的转移;含有机锡防污漆的使用等造成海洋环境的破坏等。
船舶事故性污染是指船舶发生碰撞、搁浅、触礁、火灾、爆炸等事故,以及装卸作业设备损害、人为因素等事故会造成污染物在短时间大量排放,从而对于局部海域造成重大甚至灾难性污染损害。
防止船舶污染公约的基本原则为:减少船上污染物的产生;控制船舶污染物的排放;污染物排放后尽量减少对海洋环境的影响以及最大限度地限制船舶污染物的事故性排放。
2.1
减少船上污染物的产生
很显然污染物不上船或减少船上产生的污染物量是有效地减少船舶污染的途径,防止船舶污染公约中的一些规定就是为了减少污染物的产生而提出的。例如:MARPOL73/78附则I防止油污规则为了减少船舶含油污水的产生,规定了载重量超过2万吨的原油油轮应配备专用压载舱;MARPOL73/78附则II控制散装有毒液体物质污染规则为了减少货舱残余物,提出了强制预洗、有效扫舱和通风程序等技术措施;MARPOL73/78附则VI规定船上不允许使用受控的臭氧层消耗物质、对2000年以后船上安装的柴油机NOx的排放限值;防污底公约规定船舶不能施涂含TBT的防污漆;拆船公约附件1列出了被禁止或限制使用的有害材料清单并规定船舶应在拆解前尽量减少货物残留、残油等污染物。
2.2
控制船舶污染物的排放
在不可避免会产生污染物的情况下,为了减少船舶造成污染的技术措施包括:在船上对产生的污染物进行处理或将污染物排到岸上接收设施中。
在船上对产生的污染物进行处理使其减少数量或降低浓度,例如:MARPOL
73/78附则I规定机舱污水必须通过15ppm油水分离设备处理后才能排放、来自货舱的含油污水必须通过排油监控系统才能排放;MARPOL
73/78附则IV要求船舶配备生活污水处理装置、生活污水粉碎和消毒系统;MARPOL
73/78附则VI规定在SOx控制区内,替代1.5%
m/m燃油的要求是安装废气滤清系统以使SOx排放量降低到允许值以下;压载水公约要求船上安装压载水处理系统以去除压载水中携带的外来生物和病原体。
减少污染物的排放还有一种有效的技术措施就是将船上产生的污染物排放到岸上接收设施中去。这种情况下有的是因为公约对于剧毒或环境无法降解的物质完全禁止排放而导致的对于接收设施的需要,例如:任何塑料制品禁止入海;禁止使用含TBT的防污漆;X类有毒液体物质禁止排放。
另外的情况主要是受处理技术的限制,有些处理技术在岸上容易实现、但在船上有一定困难。例如:MARPOL73/78附则I规定船舶舱底和油泥舱的残余物可以通过标准排放接头排到岸上接收设施处理;MARPOL
73/78附则II规定强制预洗产生的含化学品的污水应排至岸上接收设施;此外MARPOL
73/78附则IV、V和VI都有岸上接收设施的要求;压载水公约要求修船和清洗港应配备压载舱沉积物接收设施。
2.3
污染物排放后尽量减少对海洋环境的影响
就目前的科学技术水平,船舶在营运过程中不可避免地要产生并排放一些污染物,这也是为什么防污染公约并不是要求所有的污染物“零排放”,当然这样的排放是在“环境容量”范围内。例如:含油量在15ppm以内的含油污水;含有一定浓度的有毒液体物质的污水;一些种类的船舶垃圾;低于一定限值的NOx和SOx气体。为了确保允许排放的污染物能够尽快与海水混合、不对环境产生明显的影响,公约还规定了相应的排放条件,例如:15ppm及以下含油污水水线上排放;允许排放的含有毒液体物质的污水必须满足水线下排放、自航船航速7节、非自航船航速4节、距最近陆地12海里、水深25米等条件;生活污水允许排放的条件是,距最近陆地3海里外,排放经粉碎和消毒、船舶航速4节以上、以中等速率排放等。
