第一篇:人教版四年级下册鸡兔同笼说课稿
认真拟定说课稿,是说课取得成功的前提,是教师提高业务素质的有效途径。写一篇说课稿需要简析教材、阐述教法、指导学法、概说教学程序、教学效果分析。下面是小编为大家整理的“人教版四年级下册鸡兔同笼说课稿”,希望大家喜欢!
人教版四年级下册鸡兔同笼说课稿篇1尊敬的各位专家,各位老师:
大家上午好,我说课的内容是,人教版四年级下册第九单元数学广角中—《鸡兔同笼》教学内容。下面,我运用新课标理念,从以下几个方面:教材分析、学情分析、教法与学法、教学过程进行说课。
一、说教材分析:
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在四年级下册数学广角中安排“鸡兔同笼”的教学内容,之前安排在六年级重点掌握用方程方法来解决,现在下移至四年级,重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。因此,在教学此内容时,一方面可以培养学生的逻辑推理能力;另一方面使学生体会假设法的一般性。《义务教育数学课程标准》在“学段目标”的“第二学段”中提出:“在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程与结果”“会独立思考,体会一些数学的基本思想”。
因此我制定的教学目标如下:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、经历自主探究解决问题的过程,体验解决问题策略的多样化。
3、了解列表法、假设法等解决问题的方法,在解决问题的过程中培养逻辑推理能力,增强应用意识和实践能力。
说教学重、难点
教学重点:理解并掌握“鸡兔同笼”问题的解题方法。
教学难点:理解假设法解决“鸡兔同笼”问题的解题思路。
二、说学情分析:
“鸡兔同笼”问题对于四年级的学生来说是难于理解,四年级的学生已经虽然具备了应用逐一尝试法、列表法解决问题的基本能力。但是在理解假设法解题思路时还存在一定难度,因此我结合画图法,形象直观地将画图法和假设法结合,帮助学生理解假设法的算理。
三、说教法、学法:
教法:利用多媒体展台,ppt课件引导学生探究发现、小组合作交流、画图分析、归纳推理等方法,进行尝试、探究、自主的学习,使学生在学习知识探索的过程中体验学习的乐趣,感受数学的价值。
学法:运用“四四教学模式”课堂学习模式引导学生动手操作、观察发现、自主探究、合作交流等方法进行学习。让学生主动参与到学习的过程中,让每个学生都动口、动手、动脑。老师成为学生的学习伙伴,与学生一起体验成功的喜悦,创造一个轻松,高效的学习氛围。
四、说教学过程。
依据“三位一体”的“四四”课堂学习活动的基本结构,我设计有四个学习活动:
①情境体验,引发兴趣;
②自主探索,合作交流;
③实践运用,拓展创新;
④反思总结,自我建构。
第一个学习活动:情境体验,引发兴趣;
利用ppt课件,从《孙子算经》中的一道古代数学趣题入手,从而引出课题并板书课题。目的是为了给数学课堂带来了浓厚的数学文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。由于“鸡兔同笼”的原题中数据较大,不利于首次接触该类问题进行探究,因此将数据变小,出示例1。
第二个学习活动:自主探索,合作交流
利用ppt课件出示例1:笼子里有若干只鸡和兔,从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?引导学生分析问题:从这个题目中你了解到什么信息?学生先独立思考,在学生自主探究的基础上,小组讨论、合作交流,采用不同的方法解决例1中的问题。我让学生大胆的进行猜测、尝试,鼓励学生用不同的方法解决问题,归纳总结出解决例1问题的列举法和假设法。
第三个学习活动:实践运用,拓展创新
在上一个环节的基础上,学生选择喜欢的方式解决《孙子算经》中“鸡兔同笼”问题,同时介绍古人解决“鸡兔同笼”的方法。之后引出日本的“龟鹤算”,让学生比较“龟鹤算”和中国的“鸡兔同笼”,揭示“龟鹤算”其实就是从“鸡兔同笼”演变而来,感受中国文化的魅力。
第四个学习活动:反思总结,自我建构
引导学生回顾、梳理本节课所学知识,交流本节课的收获,学生在相互提醒和分享中进一步明确本课知识重点难点,将知识融入自己的认知体系中。
下面我将谈谈自己对三位一体四四教学模式的理解。首先它与新课标的理念是相符的,新课程标准提出:人人都能获得良好的数学教育,不同的人在数学上得到不同发展。接着《课程改革纲要》中提出“把育人为本作为教育工作的根本要求。”我和我们学校“以生为本”的课堂的要求是一致的。将课堂还给学生,学生是学习的主体。这促使我这节课的设计理念始终将学生放在了第一位,让学生去探究,去发现解决鸡兔同笼问题的方法,鼓励学生用多种方式来呈现他们的思路,最后选择他们喜欢的方式来解决此类问题。
二是四四模式充分发挥老师的主导作用,学生是主体,老师是学习的组织者,老师提供合适的问题情境,激起学生探究的欲望;学生独立思考,主动探究,合作交流,发现解决问题的策略;之后学生运用获得的数学活动经验解决实际问题,提高应用意识。老师在整个学习活动中充当的是一个组织者、引导者与合作者。
人教版四年级下册鸡兔同笼说课稿篇2说学生:
学生已经具备了应用逐一尝试法列表解决问题的基本能力。他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。学生已初步具备一定的归纳、猜想能力,但在数学的应用意识与应用能力方面需进一步培养。
说教学目标:
基于对教材理解的和分析,结合学生的知识经验和生活经验,遵循课程标准精神,我确定了以下教学目标与重难点。
知识目标:本活动的目的是通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。
能力目标:在“鸡兔同笼”的活动中,通过列表枚举方法,解决鸡兔的数量问题。
情感目标:理解数学知识与实际生活问题的联系,让学生感受到我国数学文化的源远流长,激发学生的学习热情。
重点:明确鸡兔同笼问题中的数量关系,并会运用列表的方法解决生活中的实际问题。
难点:理解数学知识与实际生活问题的联系,掌握利用列表的方法解决实际问题的策略,能够准确的计算。
说教具:
本课时我结合自己的教学设计,制作了课件,为了便于学习,我为为学生准备了两份表格。
说教法、学法:
在教学中我主要采用引导发现法、小组合作法、讨论法、交流等方法,并引导学生进行科学的归纳、总结,以问题引领学生进行尝试、探究、调整、交流等等。使学生在知识探索的过程中体验学习的乐趣,感受数学的价值。
说教学过程:
1、课前我和学生做了一个“猜数”的小游戏,重现学生的实际生活经验,减少学生对于不同列举法的陌生感,为学习各种不同的枚举方法铺垫基础,初步感受中列举的科学性。
2、情景引入
在开课时,我借用兔和鸡这两种学生十分熟悉的动物引入课题,同时借用多媒体出示:你知道吗?说明:这就是1500多年前我国数学史上著名的数学问题——鸡兔同笼问题。同时揭示课题:鸡兔同笼。这一环节的设计,目的是为了给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。
3、尝试、探究
接着我让学生先小组讨论,采用不同的方法解决鸡兔同笼的问题,在这里我只要求学生说出解决的思路即可。紧接着的'新授部分,我让学生大胆的进行猜测、尝试与调整,并引导学生观察,探究、归纳各种不同列表法的优劣所在,并重点介绍中列举法。
4、巩固,运用新知解决生活中的实际问题
在这一环节,我又重点让学生分析生活中的实际问题与鸡兔同笼相类似的地方,明确鸡兔同笼问题中的数量关系,构建这一数学模型,帮助学生学会灵活运用列表的策略,并能够找到解决问题的最佳方法。
5、课堂延伸
我让学生课外继续探讨《孙子算经》中的鸡兔同笼问题作为这一课的课堂延伸,既使整堂课前后照应,又使学生的学习从课内延伸到课外。
教学反思
反思这堂课的教学,从整体上来讲我认为还是比较成功的,具体体现在:
1、我在认真研读教材、研究学生的基础上,领会了编者的意图,通过在本校几个班的教学实践,学生对列表法的基本方法,以及调试的技巧都掌握得很好;
2、对鸡兔同笼这一数学模型的构建学生掌握很好,在解决问题过程中对怎样的问题适合运用列表法能够一目了然,并能选择科学、合理的方法加以解决。
3、但对这节课教学本身也有自己的思考,因为《鸡兔同笼》问题本身是我国的千古趣题,解决这个问题的方法远远不止列表法一种,而在教学这一课时,学生虽然能够运用多种方法解决,但由于时间有限,我未能逐一进行讲解,这是否会限止学生的思维呢?所以我不仅在课堂上让学生以小组讨论的形势进行探讨,在结课的时候,我又提示学生早在1500多年前我国的数学名著《孙子算经》中就有所研究和记载,迄今为止,中外许多数学家都很关注鸡兔同笼的问题,并且已经研究出许多解决的方法,希望同学们课外继续研究!以引导学生课外进一步研究“鸡兔同笼”的问题。并且我也带领学生继续探究,同学们也非常有兴趣,探究出了许多方法,比如化归法、破头法、砍足法、金鸡独立法等等,名字都取得五花八门呢,我不知道我这样的设计是否科学、合理,敬请指点。
人教版四年级下册鸡兔同笼说课稿篇3一、说教材
【地位和作用】
思考——人教版实验教材增设数学广角这一单元的目的是什么?鸡兔同笼问题设置在数学广角中,其教学与常规课有什么不同?
分析——《教学用书》中指出:数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。因此,“鸡兔同笼”问题作为数学广角教学内容之一,正是教材注重渗透思想方法,关注学习过程的重要体现。教材借助我国古代趣题“鸡兔同笼”问题,让学生应用列表、假设、方程等多种方法来解决问题。本课的教学与常规课相比,区别之处在于要把数学思想方法贯穿始终,巧用素材,有效提升,为学生的终身发展奠定基础。本课时中,学生可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
【编排的内容】“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。但其原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为简的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。
解决“鸡兔同笼”问题时,教材展示了学生逐步解决问题的过程,既猜测、列表、假设或方程解。其中假设和列方程解是解决该类问题的一般方法。“假设法”有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
配合“鸡兔同笼”问题,教材在“做一做”和练习中安排了类似的一些习题,比如“龟鹤”问题,生活中的一些实际问题等,让学生进一步体会到这类问题在日常生活中的应用,并巩固用“假设法”或方程的方法来解决这类问题。
二、说学情
【认知分析】学生初步已接触多种解题策略,会一些基本的解决数学问题的方法。
【能力分析】虽说学生已经初步尝试了应用逐一列表法解决问题,还有一些学生在课外书中或者数学班已经学习了相关的内容,但学生的程度会参差不齐,但在数学方法的应用意识与数学思维的自我提升等方面尚需进一步培养。
【情感分析】多数学生对数学学习有一定的兴趣能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生的学习主动性不够强,尚需通过营造一定的学习氛围,来加以带动。
三、说目标
【教学目标】
1、经历和体验用不同的角度与方法解决实际问题的过程,进一步体会奥数的乐趣。
2、培养学生动脑筋,解决实际问题的意识,增强学生的数学应用能力。
3、了解我国古代数学的光辉成就,增强民族自豪感;提高学生对数学的好奇心和求知欲;增强学数学的自信心。
【教学重点】用假设法来解决鸡兔同笼问题。
【教学难点】如何让绝大部分孩子掌握用假设法来解决这一相关问题。
四、说教法
综合以上的分析,从面向全体学生,发展学生认识问题、探索问题、研究问题的能力角度考虑,准备采用“以问题为中心”的讨论发现法:即课堂上,教师或学生提出适当的数学问题,再由学生尝试着去发现规律,通过相互讨论,相互学习,在问题解决过程中提升数学方法,从而丰富学生的数学思想,逐步建立完善的认知结构。
五、说学法
两点想法:
低起点:让每一个学生都积极参与。课伊始,我让学生钱的数额和张数。数据比较小,学生又有一定的情趣,容易激起学生学习的兴趣,使他们积极地参与课堂学习。教学例题时,因为有了以上的铺垫,就让学生尝试解决,学生在解决时,方法多种多样,列表凑数的、画图的、假设法、列方程解决。
