第一篇:找次品优秀教学设计(通用)[范文模版]
找次品优秀教学设计(通用6篇)
作为一位不辞辛劳的人民教师,总归要编写教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么教学设计应该怎么写才合适呢?下面是小编精心整理的找次品优秀教学设计(通用6篇),欢迎大家分享。
找次品优秀教学设计1教学目标
1.通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
2.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
3.学会用数学的知识来研究生活中的饿实际问题。
教学重难点
1.尝试用数学方法解决实际生活中的简单实际问题。
2.尝试用数学方法解决实际生活中的简单实际问题。
一、创境激趣
1、昨天我们学习了如何找次品的方法,谁能说一说。
2、今天我们继续探讨如何去快速地找出次品的一般方法。
二、自主探究
1、解决9个零件的问题,归纳出找次品的最优方法。
(1)出示问题:有9个零件,其中有一个是次品(次品重一些),你能用天平把它找出来吗?
老师引导分析方法:你可以拿学具摆一摆,也可以用笔在纸上进行分析,看看至少需要几次就一定能找出次品?
(2)自主探索。在有一定结果以后请一个学生上台展示方法,老师帮助梳理方法:分成几份?每份各是多少?至少需要几次就一定能找出次品,?
(3)反思自己的分法并在小组内交流。老师指导交流重点:看看我们的分法有什么不同?分成了几份?每份是多少?至少需要几次就能保证伐出次品?
(4)全班汇报。老师引导学生阐述:分成几份?怎么分?怎样找出次品?至少需要称几次就一定能找出次品?边汇报边板书示意图。
(5)老师先引导学生观察、梳理一遍,然后进行比较:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?
(6)小结:把9个零件分成3部分,并且平均分,能够保证找出次品而且称的次数最少。
2、推测多个零件找次品的解决办法。
(1)提出猜测:那么,是否在所有的找次品问题中,这样平均分成3份的方法都能保证找出次品而且所需次数一定最少呢?我们来猜一猜。
(2)学生猜想
(3)要验证猜想我们再来试一下。如果有12个零件,其中一个是次品,按刚才我们的猜想,应该怎么分,称的次数就最少而且一切能找出次品?(平均分成3份,即4,4,4。)迅速在草稿纸上分析一下,看看至少需要几次就一定能找出次品?
学生汇报:3次。
(4)我们再来看看别的分法能不能让称的次数更少。还有哪些分法?(2,2,8)(3,3,6)(5,5,2)(6,6)学生选择一种分法在纸上进行分析。
(5)全班汇报,引导学生比较:有没有哪种分法能让称的次数更少而且保证找出次品?
(6)小结:这样看来利用天平找次品的时候,把待测物品分成3份,并且平均分的方法能保证找出次品而且称的次数一定最少。
三、交互反馈
P137第5题
(1)学生独立完成,集体交流。
(2)让学生脱离具体的操作活动,学会用图来分析和解决数学问题,从而培养学生的抽象思维能力。本题答案是至少需要称3次。
四、开放延伸
P137第6题
(1)学生小组讨论
(2)汇报交流:与例题不同,是另一种类型的找次品,因为不知道次品比正品重还是轻,所以问题就复杂多了。对本题而言,还是分成3份,至多称2次就一定能找出次品。第一次天平两边各放一袋白糖,若天平平衡则剩下的那袋就是次品,再称一次就能判断次品是轻还是重了;若天平不平衡,则这两袋中一定有一袋是次品,可取下轻(或重)的那袋,把剩下的那袋放上天平,若天平平衡,则轻(重)的是次品,若天平不平衡,则重(轻)的是次品。对学有余力的学生,可以此题为起点,探索数量为4,5时如何找出次品。
五、课堂总结
本节课我们研究了什么问题?
六、作业:
A级:
P136第4题
B级:
P137你知道吗?