为了保护更敏感的海域,公约对于“特殊区域”、“特别敏感海域”和“SOx排放控制区”规定了更加苛刻的污染物排放标准。例如:当油船在特殊区域内时,禁止将船上货油区域的油类或油性混合物排放入海;南极区域是MARPOL
73/78附则II的特殊区域,禁止任何有毒液体物质或含有此类物质的混合物排放入南极海域;波罗的海和北海作为SO
排放控制区,燃油含硫量限制在1.5%
m/m以内或安装废气滤清系统将船舶包括主副推进器的SOx排放总量减少至6.0g
/kW·h或更少。
2.4
最大限度地控制船舶污染物的事故性排放
船舶污染物的事故性排放是造成局部重大污染损害的主要风险所在,历次重大的油船溢油事故已经造成了一些海域长时间的生态损害或灾难。
为了预防此类事故发生,MARPOL
73/78附则I提出了有针对性的技术措施。例如:为了限制单个油舱破损后的溢油量,对油舱单个油舱的舱容限制:任何油船每个油舱最大舱容不得超过40000m3;对于油船专用压载舱除了容量要求外,还要求布置在船舶最易损部位以提供一种在发生搁浅或碰撞时防止油类外流的保护措施;针对多起单壳油船重大的溢油事故,MARPOL
73/78附则I增加了对于1996年以后交船的油船、1996年以前交船的油船逐步适用的双层壳要求;为了提供适当的在碰撞或搁浅事故中防止油污染的保护,MARPOL
73/78附则I规定2010年1月1日或以后交付的油船应在结构设计上确保在事故中的溢油量在一定的限度内;还有对每艘150总吨及以上的油船和每艘400总吨及以上的非油船,要求应备有主管机关认可的《船上油污应急计划》,以确保在污染事故应急中采取正确和有效的方法。
防止船舶污染新技术的发展趋势
随着人们环境意识的提高,无论从立法、技术以及管理上都需要更多的进一步发展。航运业也在IMO公约的促进下更多地采用了防止船舶污染的新技术,这些新技术为更好地保护海洋环境发挥着巨大的作用
第五篇:飞机故障诊断技术
1.故障是指产品丧失了规定的功能,或产品的一个或几个性能指标超过了规定的范围。它是产品的一种不合格状态。
2.故障按其对功能的影响分为两类:功能故障和潜在故障。
功能故障是指被考察的对象不能到达规定的性能指标;潜在故障又称作故障先兆,它是一种预示功能故障即将发生的可以鉴别的实际状态或事件。
3.故障按其后果分四类:
平安性后果故障:采取预防维修的方式;使用性后果故障:对使用能力有直接的不利影响,通常是在预防维修的费用低于故障的间接经济损失和直接修理费用之和时,才采用预防维修方式;非使用性后果故障:对平安性及使用性均没有直接的不利影响,只是使系统处于能工作但并非良好的状态,只有当预防维修费用低于故障后的直接维修费用时才进行预防维修,否那么一般采用事后维修方式;隐患性后果故障:通常须做预定维修工作。
4.故障按其产生原因及故障特征分类可分为早期故障、偶然故障和损耗故障。偶然故障也称随机故障,它是产品由于偶然因素引起的故障。对于偶然故障,通常预定维修是无效的。耗损故障是由于产品的老化、磨损、腐蚀、疲劳等原因引起的故障。这种故障出现在产品可用寿命期的后期,故障率随时间增长,采用定期检查和预先更换的方式是有效的。
5.故障模式或故障类型是故障发生时的具体表现形式。故障模式是由测试来判断的,测试结果显示的是故障特性。
6.故障机理是故障的内因,故障特征是故障的现象,而环境应力条件是故障的外因。
7.应力-强度模型:当施加在元件、材料上的应力超过其耐受能力时,故障便发生。这是一种材料力学模型。
8.高可靠度状态〔图1.2-2〔a〕〕:应力和强度分布的标准差很小,且强度均值比应力均值高得多,平安余量Sm很大,所以可靠度很高。