巧突破:重点就放在假设法的教学上,先通过表格初步感知规律,再借助图形结合来攻破学生学习中思维中的障碍。
基于以上分析,在学法上,引导学生采用适度指导与自主探索相结合、独立思考与互相协作相结合的学习方式,尽量让每一个学生都能参与研究,并最终学会学习。
六、说理念
遵照新课标精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流,通过老师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,进而体会到假设的数学思想的应用与解决数学问题的关系。
【人教版四年级下册鸡兔同笼说课稿3篇】相关文章:
1.数学《鸡兔同笼》说课稿
2.鸡兔同笼说课稿及课件
3.鸡兔同笼问题说课稿
4.小学数学《鸡兔同笼》说课稿
5.人教版小学数学四年级下册说课稿
6.人教版四年级下册自然之道说课稿
7.人教版小学数学鸡兔同笼教学设计
8.人教版白杨说课稿
9.人教版《白杨》说课稿
第二篇:四年级下册鸡兔同笼教学设计
《鸡兔同笼》教学设计
【教学内容】四年级下册教科书103-104页内容及相关练习。【教材分析】
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。解决这类问题的方法包括:列表法、假设法、方程法等。教材把这一问题安排在四年级,学生还没有学过方程,因此这里主要引导学生通过猜测、列表、假设等方法来解决问题,培养学生猜测、有序思考及逻辑推理的能力,体会假设法的一般性。在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。【学情分析】
“鸡兔同笼”问题是我国古代著名数学趣题,容易激发学生的探究兴趣。“列表法”是学生比较容易接受的,也就是通过有序猜测和计算得出结论,“假设法”对学生来说比较陌生,教学中要抓住其特点,讲解算理,让学生逐步掌握,根据具体问题引导学生分析理解,拓宽学生思维。
【教学建议】
1、教学中要注意渗透化繁为简的思想。
2、引导学生探索解决问题的策略和方法。
3、介绍有关鸡兔同笼问题的“趣解”,既激发学习的兴趣,又可以拓宽学生的思路。【教学目标】
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、经历自主探究解决问题的过程,了解列表法、假设法等解决问题的方法,在解决问题的过程中培养逻辑推理能力,增强应用意识和实践能力。
3、了解 “鸡兔同笼”问题解决的多种有趣方法,体验问题解决方法多样化。【教学重点】经历自主探究解决问题的过程,掌握运用列表法、假设法解决“鸡兔同笼”问题。【教学难点】理解掌握假设法,能运用假设法解决数学问题。【教学过程】
一、情境导入。
今天老师想给同学们介绍一部1500年前的数学名著《孙子算经》,你们想了解吗?里面记载着许多有趣的数学名题,其中有这样一道题,请看屏幕:(课件出示以下情境图)
师:你能说说这道题是什么意思吗?(说明:雉指鸡)让学生说说题意,然后出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的历史趣题“鸡兔同笼”问题。(板书课题)有的同学已经在计算了,说说看鸡有多少只?兔有多少只?
【设计意图】结合课件呈现的情境图谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,同时在学生猜测得不到正确结果的情况下,激发学生的探究兴趣,为下一环节引导学生经历“化繁为简”的解题策略做好铺垫。
二、新知探究。
(一)感受化繁为简的必要性。刚才大家猜了好几组数据,但是我们验证后发现都不对,为什么这么多人都没有猜对呢?(数太大了)你们觉得什么情况下能够猜对?(数小一些)那咱们就换一道数小一些的。(课件出示例1)
笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26只脚。鸡和兔各有几只?
(二)自主尝试解决问题。
我们一起来看看在同一个笼子里的鸡和兔给我们带来了哪些数学信息? 找到题中信息:①鸡和兔共8只。②鸡和兔共有26条腿。③鸡有2条腿。④兔有4条腿。在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?
怎样才能确定猜测的结果对不对?(把鸡的腿和兔的腿加起来看是不是等于(把鸡的腿和兔的腿加起来看等不等于26)
这回给你们一点时间,把你猜测的数据在练习本上列个表,算一算,想一想:你算的对吗?(出示表格)
这回给你们一点时间,把你猜测的数据在练习本上算一算,想一想:你算的对吗?
(三)交流体会,掌握问题解决策略。
1、经历列表法的形成过程。
(1)经过同学们的研究,现在知道鸡和兔各有几只?
都谁和他的结果一样?你们有把握这次猜对了吗?怎么验证一下?
(2)说说你是怎样得出正确答案的?(引导学生说说解决问题的思路)预设学生思路:
●从鸡8只,兔0只开始推算。●从鸡0只,兔8只开始推算。
前两种情况可能做了充分预习,按照一定的顺序,列举出了所有情况,或者到得到正确答案为止。对这种有序思考的方法要给予肯定。
●直接猜出鸡有3只,兔有5只,验证后发现脚数正好是26只。
这种情况属于正好一下猜对了,教师提示不一定每次都能够猜得这么准。●从鸡有4只,兔有4只开始推算。
这种情况猜测的次数比较少,对于数据比较大的时候适用。
●有的同学还可能发现了每增加一只兔,减少一只鸡,脚就增加2只,这样就可以一下子算出需要增加几只兔,直接找到正确答案。这正是假设法的思路。如果有同学有这一发现,教师要及时引导学生表述准确,为后面的假设法学习做好铺垫。(3)小结收获。从刚才的列表情况看,你觉得怎样列表比较好?(4)运用列表法解决情境图中的鸡兔同笼问题。自主解决,交流方法并订正结果。
如果没有出现上面的第五种思路,教师小结可以提出。
小结:鸡兔的总只数不变,多一只兔子就会少一只鸡,增加两只脚;多一只鸡就会少一只兔子,减少两只脚。运用这一规律正好是我们解决这一问题的另一种方法。
2、探究假设法。
(1)问题预设:刚才大家找到了“鸡兔同笼”问题的解决办法,讨论中还发现了一种更简单的方法,如果运用这种推理方法,怎么解决呢?