找次品优秀教学设计2一、教学目标:
1.让学生初步认识“找次品”这类问题的基本解决手段和方法。
2.学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
二、教学重难点:
1.让学生初步认识“找次品”这类问题的基本解决手段和方法。体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
2.观察归纳“找次品”这类问题的最优策略。
三、教学准备:
课件、圆片(三角形)
四、教学过程:
(一)游戏导入,引出新课
师:上课之前,老师想和大家做一个游戏,考考大家的眼力,你们愿
意吗?
生:愿意。
师:(课件出示图片)请找出下面两幅图的不同。
学生汇报
生1:第一幅图C处不同。
生2:第二幅图C处不同。
师:同学们可真厉害!这么快就找到了两幅图中的不同之处。现在有
两瓶口香糖(课件出示),可是有一瓶被一名调皮的学生吃了两颗,这两瓶口香糖的外观都一样,你能帮帮老师怎样找出那瓶少了两颗的口香糖吗?
学生讨论,汇报
生:可以用天平称一称,少了两颗口香糖的那瓶应该略轻一些,把这
两瓶口香糖分别放在天平的左右两边,天平向上的一面就是少了两颗口香糖的那瓶。
师:你说的很好!在生活中常常有这样的情况,在一些看似完全相同的.物品中混着一个质量不同(轻一些或是重一些)的物品,需要用天平把它找出来,像这一类问题我们把它叫做找次品。这节课我们就来研究《找次品》(板书课题)
(二)探究新知
1.从三瓶中找到次品
师:刚才同学们很快的从两瓶中找到了次品,如果老师这儿有三盒口
盒糖,其中有一盒是少了两粒的,你有什么办法帮忙将它找出来吗?
生:用天平找。
师:不错,依然用天平来帮助我们找到次品。提示:(1)你把待测物
品分成几份?每份是多少?(2)假如天平平衡,次品在哪里?
(3)假如天平不平衡,次品又在哪里?
生:可以把待测物品分成3份,每份有1个。假如天平平衡,剩下的就是次品,如果天平不平衡,天平上升的一侧是次品。
根据学生的汇报教师课件演示。
2.从五瓶中找到次品
师:同学们太厉害了。老师又拿来了两盒口香糖,和前面的三盒混在一起,你还能用天平将那盒吃了两粒的口香糖找出来吗?(课件出示)
同桌合作完成,汇报
生1:可以把这5瓶口香糖分成5份,每份是1瓶,分别标上1~5号,先拿出1号和2号称,如果天平不平衡,轻的一侧就是次品;如果天平平衡,称3号和4号,同样,如果天平不平衡,轻的一侧是次品;如果天平平衡,那么5号是次品。
师:你说的很完整。如果按照你这样称,至少需要称几次?生1:至少需要称2次。
师:还有没有不同的方法?
生2:我们把这5瓶口香糖分成3份,有两份中有两瓶,一份中有一
瓶。现在天平的左边和右边分别放上2瓶口香糖,如果天平平衡,则剩下的那瓶就是次品;如果天平不平衡,看哪一面轻,把轻的这侧的两瓶口香糖再分别放入天平的两侧,轻的一侧就是次品。至少需要称2次。
3.探究从多种方法中“找次品”的最佳方案。
师:这两个同学的方法都很好,都能在几盒口香糖里找出轻的那盒
次品来,那如果有的次品是比是重一些的,那你又能不能把它找
出来呢?请同学们一小组为单位探讨,(课件出示例2)有9个零件,其中有一个是次品(次品重一些),用天平称,至少称几次就一定能找出次品来?
让生自己审题,并找出重点、关键的词语,课件用点标出重点词语:次品重、至少、一定。
根据学生的回答,课件演示
师:在9个物体中,我们要找到次品就有4种方法,如果待测物体更
多,方法也就越多。我们每一次都这么找会很麻烦,有没有什么规律呢?请同学们观察屏幕中的表格,看一看哪种方法我们称的最快?
生:第三种方法最快,只称了两次就找到了次品。
师:这种方法我们是分成了几份?怎么分的?