图1.2-2〔b〕所示为强度分布的标准差较大,应力分布标准差较小的情况,采用高应力筛选法,让质量差的产品出现故障,以使母体强度分布截去低强度范围的一段,使强度与应力密度曲线下重叠区域大大减小,余下的装机件可靠度提高。
图1.2-2〔c〕所示为强度分布标准差较小,但应力分布标准差较大的情况,解决的方法最好是减小应力分布的标准差,限制使用条件和环境影响或修改设计。
图1.2-2
应力、强度分布对可靠性的影响
9.反响论模型:
如果产品的故障是由于产品内部某种物理、化学反响的持续进行,直到它的某些参数变化超过了一定的临界值,产品丧失规定功能或性能,这种故障就可以用反响论模型来描述。
串连式反响过程:总反响速度主要取决于反响最慢的那个过程的速度。
并联式反响过程:总反响速度主要取决于反响最快的过程的速度。
10.最弱环模型〔串连模型〕:认为产品或机件的故障〔或破坏〕是从缺陷最大因而也是最薄弱的部位产生
11.故障树分析法简称FTA法〔Fault
Tree
Analysis〕
故障树分析法是一种将系统故障形成的原因由总体至局部按树状逐级细化的分析方法。
故障树分析法将最不希望发生的故障事件作为顶事件,利用事件和逻辑门符号逐级分析故障形成原因。优点:直观、形象,灵活性强,通用性好;缺点:理论性强,逻辑严谨,建树要求有经验,建树工作量大,易错漏。
12.顶事件和中间事件〔矩形〕
底事件〔圆形〕
开关事件〔房形〕
省略事件〔菱形〕
13.逻辑与门
逻辑或门
逻辑非门
异或门
表决门K/N门
表决门:仅当n个输入事件中有k个或k个以上发生时,输出事件才发生。
14.建树步骤
§顶事件选取原那么:
1)必须有确切的定义,不能含混不清、模棱两可。
2)必须是能分解的,以便分析顶事件和底事件之间的关系。
3〕能被监测或控制,以便对其进行测量、定量分析,并采取措施防止其发生。
4〕最好有代表性。
15.〔1〕系统级边界条件
顶事件及附加条件(系统初始状态,不允许出现事件,不加考虑事件)
〔2〕部件级边界条件
元部件状态及概率,底事件是重要部件级边界
利用边界条件简化:
与门下有必不发生事件,其上至或门,那么或门下该分支可删除;
与门下有必然发生事件,那么该事件可删除;
或门下有必然发生事件,其上至与门,那么与门下该分支可删除
或门下有必不发生事件,那么该事件可删除
16.n个不同的独立底事件组成的故障树,有个可能状态,故可有个状态向量。
17.与门结构故障树的结构函数
18.或门结构故障树的结构函数
19.k/n门结构故障树的结构函数
20.底事件的相干性
假设对第i个底事件而言,至少存在一对状态向量Y1i=(y1,y2,…yi-1,1,yi+1,…,yn)记作(1i,Y)和Y0i=(y1,y2,…yi-1,0,yi+1,…,yn)记作(0i,Y),满足Φ
(1i,Y)>
Φ
(0i,Y),而对其它一切状态向量而言,恒有Φ
(1i,X)
≥
Φ
(0i,X)成立,那么称第i个底事件与顶事件相干。
如果找不到状态向量满足Φ
(1i,X)
Φ
(0i,X),那么称第i个底事件与顶事件不相干。
相干结构函数:Φ(X)满足:
故障树中底事件与顶事件均相干;
Φ(X)对各底事件的状态变量xi(i=1,2,…n)均为非减函数
21.相干结构函数的性质
〔1〕假设状态向量X=(0,0,…0),那么Φ(X)=0;
〔2〕假设状态向量X=(1,1,…1),那么Φ(X)=1;
〔3〕假设状态向量X≥Y(即xi
≥yi,i=1,2,…n),那么结构函数Φ(X)
≥
Φ(Y);
〔4〕假设Φ(X)
是由n个独立底事件组成的任意结构故障的相干结构函数,那么有
即任意结构故障树,其结构函数的上限为或门结构故障树结构函数,而下限是与门结构故障树结构函数。