(2)引导学生交流:发现假设成都是鸡或者都是兔,计算起来会更简便。交流时重点让学生说说每一步的意思。先假设成都是鸡,着重说说推理的过程。
同样,让学生说说,如果假设成都是兔,是什么情况? 小结收获。
(3)运用假设法解决情境图中的“鸡兔同笼”问题,再汇报交流。
【设计意图】让学生在自主尝试中找到用列表法解决“鸡兔同笼”问题的方法,引导学生有序思考,组织学生有层次地汇报和交流,让学生在这一过程中体会到:根据表中总脚数与题中数据的差,来调整数据,对假设法的探究起到了铺垫作用,同时对假设法的理解也更加深刻。
三、练习强化,深化认识。针对性练习,完成做一做第一题。独立完成,再集体交流订正。
四、阅读资料,丰富认识。
同学们,你们知道古人是怎样解决“鸡兔同笼”问题的吗?阅读105页的资料。
古人真是很聪明啊!今人更了不起,又发现了很多关于“鸡兔同笼”问题的趣解,你们想了解吗?介绍几种。
1、假设所有的鸡和兔子都训练有素,然后你拿着一个口哨,吹一下,所有动物收起一只脚,吹两下,收起两只脚,好了,现在鸡一屁股坐在地上了,小兔都“作揖”了,也就是还有两只脚站着,总脚数减去两倍的头的个数再除以二就是兔子的只数了。
2、假如鸡的翅膀也着地,也有四只脚,那么总脚数就是总只数乘4,减去实际的脚数,就是翅膀的数,翅膀都是鸡的,再除以2,就是鸡的只数。
五、谈话式小结。
同学们,今天你有什么收获?每种方法都明白了吗?你最喜欢哪种方法? 提示学生做题时要根据题目选择合适的方法来解决问题。
【设计意图】通过完成做一做的第一题,巩固解决“鸡兔同笼”问题的基本方法,了解古时候的解法,使学生对我国的古代文化产生浓厚的兴趣,最后的小结梳理一下几种方法,引导学生反思学过的方法,为以后的学习奠定基础。【板书设计】 鸡兔同笼
列表法
鸡 8 3
0
兔
0 1 2
5
脚 16 18 20 22 24 26 28 30 32 假设法
都是鸡: 脚:8×2=16(只)少了:26-16=10(只)兔:10÷(4-2)=5(只)鸡:8-5=3(只)
都是兔: 脚:8×4=32(只)多了:32-26=6(只)鸡:6÷(4-2)=3(只)兔:8-3=5(只)
第三篇:四年级下册《鸡兔同笼》教学设计
四年级下册《数学广角—鸡兔同笼》教学设计
南马小学 宋赞丽
一、教材分析:
《课标》中指出:数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。“鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为简的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。“鸡兔同笼”问题的解法包括:列表法、假设法、方程法等。由于本单元方程解法还没学,因此这里主要引导学生通过猜测、列表、假设等方法来解决问题,培养学生猜测、有序思考及逻辑推理的能力。
二、学情分析:
鸡兔同笼”问题,对于四年级学生而言,学生的逻辑推理能力还不是很强,自主探究解决问题困难较大,思维难度大,学生难以理解。特别是对于那些智力水平属于中下的学生来说更是不易。但是有一些学生在课外书中已经学习了相关的内容。教学这一内容时,学生的程度会参差不齐,有一定难度。因此,教学中教师要充分发挥引领作用,通过情景感受,化繁为简,猜测,列表,画图等方法帮助学生参与探究活动,使学生借助展开想象,促进数学思考,找到问题解决的方法。在掌握解决问题的方法后,引导学生反思提升,通过鸡兔同笼问题与生活中类似问题的比较,帮助学生建立“鸡兔同笼”结构特点和解决模型。在这节课中,主要采用适时引导和学生小组合作探究相结合的教学方式,让学生在尝试、探索、合作交流中弄懂“鸡兔同笼”问题的基本结构特征,经历不同的方法解决“鸡兔同笼”问题的过程,体会解题策略的多样性,渗透化繁为简的思想,初步形成解决此类问题的一般性策略。
三、教学目标:
知识与技能:了解“鸡兔同笼”问题的结构特点,掌握用列表法和假设法解决问题,初步形成解决此类问题的一般性策略。合理利用假设法,通过化繁为简的思想,帮助学生探索出解决问题的一般方法。
过程与方法:通过自主探索,合作交流,经历用不同的方法解决“鸡兔同笼”问题的过程,体会解题策略的多样性,渗透化繁为简的思想。能用类比思想解决实际问题。
情感态度与价值观:感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
四、教学重点:理解掌握用不同的方法解决问题的不同思路和方法。
五、教学难点:运用不同的方法解决实际问题。
六、教学内容:人教版数学四年级下册P104-105。
七、教具准备:多媒体课件、学习单等。
八、教学过程:
(一)创设有效情景,激活生活经验策略
1.师:同学们,今天老师很高兴能跟大家一起度过一堂生动有趣的课。同学们有没有信心能上好这堂课?真棒!师:请同学们带着你们的信心和热情跟老师一起走进数学广角。我们一起来学习一道我国古代非常有名的数学趣题。
师:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”(PPT投影展示原题。)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头。从下面数,有94条脚。鸡和兔各有几只?)(PPT展示今意。)
2.师:这类题我们把它叫做什么问题好呢?(“鸡兔同笼”问题。)板书。
师:其实,鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。那么这个流传了上千年的问题到底有什么魅力,使得那么多的人乐此不疲地去解决这个问题呢?相信同学们学习了这节课,你们就会揭开这个秘密。老师再问一次大家:你们有没有信心把这节课的内容学好? 【设计意图】结合课件谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。同时在学生猜测得不到正确结果的情况下,激发学生的探究兴趣,为下一环节引导学生经历“化繁为简”的解题策略做好铺垫。
(二)引导自主探究,感悟数学思想策略 1.探究用猜测列表法解决“鸡兔同笼”问题。
师:为了便于研究,我们可以先从简单的问题入手,来探讨解决这类问题好吗?出示例1
(1)师:请大家读题。思考:从上面数,有8个头,从下面数,有26只脚,分别是什么意思?所求问题是什么?