生:平均分成了3份。
师:是否所有的次品都可以平均分成3份吗?如果不是怎么办?生:不能平均分成3份的时候,要分得尽量平均。
师:很好,就像前面我们从5个产品中找次品一样,可以把它分成三
份,并且要尽量分得平均。
(三)巩固练习
1.如果零件是10个,你认为怎样分最好?学生思考后回答,10(3,3,4)如果零件是11个呢?11(4,4,3)
2.数学书136页第2题。
(四)总结
师:这节课我们主要是学了如何找次品,那找次品的最好方法是什
么?(课件出示)“同学们这节课上得不错,其实在日常生活中,我们经常会遇到这样的问题,希望同学们多观察、多思考,从而发现更多知识。”
找次品优秀教学设计3一、教学目标
(一)知识与技能
利用天平,结合观察、猜测、图示、推理等活动,理解“找次品”问题的基本原理,发现解决这类问题的最优策略。
(二)过程与方法
以“找次品”活动为载体,经历由多样到优化的思维过程,培养学生的优化意识。
(三)情感态度和价值观
感受数学在日常生活中的广泛应用,发展学生的应用意识和解决实际问题的能力。
二、教学重难点
教学重点:探究解决“找次品”问题的最优策略。
教学难点:用图示或文字表示找次品的过程。
三、教学准备
天平,多媒体课件。
四、教学过程
(一)创设情境,引入原理
1.情境导入,揭示课题。
(1)课件出示例1:有3瓶钙片,其中一瓶少了3片。你能设法把它找出来吗?
(2)理解题意。
学生可能会说:倒出来数一数,或掂一掂、称一称……
教师根据学生的回答解释:生产或生活中有时需要从几个物体中找特别重或特别轻的一个,在数学中我们把这类问题称为“找次品”问题。
如果两个物体的差异很大、很明显,可以用数一数或掂一掂的方法。如果差异不明显或物体数量很多(例如有30瓶钙片),用数一数或掂一掂的方法可能不准确或不方便,此时可以用天平帮助我们快速找到“次品”。
【设计意图】理解问题是分析问题和解决问题的前提,当学生面对例1,首先想到的肯定是数一数或掂一掂,因为他们缺少使用天平的生活经验,所以让他们了解“数”和“掂”的局限性是非常有必要的。
2.合情推理,理解原理。
(1)了解天平的使用方法。
教师出示天平,并让学生想象:如果在天平的左边放一支粉笔,在天平的右边放一本数学书,天平会怎么样?为什么?
学生回答:天平的左边高,右边低。因为数学书比粉笔重。
教师继续追问:如果在天平的左边放一本数学书,在天平的右边也放一本数学书,现在天平会怎么样?为什么?
学生回答:天平会平衡,因为左右两边一样重!
教师根据学生的回答,在课件中出示:天平平衡,两边一样重;天平不平,下沉那边重。
【设计意图】学生没有使用天平的经验,教师引导学生通过想象和观察丰富表象扫除学习障碍,为进一步学习找次品做好准备。特别地,对两种情况的概括有利于学生探究找次品的方法。
(2)如何利用天平找次品?
如果只有两瓶钙片,放在天平上称一次就知道哪一瓶少了3片,因为它会轻一点。现在有3瓶,那么要称几次呢?为什么?
学生:称一次。左右两边各放1瓶,如果天平平衡,剩下的那瓶就是次品;如果天平不平衡,天平翘起的一端所放的是次品。
教师分别演示天平达到平衡和出现不平衡的两种情况,请同学进行判断并说明理由。
【设计意图】根据天平的情况推断出剩下一瓶的情况,是解决“找次品”问题的关键。此处将实验演示和语言表达结合起来,帮助学生理解原理。
3.交流图示,掌握方法。
你能想办法把用天平找次品的过程,清楚地表示出来吗?
(1)可以用一个“△”加一条短横线表示天平,用长方形表示钙片。
(2)为了方便,还可以给每瓶钙片加上编号。
学生完成后,将作品通过实物投影仪进行展示交流。
【设计意图】图示是对问题进行抽象、概括的一种方式,通过图示使找次品的方法具有概括性,同时也可以培养学生的抽象思维能力。在例1教学后及时进行方法的总结,可以分散本课的难点,有利于学生发现解决“找次品”问题的.最优策略。
(二)探索规律,优化策略
1.理解题意。
(1)课件出示例2。
8个零件里有1个是次品(次品重一些)。假如用天平称,至少称几次能保证找出次品?