22.假设状态向量X能使结构函数=1,那么称此状态向量为割向量。在割向量X中,取值为1的各分量对应的状态变量〔或底事件〕的集合,称作割集。割集是导致顶事件发生的假设干底事件的集合。假设状态向量X是割向量〔即=1〕,并对任意状态向量Z而言,只要Z 23.假设状态向量X能使结构函数=0,那么称此状态向量X为路向量。在路向量X中,取值为0的各分量对应的状态变量〔或底事件〕的集合,称作路集。路集是使系统不发生故障的正常元件的集合。假设状态向量X是路向量〔即=0〕,并对任意状态向量Z而言,只要Z>X,恒有=1成立,那么称X为最小路向量,最小路向量X中取值为0的各分量对应的底事件的集合,称为最小路集。最小路集是使系统不发生故障的必要正常元件的集合。 24.用最小割集表示结构函数: 25.用最小路集表示结构函数: 26.掌握化相交和为不交和,求顶事件概率〔此法最简单易于理解,故采用之〕: 式中为故障树的最小割集,将上式化成单独项〔形如这种形式〕的逻辑和,将式中的用代替,用代替。这样便可得到顶事件发生的概率为: 27.底事件的发生对顶事件发生的影响,称作底事件的重要度。 l 概率结构重要度:仅由单个底事件概率的变化而引起顶事件概率发生变化,那么顶事件概率对底事件概率的变化率称作该底事件的概率结构重要度,简称概率重要度,记作。数学表达式为: 。上式可以看出概率重要度较大的底事件,其概率发生变化,那么对顶事件概率变化的影响是比拟大的。 l 结构重要度:第i个底事件的结构重要度定义为该底事件处于关键状态的系统状态数与其处于正常状态的系统状态数之比。当系统由n个独立元件组成时,那么可表示为:,为该底事件处于关键状态的系统状态数,可由下式表示: 所谓底事件的关键状态是指该底事件状态变量由0变为1时〔该元件由正常变故障〕,故障树的结构函数也由0变为1〔系统由正常变故障〕的状态。 用以下原那么求结构重要度,在概率重要度的根底上,令各底事件的概率均为1/2,那么所求结构重要度与其底事件的概率重要度相同。 l 关键重要度:,由此可见,底事件的关键重要度是指顶事件概率相对变化量与引起此变化的底事件概率相对变化量之比的极限。 28.故障隔离手册〔FIM〕和故障报告手册使用同一的故障码,该故障码为8位数:左起前两位为故障所在章号〔系统〕,3、4位为节号〔子系统〕,5、6位为工程号,7、8位表示故障件位置。 29.无空勤人员提供故障码时的故障隔离程序 – 故障必然归入下面四种情况之一: 有相应的EICAS信息的故障; 有机内自检程序〔BITE〕的故障; 有适用的维修控制显示板〔MCDP〕信息的故障; 以上信息全没有的故障。 假设报告的问题上述三种信息均有,那么故障分析顺序为优先考虑执行有EICAS信息的排故程序,其次是机内自检程序,最后是考虑执行有MCDP信息的排故程序。 30.查找故障的典型概率法〔P75〕重点看,有计算。 概率法应用的条件:故障是由某一元件故障引起;查找故障不会引入新故障。 概率法应用的参数: 检查次数〔一次检查、平均检查次数 检查时间〔一次检查时间ti、平均总检查时间 检查工作量(一次检查工作量ti、平均总检查工作量 检查费用〔一次检查费用Ci、平均总检查费用 适用范围 – 逐件检查系统 – 分组检查系统 31.32. 分组检查的方法:两分法、等概率法、最小时间法。 u 两分法:要点--符合机件数大致相等的要求; 最少检查次数与最大检查次数: 1) 假设系统由n个机件组成,满足2m n 2m+1〔m为正整数〕,那么系统最少检查次数为m次,最大检查次数为〔m+1〕次,平均检查次数 Sm--第m次可查出故障的机件零件号组成的集合,同理。-零件号为j的机件故障的条件概率。 