生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只? 师:还有补充吗?有两个隐藏条件看谁细心发现了?。
生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只? 师评:他还发现了隐藏条件,审题真细心。
【设计意图】学生认知的规律是:由易到难。鸡兔同笼原题中的数据比较大,不利于首次接触该类问题的人们进行探究,根据化繁为简的思想,此题有效降低了问题的难度,为解决《孙子算经》中的较难“鸡兔同笼”问题搭好了桥,做了巧妙引领。
(2)列表法
师: 猜想,要求鸡和兔各有几只,咱们不妨猜一猜,好吗?(学生猜)
师:到底谁猜对了呢?我们来验证一下。解决问题要有理有据,不能随意猜。我们应该抓住什么样的条件来验证我们的猜测是否正确?首先要知道鸡和兔一共有8只,其次鸡的腿和兔的腿一共有26只,所以我们必须要把鸡的腿和兔的腿加起来看看等不等于26。这两个条件必须同时满足才是正确答案。
师:现在请同学们拿出你们的表格把你们的猜测的数据按顺序填到表格中并找到正确答案。
学生独立完成表格,之后交流完成情况,出示大屏幕的表格中。(像这样把我们的猜测按一定的顺序列成表格,这种方法叫列表法)。
师:观察这个表格,你找到答案了吗?答案是怎样的。【设计意图】列举法是学生最容易掌握的运算方法,这里就运用到了数学的枚举思想。用猜测尝试去作图验证,实际就是用枚举法来解决问题。虽然麻烦,但比较直观,它是掌握假设法的前提,本教学环节是下一教学环节的巧妙过渡。当头和脚的只数较多时,用列表法还是不容易找出答案,我们还有研究新方法的必要。猜想法和列表法都是解决问题的策略,但都有其局限性。教学中,既让学生理解、掌握和运用了这些策略,又未局限于这些基本的策略;既体现了解决问题策略的多样化,又通过表格规律的发现,为探索新策略奠定了不可缺少的基础;教师既关注了学生解决问题的结果,更关注了学生解决问题的过程与方法,并在不断提升学生解决问题的技能技巧。
2.探究用假设法解决“鸡兔同笼”问题。
师:列表的方法可以解决鸡兔同笼问题,但是如果数据很大,会发生什么情况?(繁琐)。有没有其他方法可以解决?请同学们四人一小组探讨一下还有没有其他方法可以解决。交流探讨结果。
(1)假设八只全是鸡
师:那么我们再来试一试。假设8只全是鸡,请同学们试着做。
生:8×2=16(只)脚。
师:题意要求一共有26只脚。
生:26-16=10(只)脚。
师:少了10脚。那么少的是谁的脚呢?
生:少了兔的脚。
生:4-2=2(只)脚。10÷2=5(只)兔。
生:8-5=3(只)鸡。(假设法A)
师:可能还有些同学有点迷糊,我们用画图法直观理解一下。
1)请画8个圆表示鸡,每只鸡2只腿,一共有16只脚。
2)还差10只脚,每只鸡再加两只脚变成兔子,共有5只鸡变成5只兔子。
3)最后剩下的3只就是鸡。
【设计意图】通过生的讲解与老师的精要提示,大部分学生肯定已经初步掌握了假设法,但是所有的学生都准确掌握方法且明白算理,还需要一个强化的过程。在这里用到了画图法是打开其他学生发散思维的钥匙。画图法直观形象,对其他学生的启发作用很大。此法貌似画图法,其实质仍然是列举法。
(2)假设八只全是兔
我假设8只全是兔。4×8=32.。(师在32后添加只脚)32-26=6(只脚)。(师:多了6只脚)。4-2=2(只脚)
师:为什么用4-2?
生丙:因为兔子多了,兔子有4只脚,鸡有2只脚。6÷2=3(只鸡)
师:等等,老师又不懂了!为什么用6÷2。
生丙:因为我多假设了兔,多了6只脚,这6只脚是鸡的。所以用6÷2=3(只鸡)
师:我还是没有听明白。请哪位同学给我再说说。
生丁自愿起来说清算理。
师故作明白状:哦,原来是多假设了兔的只数,所以多出来的脚应该是鸡的,所以要这样。
生丙继续:8-3=5(只)。因为兔子多算了3只,所以用8减去3等于5,答案是兔子有5只,鸡有3只。(假设法B)
师:现在大家清楚了吗?再引导学生回顾一遍。先怎么想?假设全是鸡,用总脚数减去鸡的脚数求出它们的相差数是10,再用相差的数除以每只鸡相差的2只脚,就得到了兔的只数,最后用总只数减去兔的只数就是实际鸡的只数。
师:你们从以上两种假设法中发现了什么?
假设全是鸡,先得到兔子的只数。
假鸡先得兔,假兔先得鸡。
师总结:假甲先得乙,假乙先得甲。
师:这种方法好吗?给这种方法起个名字,叫什么好呢?(假设法)。
【设计意图】假设法是本节课教学的难点。我在学生讲述假设法A时,故布疑团,循循善诱,把学生的思考方法与过程准确无误地呈现在全体学生面前,在展示关键步骤时,我扮演一位导演,“我还是没有听明白。请哪位同学给我再说说。”把教者需要给学生重点强调的地方,假借学生的口再重点反馈给其他学生。师故作明白状:“哦—原来是多假设了兔的只数,所以多出来的脚应该是鸡的,所以要这样。”看似是我的自言自语,其实是把此种方法的关键强调给学生,引起学生的注意。所以此步骤就是对学生掌握运用假设法的再一次强化,让所有的学生都掌握方法,并明白算理。教师没有一句是在讲解,都是学生在思考展示、相互启发、自我教育。
(3)小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)
(4)师:现在我们能用上面的方法解决古人流传下来的问题了吗? 出示:鸡兔同笼,有35个头,94只脚,鸡兔各有几只? 学生独立自主完成。师(在学生运用假设法、例举法解决问题之后):解决“鸡兔同笼”,哪种方法比较简便? 生:假设法比较简便,例举法比较麻烦。
【设计意图】与教学最初设置的悬念遥相呼应,在学生进一步运用学习的新方法解决问题后,引导学生通过比较,找出最简便的解决问题的方法。用最简单的方法解决数学问题,永远是数学教学的真谛。这就是数学中化繁为简的思想。
(5)小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用列表法。数目比较大时,列表法计算量大,就有局限性,比较麻烦,最好用假设法比较好。用假设法时要特别注意:如果假设是鸡而先求出的就是兔子,如果假设的是兔子那先求出的是鸡,两者相反。
【设计意图】学生结合具体算法,先初步归纳总结出运用假设法解决鸡兔同笼问题的一般规律,教师再将之完善,归纳升华为运用解决鸡兔同笼这一类问题的一般规律。让学生发散思考、加深理解。
(三)突出数学运用,强化渗透应用策略
巩固练习:课本105页“做一做”的1、2题。
【设计意图】通过化繁为简的思想,帮助学生探索出解决问题的一般方法。学习的目的是为了应用。此环节有两个妙处:一是让数学知识来源于生活,又运用于生活,提高学生的应用能力与学习数学的兴趣;二是让学生能够认识“鸡兔同笼”这一类问题,掌握“鸡兔同笼”问题的变式,达到举一反三的目的。
(四)强化总结反思,发现数学规律策略
师:通过今天的学习,你有哪些收获? 你们对自己这节课还有什么问题?