(2)大胆猜测。
教师:至少称几次能保证找出次品?
学生:如果运气好一次就能找到次品,所以至少一次。
学生:一次不能保证找出次品,因为如果运气不好,就找不到次品了。
学生:每次称2个零件,4次保证找出次品。
教师:“至少称几次能保证找出次品”是什么意思?
学生:既要保证找出次品,又要次数最少。
【设计意图】这个讨论是非常必要的,学生第一次遇到这类问题,可能不能兼顾两端,说“一次”的同学忽视了“保证”,说“4次”的同学没有考虑到至少。通过同学间的互相交流,否定错误,澄清认识,确定研究方向,在探究、解决问题的过程中不走错路,少走弯路,有利于课堂教学目标的实现。
2.探索规律。
(1)分组探究,并将探索的情况填入下表。
(2)全班交流。
①分别请称4次、3次、2次的小组代表介绍本组的方法(此时学生对使用复杂的图示介绍方法可能还有困难,教师可以根据学生的回答帮助学生进行图示,为学生做出正确示范)。
②每次每边称1个的小组为什么需要的次数比较多?
学生:每次称的零件数量太少。
③每次每边称4个的小组为什么反而不如每次每边称3个的小组完成得快?
学生:每次每边称3个,称一次就可以将次品确定在更小的范围内。
【设计意图】问题②和问题③迫使学生去思考采用不同方法造成次数不同的原因,避免学生知其然而不知其所以然。因为偶然性因素的影响,学生不太容易发现“尽量三等分”这个最优化的策略。此时可以引导学生回顾例1,发现利用天平不仅可以对天平两端的零件进行判断,而且可以对没有称量的那一部分做出判断。
(3)概括最优化策略。
①如果9个零件中有1个次品(次品重一些),至少称几次能保证找出次品?怎么称?
学生:平均分成三份,每边3个,如果天平平衡,次品在剩下的3个零件中;如果天平不平衡,次品在天平下沉一端所放的3个零件中。然后再每边称1个,如果天平平衡,次品就是剩下的那1个零件;如果天平不平衡,次品就是天平下沉一端所放的那个零件。
②你发现什么规律?
学生:将所有零件平均分成三部分,保证找到次品需要的次数最少。
③用你发现的规律找出10个、11个零件中的1个次品(次品重一些),看看是不是保证找出次品的次数也是最少的?
先让学生小组讨论交流,并将找的过程用图示法记录下来,最后借助实物投影与全班进行交流。
【设计意图】通过两次操作得出结论属于不完全概括,属于猜测,而且在小学阶段也无法严密证明,只能通过大量的事实加以验证。验证的过程既可以加深理解,也可以提升学生的运用水平,并通过交流提高熟练程度。
(三)应用知识,解决问题
1.5瓶钙片中有1瓶是次品(轻一些),完成下面找次品的过程。
2.有15盒饼干,其中的14盒质量相同,另有1盒少了几块。如果能用天平称,至少称几次可以保证找出这盒饼干?
教师提示:将15盒饼干三等分,每份5盒,称一次可以确定那盒少了几块的饼干在哪5盒当中。然后参考前一题的方法找出这盒饼干。
3.有28瓶水,其中27瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?
教师提示:将28瓶水按照9瓶、9瓶、10瓶分为三份,称一次可以确定这瓶盐水在哪一份当中。如果是在某个9瓶当中,则继续三等分找出这瓶盐水;如果在10瓶当中,可以考虑按照3瓶、3瓶、4瓶的方法继续分组,找出这瓶盐水。
【设计意图】这一环节中对练习二十七中的练习与“做一做”的顺序进行了微调,是为了体现由易到难的教学顺序。数量越大,操作和思考的过程就越复杂,对学生而言难度也越大。特别是例2后面的“做一做”对学生而言是有难度的,一是因为要称4次,二是因为28不能平均分成三等份,所以进行了调整。
(四)课堂小结,拓展延伸
1.课堂小结。
(1)今天研究了什么问题?