2〕 假设系统机件数恰好满足n = 2m,那么只需且必须经过m次检查,才能查出故障原因,平均检查次数Nm = m u 等概率法:要点--先把系统按每组各机件故障条件概率之和大致相等分成两组,检查故障条件概率之和较大的那组,确定故障件所在局部。再将存在故障件的那一组按每组各机件故障条件概率之和大致相等分成两个分组,检查故障条件概率之和较大的一组,确定故障原因所在。如此继续下去,直至查出故障原因为止。 u 最小时间法:要点--每组各机件故障条件概率之和大致相等。 对各组计算检查时间消耗率h,h = å (bi/ ti),选择h较大的一组进行检查 33.信息量应该是该信息出现概率的单调减函数 信息量=,P——信息量出现的概率,信息量的单位是“比特(bit)〞 – 假设有n个信息同时出现,它们对故障诊断提供的信息量要比单一信息提供的信息量大 – 当n个信息相应的事件互相独立时,n个信息共同出现时的信息量等于各个信息的信息量之和,即信息量具有可加性 34.现代信息论中,“熵〞是系统不确定程度的度量 假设系统A有n个状态A1,A2,…,An,系统随机处于相应状态的概率分别为P(A1),P(A2),…,P(An),那么系统的熵定义为 35.复合系统的熵:设系统A有n个可能状态,系统B有m个可能状态 从而复合系统的熵为 A、B互相独立:H(A+B)=H(A)+H(B) A、B统计相关: H(AB)=H(A)+H(B/A)=H(B)+H(A/B) A条件下B的熵值: 36.定义系统B为判断A所处的状态提供的平均信息量为 也被称为系统B包含有关系统A的平均信息量。 37.目视检查是飞机结构完整性检查的最根本、最常用的检查方法,也是保证飞行平安的重要手段之一。 当蒙皮离开铆钉头并形成目视可见的明显间隙,铆钉周围有黑圈,均说明铆钉已松动。 铝合金和镁合金腐蚀初期成呈白色斑点,开展后出现灰白色腐蚀产物粉末。 不锈钢的腐蚀往往是出现黑色的坑点。 38.气密舱的密封检查:流量法和压力降法。流量法更适用于泄漏量较大而容积小的气密舱。压力降法设备简单,测法简单可靠。气密舱和结构油箱泄露包括可控制泄露和不可控制泄露。 影响密封舱结构密封性的因素: 环状缝隙影响因素;平面缝隙影响因素;加工与装配质量的影响。 39.涡流检测的根本原理 检测线圈通交流电,在线圈周围产生交变的初级磁场,当检测线圈靠近被检测的导电构件时,在交变的初级磁场作用下,构件中感生交变的电流——涡流。涡流在构件中及其周围产生一个附加的交变次级磁场,次级磁场又在线圈内产生感应电流,它的方向与原电流方向相同。当构件中产生裂纹或有其它缺陷,检测线圈与其接近时,涡流发生畸变,影响次级磁场,进而影响检测线圈中的感应电流,检测线圈中的电流的变化,说明构件发生损伤。 40.涡流检测分为高频涡流检测〔>50kHz〕和低频涡流检测。 趋肤效应:涡流的磁场会引起交变电流趋向构件外表,外表电流密度最大,随着深度增加,电流密度减弱 41.涡流检测法的适用范围 Q 检查导电构件的疲劳损伤和腐蚀损伤。对铝合金是首选的无损检测方法 u 不适用非金属构件,如塑料、玻璃纤维复合材料等的损伤 Q 高频涡流可检测试件外表或近外表的损伤,而低频涡流可检测构件隐蔽面或紧固件孔壁上的损伤 Q 对于钢构件一般不采用涡流检测法探伤。 Q 不能检测出平行于探测面的层状裂纹。 Q 厚度小于1.5 mm的薄板材,板边缘或紧固件孔边的边界效应较大,给检测带来一定的困难 42.超声波检测法:高频声束〔频率在20kHz以上〕射入被检材料,经过不同介质分界面会发生反射,检测者分析反射声束信号,便可确定缺陷或损伤的存在及其位置。 超声波的发射与接收是利用压电材料的压电效应来实现的超声波是一种波长比光波长,比普通电波短,频率高于20kHz的机械波 43.