(五)作业布置:课本106页练习二十四第一题
九、板书设计:
鸡兔同笼
1.猜测法 2.列表法 3.假设法
A、假设八只全是鸡 先得到兔的只数
8×2=16(只)26-16=10(只)4-2=2(只)10÷2=5(只)兔 8-5=3(只)鸡
B、假设八只全是兔 先得到鸡的只数
4×8=32(只)32-26=6(只)4-2=2(只)6÷2=3(只)鸡 8-3=5(只)兔
第四篇:四年级下册《鸡兔同笼》教学设计
四年级下册《鸡兔同笼》教学设计
四年级下册《鸡兔同笼》教学设计
教学内容:人教版《义务教育教科书.数学》四年级下册P103——P104页数学广角——《鸡兔同笼》。
教材分析:“鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。对于四年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。通过两种方法的探究让学生感知解决问题的多样性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
教学目标:
1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2.经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。
3.在解决问题的过程中,培养学生的逻辑推理能力,增强应用意识和实践能力。
教学重点:
1.理解掌握解决问题的不同思路和方法。
2.学会用不同的方法解决实际生活中有关“鸡兔同笼”的问题。
教学难点:理解掌握假设法,能运用假设法解决数学问题。
教学具准备: 课件、表格
教学过程:
一、导入
师生谈话导入新知
(设计理念:通过谈话营造轻松的学习环境,同时引出课题,让学生感知我国古代数学文化的源远流长激发学生的民族自豪感;通过谈话引出问题为下一教学环节做好铺垫。)
二、探究新知
1.质疑:提问:
(1)一只鸡和一只兔不看外表单从数量上看有什么相同点和不同点?
(2)鸡和兔相比:什么比什么多?多多少?
(3)课件出示:如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?
(4)尝试解决,交流想法;
(5)课件出示交换已知条件以后的题目。
(设计理念:通过对比两种动物的异同,引出基础题目,让学生经历观察、比较、分析、归纳概括的过程,同时也让学生了解鸡兔腿数数量的差别,每只兔比每只鸡腿数多2,这为下一教学环节,猜测、调整和有序整理探究列表法奠定基础,同时也为探究假设法做好铺垫。)
2.教学例1
(1)出示例题1。
师:请同学们读一读,和前面的题目一样吗?什么地方不一样?
请同学们大胆的猜一猜鸡兔各有几只?猜的时候要注意什么?(共有8个头)
(设计理念:通过对比两题的已知和未知条件的不同培养学生认真审题的良好学习习惯,同时也为后面的猜测、有序整理、验证做好铺垫。)
(2)学生自由猜测。
师:大家的猜测有很多种,听起来有点乱,我们按顺序整理一下(出示表格)。
(3)验证猜想。
(4)观察发现规律。(5)总结概括:在数学中这种方法叫列表法。(板书)。
(设计理念:通过猜测让学生感知在解决类似问题时这是最基础的方法,然后通过列表法进行验证让学生感知有序整理可以找到问题的答案。最后通过观察、交流探讨发现鸡兔数量的变化引起腿数变化的规律,这样也积累了学生解决问题的经验。)
质疑:如果遇到鸡兔数目多的时候,这种方法行吗?怎么办呢?
3.探讨假设法:
a.假设全是兔。
1.师以童话故事的形式引入全是兔的情境。
2.集体探究,引导交流。
b.假设全是鸡。
1.师再次继续童话故事引入全是鸡的情境。
2.小组独立探究交流假设全是鸡的计算方法。
3.指名小组展示并叙述计算过程。
4.小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。(板书:假设法)
5.延伸:其实解决“鸡兔同笼”的问题还有其它方法,同学们如果有兴趣的话下来以后可以了解一下。
(设计理念:通过情境假设,让学生感知数学的趣味性,提高了学生探究新知的兴趣,也为假设法的探究增添了趣味。同时,学生又经历了自主探究、合作交流的学习过程,体验了解决问题的方法的多样性。为后面灵活的解决问题打下了基础。)
三、练习巩固
课件出示练习题。
四、课后总结
(设计理念:学生通过练习一方面加强了对列表法、假设法的巩固,另一方面学生运用所学知识灵活的解决问题,增强了学生的应用意识;通过小结收获整理课堂新知,培养学生归纳总结的能力。)
板书设计:
鸡兔同笼
1.列表法
2.假设法
第五篇:四年级下册数学《鸡兔同笼》教案
四年级下册数学《鸡兔同笼》教案
四年级下册数学《鸡兔同笼》教案1
教学目标:
1、知识与技能
初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题,结合图解法理解假设的方法解决鸡兔同笼问题。
2、过程与方法
通过画图分析、列表举例、假设计算等方法理解数量关系,体会数形结合的方便性,体验解决问题方法的多样化,提高解决实际问题的能力。
3、情感、态度与价值观
培养学生的合作意识,在现实情景中,在交流的过程中,使学生感受到数学思想方法的运用与解决实际问题的'联系,提高学生解决问题的能力和自信心,受到多种数学思想方法的熏陶,进而让学生体会数学的价值。
教学重点:
用画图法和列表法解决相关的实际问题。
教学难点:
体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。
教学准备:
课件。
教学流程:
(一)问题引入,揭示课题
师:(出示主题图)大约在15前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有雉(野鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”
问:这段话是什么意思?谁能说说?(生试说)
师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头。从下面数,有94只脚。问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。(板书课题:鸡兔同笼问题)
(二)主动探究、合作交流、学习新知
师:说明为了研究方便,我们先将题目的条件做一个简化。
(课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?