(2)找次品的最优化策略是什么?
2.知识拓展。
今天我们研究的问题都是已知次品比较重或比较轻,如果不知道它比较重还是比较轻,你还能找出次品吗?请有兴趣的同学回家思考。
【设计意图】教材中的“找次品”是一种理想化的问题,把不知次品轻重的问题留给学生思考,给学生更大的想象空间,可以使学有余力的学生思维能力得到更大的发展。
找次品优秀教学设计4教学目标:
1.能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程.2.以“找次品”为载体,让学生通过学习观察、猜想、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。
3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:
用数学方法来解决实际生活中的简单问题。
教具准备:
多媒体课件、5盒口香糖
学具准备:
9个正方体
教学过程:
电脑出示图片:美国第二架航天飞机,再出示它爆炸的图片。
电脑解说:1986年1月28日,美国第二架航天飞机“挑战者”号在进行飞行时发生爆炸,价值12亿美元的航天飞机化作碎片坠入大西洋,造成世界航天史上最大的悲剧。据调查,这次灾难的主要原因是生产了一个不合格的零件引起的。
师:可见,次品的危害有多大,在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个质量不同的,重一点或轻一点的物品。需要想办法把它找出来,我们把这类问题叫做找次品。
师:下面我们一齐来研究找次品。
出示课题:找次品
1、自主探索。
A出示口香糖:老师这儿有三盒口盒糖,其中有一盒是吃了两粒的,你说有什么办法帮忙将它找出来吗?
师:对,我们可以用天平来帮忙找出次品。
让生根据讨论题同桌互相说说方法:
电脑出示:同桌说说:
(1)你把待测物品分成几份?每份是多少?
(2)假如天平平衡,次品在哪里?
(3)假如天平不平衡,次品又在哪里?
B学生汇报方案并上台边讲边在天平演示。
师据生回答板:3(1,1,1)1次
2、老师又拿来了两盒口香糖,和前面的三盒混在一起,你还能用天平将那盒吃了两粒的口香糖找出来吗?
A出示:小组讨论:
(1)你把待测物品分成几份?每份是多少?
(2)假如天平平衡,次品在哪里?
(3)假如天平不平衡,次品又在哪里?
(4)至少称几次就一定能找出次品来?
让生根据讨论题在学习小组讨论交流,把自己的想法说给小组其他成员听。
B学生在投影上演示,边演示边讲。
师据生回答板:
5(2,2,1)2次
5(1,1,1,1,1)2次
“刚才大家都很聪明,都能在几盒口香糖里找出轻的那盒次品来,那如果有的次品是比是重一些的,那你又能不能把它找出来呢?”
1、课件出示例2,有9个零件,其中有一个是次品(次品重一些),用天平称,至少称几次就一定能找出次品来?
让生自己审题,并找出重点、关键的词语,课件用点标出重点词语:次品重、至少、一定。
2、让学生拿出九个正方体,把它当作这几个零件,自己根据刚才的讨论题,说说方法,如果想到有几种方法的,都将方法说出来。
然后让生说说方法,师据生回答板:
零件个数分成的份数保证能找出次品的次数
93(4,4,1)平
不平4(2,2)不平2(1,1)3次
93(3,3,3)平3(1,1,1)
不平3(1,1,1)2次
95(2,2,2,2,1)平(2,2)平不平2(1,1)
不平2(1,1)3次
99(1,1,1,1,1,1,1,1,1)4次
3、观察分析,寻找规律。
“好,刚才我们在9个零件里找次品,方法就有四种了,如果待测物品更多一些,那方法也会更多,如果每次都这样找的话就比较?(麻烦、复杂)对,那我们能不能找出一些规律呢?”
“同学们观察表格,那种方法最简便、最快的?称几次就一定能找出次品来?”