纵波检测法的适用范围: Ø 易检测出与工件探测面走向平行的缺陷 Ø 受仪器盲区和分辨力的限制,外表和近外表检测能力低 Ø 适用于检测大面积的厚工件,定位简单 横波检测法的适用范围: Ø 可发现与工件外表成一定角度的缺陷或损伤 Ø 辅助纵波检测,检测垂直于探测面的缺陷或损伤。 应用:可检测金属、非金属、复合材料的内部及外表缺陷〔裂纹损伤和腐蚀损伤〕,对平面缺陷十分敏感,只要声束方向与裂纹面夹角到达一定要求,就可清晰地显示出裂纹损伤 44.磁粉检测的原理:〔通过检测漏磁来发现缺陷〕 铁磁试件被磁化后,假设试件存在外表或近外表缺陷,会使试件外表产生漏磁。铁磁性工件中存在着许多小磁畴,磁化前,磁畴随机取向,磁性抵消;被磁化时,磁畴规那么排列,呈现磁极。当工件外表或近外表存在与磁化方向近于垂直的裂纹缺陷时,磁力线会弯曲,呈绕行趋势,溢出外表的磁力线叫做缺陷漏磁。漏磁场强度取决于缺陷尺寸、方向和位置以及试件的磁化强度。漏磁场强度越大,缺陷部位越容易吸附磁粉,越能显示出磁粉迹痕,观察磁粉迹痕判断缺陷所在。 l 周向磁化法:直接通电法、电极法、芯棒法 l 纵向磁化法:线圈法、电磁铁法、感应电流法 l 复合磁化法 适用于铁磁性构件外表或近外表缺陷〔或裂纹〕。主要检测锻钢件及焊件,不适用于奥氏体不锈钢〔非磁性材料〕。 注意:磁粉检测后要对零件进行退磁。 45.传统的故障诊断方法包括逻辑诊断方法、统计诊断方法和模糊诊断方法。 46.逻辑诊断法师根据故障特性〔故障信息或征兆〕与故障状态的逻辑关系,运用推理的方式进行故障诊断的方法。 有效决策规那么:将有效逻辑基中全部变元〔取值为1〕或逆变元〔取值为0〕逻辑乘,再求逻辑和. 有效决策主范式:从决策规那么出发,通过逻辑运算,得到全部变元或逆变元逻辑乘的逻辑和. 概括逻辑诊断步骤: 1.确定考虑的因素,建立决策规那么; 2.建立有效决策规那么或有效决策主范式; 3.将给定元件状态的元件变元或逆变元组成征兆函数,待定元件变元或逆变元组成成因函数,进行状态识别或故障诊断.注:此节求有效逻辑基,通过分析故障成因函数查找故障原因是重点。 47.统计诊断方法: 确定临界值是重点。 根据对平均冒险率的分析,提出以下四种确定临界值的方法: 最小冒险法、最小错误诊断概率方法、极小极大法和纽曼-皮尔逊方法。 n 在满足平均冒险率最小的条件下,即使=时,确定临界值的方法称为最小冒险方法。 n 当==,==时,最小错误诊断概率方法确定临界值得条件和最小冒险法完全相同。 n 在使平均冒险率取极大的同时,使平均冒险率取极小,这样确定临界值的方法称为极小极大法。 n 纽曼-皮尔逊方法:要正确地估计错误诊断的代价往往是十分困难的,为此往往采用使某种诊断错误概率降低到最小的原那么。 例题:根据滑油中含铁量监测发动机机匣的工作状态。设由统计资料得到:在正常状态下含铁量的均值〔1p.p.m=1毫克/升〕,在异常状态下含铁量的均值,标准偏差为;含铁量为正态分布,并发动机处于正常状态的概率为=0.8。试用最小错误诊断概率法: 〔1〕详细推导确定临界值的公式 〔2〕计算临界值x0 48.模糊诊断方法〔重点看该书最后两页〕: 设分别表示m种故障成因,它们是征兆群空间X〔论域U〕上的m个模糊子集,为相应的m个模糊子集的隶属函数。对U中的任一元素,如果,那么判断隶属于模糊子集,这就是最大隶属原那么。 隶属函数计算式:其中〔i=1,……,n〕表示第i个征兆出现的状态,征兆出现取1,不出现取0,是权系数,即诊断矩阵中第i行,第j列的元素。根据最大隶属度原那么判断故障成因,从而判断故障成因。 编者注:考试题型:选择〔10〕、填空〔10〕、简答〔20〕、计算〔60〕.本材料仅供参考。预祝大家考个好成绩,谢谢!