师:同学们先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)
学生初步交流,教师提炼:可以用画图法、列表法、假设的方法。
师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。
学生思考、分析、探索,接下来小组讨论、交流。
小组活动充分后进入小组汇报、集体交流阶段。
师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?
学生汇报探究的方法和结论:
1、画图法:
给每只动物先画上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。一次增加2条腿,一只鸡就变成了一只兔,要把10条画完,要把5只鸡变成兔。
总结:画图的方法非常便于观察、非常容易理解。
2、列表法:(展示学生所列表格)
学生说明列表的方法及步骤:
学生汇报:我们先假设有8只鸡这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。
师:同学们的探索精神和方法都很好,都能用自己的方法成功地解决“鸡兔同笼问题”。不过上面的两种方法,老师还是觉得比较麻烦,又是画图,又是列表的,有没有更方便简洁的方法来解决这个问题?
3、假设法:(随学生能否出现此种情况作为机动出示)
教师引导:观察上面的表格我们发现。如果8只都是鸡,则一共只有16条腿这样就比26条腿少10条腿,这是因为实际每只兔子比每只鸡多2条腿。一共多了10条腿,于是兔就有10÷2=5(只),所以我们还可以这样去想:
板书:方法一:假设8只都是鸡,那么兔有:
(26-8×2)÷(4-2)=5(只)
鸡有8-5=3(只)
同样如果8只都是兔,则一共只有32条腿这样就比26条腿多6条腿,这是因为实际每只鸡比每只兔子少2条腿。一共多了6条腿,于是鸡就有6÷2=3(只),所以我们还可以这样去想:
板书:方法二:假设8只都是兔,那么鸡有:
(4×8-26)÷(4-2)=3(只)
兔有8-3=5(只)
小结方法:刚才我们用这么多的方法解决了鸡兔同笼问题,你最喜欢哪一种方法,说说你的理由。
现在我们重新总结一下这些方法:数目比较小时,用画图和列表的方法比较快,数目比较大时,用假设法比较好。
(三)解决实际问题、课堂延伸
1、尝试解答课前提出的古代《孙子算经》中记载的鸡兔同笼问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?
看看我国古人是怎么解这个题的。
2、自行车和三轮车共10辆,总共有26个轮子。自行车和三轮车各有多少辆?
(四)课堂小结
通过今天的学习,你有哪些收获?
师总结:这节课,我们一起用画图法、列表法和假设法解决了我国古代著名的“鸡兔同笼”问题。其实在1500年以来,我们中国历代的数学家都在不断的研究和探索这个问题,也得出了许多的解决“鸡兔同笼”问题的方法,而且从中得到了很多的数学思想。希望同学们在今后的学习中,善于思考,善于发现,善于总结方法。
四年级下册数学《鸡兔同笼》教案2
教学目标:
1、了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、解决问题,初步形成解决此类问题的一般性策略。
2、通过自主探索,合作交流,培养学生的合作意识和逻辑推理能力,体会解题策略的多样性,渗透化繁为简的思想。
3、感受古代数学问题的趣味性,提高学习数学的兴趣。
教学重点:
理解掌握用不同的方法解决问题的不同思路和方法。
教学难点:
运用不同的方法解决实际问题。
教具准备:
多媒体课件、学习单等。
教学过程:
一、创设情境、揭示课题
1、师:同学们,今天老师很高兴能跟大家一起度过一堂生动有趣的课。同学们有没有信心能上好这堂课?真棒!请同学们带着你们的信心和热情跟老师一起有进数学广角。我们一起来学习一道我国古代非常有名的数学趣题,“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”(PPT投影展示原题。)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头。从下面数,有94条脚。鸡和兔各有几只?)(PPT展示今意。)
2、这类题我们把它叫做什么问题好呢?(“鸡兔同笼”问题。)板书。其实,鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。那么这个流传了上千年的问题到底有什么魅力,使得那么多的人乐此不疲地去解决这个问题呢?相信同学们学习了这节课,你们就会揭开这个秘密。老师再问一次大家:你们有没有信心把这节课的内容学好?
二、合作探究、学习新知
活动一:探究用猜测列表法解决“鸡兔同笼”问题。
为了便于研究,我们可以先从简单的问题入手,来探讨解决这类问题好吗?出示例1
1、师:请大家读题。思考:从上面数,有8个头,从下面数,有26只脚,分别是什么意思?所求问题是什么?
生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师:还有补充吗?有两个隐藏条件看谁细心发现了?。
生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。
2、列表法
(1)猜想
要求鸡和兔各有几只,咱们不妨猜一猜,好吗?(学生猜)
(2)验证:
到底谁猜对了呢?我们来验证一下。解决问题要有理有据,不能随意猜。我们应该抓住什么样的条件来验证我们的猜测是否正确?首先要知道鸡和兔一共有8只,其次鸡的腿和兔的腿一共有26只,所以我们必须要把鸡的腿和兔的'腿加起来看看等不等于26。这两个条件必须同时满足才是正确答案。
现在请同学们拿出你们的表格把你们的猜测的数据按顺序填到表格中并找到正确答案。学生独立完成表格,之后交流完成情况,出示大屏幕的表格中。
(像这样把我们的猜测按一定的顺序列成表格,这种方法叫列表法)。观察这个表格,你找到答案了吗?答案是怎样的。
活动二:探究用假设法解决“鸡兔同笼”问题。
师:列表的方法可以解决鸡兔同笼问题,但是如果数据很大,会发生什么情况?(繁琐)。有没有其他方法可以解决?请同学们四人一小组探讨一下还有没有其他方法可以解决。
设全都是鸡,每只鸡有两只脚2×8=16(条)8只鸡共长几条脚? 26-16=10(条)表示什么?所有兔子少的脚4-2=2(条)2表示什么?每只兔子少的脚
10÷2=5(只)兔表示10条脚,每只鸡上添2只脚变成兔子,所以共有5只鸡变成了兔子,因此兔子有5只8-5=3(只)鸡表示总数减兔数等于鸡数
可能还有些同学有点迷糊,我们用画图法直观理解一下。
(1)请画8个圆表示鸡,每只鸡2只腿,一共有16只脚。
(2)还差10只脚,每只鸡再加两只脚变成兔子,共有5只鸡变成5只兔子。
(3)最后剩下的3只就是鸡。
现在大家清楚了吗?在引导学生回顾一遍。先怎么想?假设全是鸡,用总脚数减去鸡的脚数求出它们
的相差数是10,再用相差的数除以每只鸡相差的2只脚,就得到了兔的只数,最后用总只数减去兔的只数就是实际鸡的只数。这种方法好吗?给这种方法起个名字,叫什么好呢?假设法。
②:如果假设全是兔,你们会解吗?好这个方法就留给你们课后完成。
小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)
发散思考、加深理解:
现在我们能用上面的方法解决古人流传下来的问题了吗?出示:鸡兔同笼,有35个头,94只脚,鸡兔各有几只?学生独立自主完成
小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用列表法。数目比较大时,列表法计算量大,就有局限性,比较麻烦,最好用假设法比较好。用假设法时要特别注意:如果假设是鸡而先求出的就是兔子,如果假设的是兔子那先求出的是鸡,两者相反。
三、巩固练习
课本105页“做一做”的1、2题。
四、课堂总结
师:通过今天的学习,你有哪些收获?