“那这种方法我们分成几份?是怎么分的?”(分成三份,并且平均分)
找次品优秀教学设计5知识目标
能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。
能力目标
让学生通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
重点能够借助纸笔对“找次品”问题进行分析。绿色圃中小学教育网
难点解决问题策略的多样性及运用优化的方法解决问题的有效性。
教学过程
目标导学复习激趣目标导学自主合作汇报交流变式训练
创境激疑(一)情境导入、激发兴趣。
1.生产中多少会产生次品,这就需要质检员找出次品,今天就请你们来充当质检员,上岗前要对大家进行简单测试,看看你们的观察力和分析能力怎么样?
出示3组图片,前两组图中有一个次品,找出来,说根据。
2.师:在我们的日常生活中,也常常有这样的情况,有些物品看起来完全一样,但事实上重量不同,要么重一点要么轻一点的次品,混在合格产品里面。这节课我们就一起来研究如何“找次品”。(板书:找次品)
合作探究(二)初步认识“找次品”基本原理。
1.出示钙片提出问题:这里有3瓶钙片,其中有一瓶少了3粒,你能用什么办法把它找出来吗?师:对,我们可以用天平来帮忙找出次品。
2.让生根据讨论题同桌互相说说方法。3.学生汇报方案并上台边讲边在天平演示。师据生回答板:3(1,1,1)1次
(三)初步认识“找次品”的基本解决方法。
1.老师又拿来了两瓶钙片,和前面的三盒混在一起,你还能用天平将那盒少了两粒的钙片找出来吗?小组讨论:
(1)你把待测物品分成几份?每份是多少?
(2)假如天平平衡,次品在哪里?
(3)假如天平不平衡,次品又在哪里?
(4)至少称几次就一定能找出次品来?
2.老师在投影上演示,边演示边讲。
(四)从多种方法中,寻找“找次品”的最佳方案。
“刚才大家都很聪明,都能在几盒钙片里找出轻的那盒次品来,那如果有的次品是比较重一些的,那你又能不能把它找出来呢?”
1、课件出示例2,有8个零件,其中有一个是次品(次品重一些),用天平称,至少称几次就一定能找出次品来?
2、让学生分析讨论。
(1)让学生以四人为一小组,讨论,然后把结果填在表中。零件个数分成的份数保证能找出次品的次数
(2)汇报交流。
总结这样看来在利用天平找次品的时的最好方法:一是把待测物品分成三份;二是要分得尽量平均。
作业布置第113页练习二十七,第1题、第2题、第4题。
第114页练习二十七,第5题、第6题。
板书设计数学广角
找次品最好方法:
二是要分得尽量平均。
找次品优秀教学设计6教学内容:
《义务教育课程标准实验教科书数学五年级下册》第134~135页。
教学目标:
1.能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。
2.以“找次品”为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。
3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:
经历观察、猜测、试验、推理的思维过程,归纳出解决问题的最优策略。
教学难点:
脱离实物,借助纸笔帮助分析“找次品”的问题。
教、学具准备:
教师用具:3瓶口香糖、课件学生用具:10张圆形纸片
教学过程:
1.创设情景,自主探索。
(1)师:出示3瓶口香糖,提出问题:现在这里有3瓶口香糖,其中有一瓶少了3片,我们就把那一瓶称为次品,(板书:次品)你能用什么办法很快地找到哪一瓶是次品?
生1:数一数里面有多少粒,哪一瓶比另外两瓶少了3粒,就把那瓶找出来了。
师:你是用数的方法来找的.生2:还可以用天平来称。
师:用天平称。好!天平大家见过吗?生:见过。
师:天平上面有两个托盘。如果两个托盘里的东西一样重,天平就会怎么样?
生:平衡。
师:如果不一样重呢?生:天平会一边高,一边低。
师:低的那边物品比较,高的那边物品比较。
2.引导学生探索用天平找次品的方法。
师:大家想一想:有3瓶口香糖,其中有一瓶是次品,利用天平来称,至少称几次一定能找到次品?
生答并演示称法。
3.揭示课题。
好!在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,利用天平把它找出来,我们把这类问题叫做找次品。(板书课题:找次品)
1.设疑:
师:刚才3瓶中有一瓶是次品,利用天平来称,至少几次就一定能找出次品?
生:1次。
师:如果不是3瓶,而是2187瓶,你估计要多少次?点2名学生回答。
师:2187瓶到底需要称多少次?今天我们就来解决这个问题。2187这个数怎么样?
生:很大。
师:我们碰到数据很大的时候,可以用一个策略。可以把这个很大的数变得很小,我们从很小的数开始研究,逐渐寻找规律。这种策略叫做化繁为简。(板书:化繁为简)
那么我们就从很小的数开始研究。刚才3瓶已经研究过了,那再研究大一点的数?
(5)师:我们就来研究5瓶,5瓶中有一瓶是次品,用天平秤来称,至少几次可以保证找到次品?
2.课件出示问题,引导学生利用学具自主探索:拿出5个圆片代替5瓶口香糖,思考一下,怎样找出次品?
3.独立思考,有一定思维结果的时候组织小组交流。指导学生在交流中比较方法。
4.全班汇报。
师:你是怎么称的?天平左右两边怎么放?
生1:(1,1,3)→(1,1,1)2次
生2:(2,2,1)→(1,1)2次
师:不管这样分组,还是这样分组,都是几次保证找到?(2次)
5.教师小结:利用天平找次品,除了可以利用学具,还可以画出这样的示意图来帮助我们思考。
三、解决9件物品中有一件是次品的问题,归纳出找次品的最优方法。
5个离2187还差很多,规律还没找出来,怎么办?再增加几个?板书:91、课件出示问题:9瓶中有一瓶是次品,用天平秤来称,至少几次可以保证找到次品?教师引导分析方法:你可以用圆片摆一摆,也可以像老师这样做记录,看看至少需要几次就一定能找出次品。
2.自主探索。
3、学生汇报称法:
生1:(1,1,1,1,1,1,1,1,1)4次
生2::(4,4,1)→(2,2)→(1,1)3次
生3::(2,2,5)→(2,2,1)→(1,1)
生4::(3,3,3)→(1,1,1)2次
4、教师先引导学生观察、梳理一遍,然后进行比较:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?
提示:这种方法一开始就怎么分的?分成了几份?
5、小结:把9瓶口香糖分成3部分,并且平均分,能够保证找出次品而且称的次数最少。板书:平均分成3部分
1、提出猜测:那么,是否在所有的找次品问题中,这样平均分成3份的方法能保证找出次品而且所需次数一定最少呢?
2、要验证我们的猜想对不对,怎么验证?我们再增加几个来试一下。如果有12瓶,(板书:12)其中有一瓶是次品,按刚才我们的猜想应该怎么分称的次数就最少而且一定能找出次品?(生:平均分成3份,即4,4,4)。迅速在草稿纸上分析一下,看看至少需要几次就一定能找出次品?
生:(4,4,4)→(2,2)→(1,1)3次
我们再来看看别的分法能不能比3次更少。还有哪些分法?
生:(228)(336)(552)(66)请同学们选择一种分法在纸上进行分析。
全班汇报,引导学生比较:有没有哪种分法能让称的次数更少而且保证找出次品?
3、与学生一起小结:这样看来在利用天平找次品的时候,把待测物品分成3份,并且平均分的方法能保证找出次品而且称的次数一定最少,这说明我们刚才的猜想是对的。
2、如果81瓶呢?243瓶呢?729瓶呢?2187瓶?
3、小结:开始我们猜测是2000多次,经过探究我们发现:用数学的眼光去看只要7次,相差如此之大,这就是数学的魅力。
4、思考:刚才我们研究的9、12、27和81等都是3的倍数,如果不是3的倍数,又该怎么办呢?大家课后想一想,我们下节课来研究这个问题。
今天我们学的是找次品的第一课时,当物品数是3的倍数时,利用天平找次品,怎样分组需要称的次数最少?