五、作业布置
课本106页练习二十四第一题
四年级下册数学《鸡兔同笼》教案3
教学目标:
1、了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、解决问题,初步形成解决此类问题的一般性策略。
2、通过自主探索,合作交流,培养学生的合作意识和逻辑推理能力,体会解题策略的多样性,渗透化繁为简的思想。
3、感受古代数学问题的趣味性,提高学习数学的兴趣。
教学重点:
理解掌握用不同的方法解决问题的不同思路和方法。
教学难点:
运用不同的方法解决实际问题。
教学过程:
一、创设情境、揭示课题。
1、师:同学们,今天老师很高兴能跟大家一起度过一堂生动有趣的课。同学们有没有信心能上好这堂课?真棒!请同学们带着你们的信心和热情跟老师一起有进数学广角。我们一起来学习一道我国古代非常有名的数学趣题,“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”(PPT投影展示原题。)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94条脚。鸡和兔各有几只?)(PPT展示今意。)
2、这类题我们把它叫做什么问题好呢?(“鸡兔同笼”问题。)板书。其实,鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。那么这个流传了上千年的问题到底有什么魅力,使得那么多的人乐此不疲地去解决这个问题呢?相信同学们学习了这节课,你们就会揭开这个秘密。老师再问一次大家:你们有没有信心把这节课的内容学好?
二、合作探究、学习新知
活动一:探究用猜测列表法解决“鸡兔同笼”问题。
为了便于研究,我们可以先从简单的问题入手,来探讨解决这类问题好吗?出示例1
1、师:请大家读题。思考:从上面数,有8个头,从下面数,有26只脚,分别是什么意思?所求问题是什么?
生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?
师:还有补充吗?有两个隐藏条件看谁细心发现了?。
生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。
2、列表法
(1)猜想
要求鸡和兔各有几只,咱们不妨猜一猜,好吗?(学生猜)
(2)验证:
到底谁猜对了呢?我们来验证一下。解决问题要有理有据,不能随意猜。我们应该抓住什么样的条件来验证我们的猜测是否正确?首先要知道鸡和兔一共有8只,其次鸡的`腿和兔的腿一共有26只,所以我们必须要把鸡的腿和兔的腿加起来看看等不等于26。这两个条件必须同时满足才是正确答案。
现在请同学们拿出你们的表格把你们的猜测的数据按顺序填到表格中并找到正确答案。
鸡8765
兔01
脚1618
学生独立完成表格,之后交流完成情况,出示大屏幕的表格中。
(像这样把我们的猜测按一定的顺序列成表格,这种方法叫列表法)。观察这个表格,你找到答案了吗?答案是怎样的。
活动二:探究用假设法解决“鸡兔同笼”问题。
师:列表的方法可以解决鸡兔同笼问题,但是如果数据很大,会发生什么情况?(繁琐)。有没有其他方法可以解决?请同学们四人一小组探讨一下还有没有其他方法可以解决。
设全都是鸡,每只鸡有两只脚
2×8=16(条)8只鸡共长几条脚?
26-16=10(条)表示什么?所有兔子少的脚
4-2=2(条)2表示什么?每只兔子少的脚
10÷2=5(只)兔表示10条脚,每只鸡上添2只脚变成兔子,所以共有5只鸡变成了兔子,因此兔子有5只8-5=3(只)鸡表示总数减兔数等于鸡数
可能还有些同学有点迷糊,我们先做个小游戏。请8位同学上来假设全是鸡,一共有16只脚,多出来了10只脚,每只鸡再加两只脚变成兔子,共有5只鸡变成5只兔子。最后剩下的3只就是鸡。现在大家清楚了吗?在引导学生回顾一遍。先怎么想?假设全是鸡,用总脚数减去鸡的脚数求出它们的相差数是10,再用相差的数除以每只鸡相差的2只脚,就得到了兔的只数,最后用总只数减去兔的只数就是实际鸡的只数。这种方法好吗?给这种方法起个名字,叫什么好呢?假设法。
②:如果假设全是兔,你们会解吗?好这个方法就留给你们课后完成。
小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)
3、发散思考、加深理解。
现在我们能用上面的方法解决古人流传下来的问题了吗?
出示:鸡兔同笼,有35个头,94只脚,鸡兔各有几只?
学生独立自主完成
4、小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用列表法。数目比较大时,列表法计算量大,就有局限性,比较麻烦,最好用假设法比较好。用假设法时要特别注意:如果假设是鸡而先求出的就是兔子,如果假设的是兔子那先求出的是鸡,两者相反。
三、巩固练习
课本105页“做一做”的1、2题。
四、课堂总结
师:通过今天的学习,你有哪些收获?
五、作业布置
课本106页练习二十四第一题
板书设计
鸡兔同笼
列表法
假设法