板书设计:
教后反思:
最近根据学校教导处的安排,我上了这节“找次品”的公开课,上完课后感慨颇多,对有效的课堂教学有了更深的认识。
一、体现“由易到难”的思想。
教材首先出示例1通过利用天平找出5件物品中的1件次品,让学生初步认识找次品的基本方法。我认为在学生初次接触“找次品”问题时,对从5件物品中找出1件次品,难度偏大,学生学习起来有困难。于是我在课本例1的前面,增加了“从3个物品中找1个次品”的内容,这样学生学习起来就较易掌握,当学生理解了从3个物品中找1个次品的最优方法,然后再来探究5个、9个的情况。这样降低学生的思维难度,体现了由易到难的思想。而且从3个物品中找1个次品的最优方法,是均分3份思想的基本模型,把这种情况加以研究确实有必要。另外,考虑到“找次品”的问题比较复杂,一节课的时间有限,将教学内容限定在称量物品的个数是3的倍数的情况展开探究,为下节课探究不是3的倍数的情况作好铺垫。
二、渗透“化繁为简”的思想。
我在教学中体现了化繁为简的数学思想:把复杂的问题简单化,再从解决简单的问题中发现规律,用这个规律解决复杂的问题。在本节课的开始就设计了让学生猜“2187瓶中有一瓶是次品,用天平称,至少要称几次一定能找出次品”,学生猜无论如何都要一千多次,要解决这个难题,我们首先研究3瓶、5瓶、9瓶等逐渐寻找规律和方法,最后找到“均分3份来称所需的次数最少”的方法,然后用找到的方法来解决从2187瓶中找次品的问题。后来经过探究后发现从2187瓶中找一瓶次品只要称7次即可,在这种强烈的对比之中学生感受到数学思想方法的魅力,数学的奇妙!从而激发了学生数学的欲望。
三、体验“猜想验证”的数学思想方法。
猜想验证是一种重要的数学思想方法,正如荷兰数学教育家弗赖登塔尔所说“真正的数学家——常常凭借数学的直觉思维做出各种猜想,然后加以证实。”因此,小学数学教学中教师要重视猜想验证思想方法的渗透,以增强学生主动探索、获取数学知识的能力,促进学生创新能力的发展。
本节课就让学生经历了“实验探究——猜想——验证——归纳”的过程。首先从9瓶中找1瓶次品的几种方法的对比中,我们发现均分3份的方法所需的次数最少,是否无论是多少瓶都是均分3份的方法所需的次数最少呢?为了验证这一猜想,就必须再用一个例子去试验,然后归纳得出结论。学生通过经历知识的形成过程,不仅获得了数学结论,更重要的是逐步学会了获得数学结论的思想方法——猜想验证,提高了主动探索、获取知识的能力,增强了学好数学的信心。
第二篇:找次品教学设计
《找 次 品》 教学目标:
1、通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
2、感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
3、培养学生学习数学的信心和兴趣,体验学习的乐趣。教学重点:
尝试用“找次品”的数学方法解决实际生活中的简单实际问题。教学难点:
在对比与观察中体验最优化思想并运用。课前准备:
学生4人一组;多媒体课件;每组准备模拟天平学具一个、圆形学具若干个。
教学过程:
(一)、课前铺垫,激发兴趣。
师:同学们,我们人类一直不断的探索着太空的奥秘,利用发射航天器传回资料进行科学研究,神州五号飞船的成功发射就是人类航天史上的进步,但是在人类探索太空的行动中也遇到过失败。大家听说过关于美国“挑战者”号发射的事件吗?这个事件曾经轰动全球,今天我把这个事件的视频带来了,我们大家一起来了解一下。(放视频)师:看了这则视频,同学们一定有话要说吧?(自由发言)
师:你知道最后造成机毁人亡的主要原因在哪里吗?请看看这个事件的调查报告:(课件字幕配音显示:据调查,这次灾难的主要原因是航天飞机右翼上一个极小的垫片,由于质量不合格而承受不住太空压力导致爆裂,这个小小的次品零件,造成的损失是七名宇航精英全部遇难,价值十几亿美元的航天飞机坠落太平洋。)师:此时,同学们又想说点什么!(自由发言)由此可见“次品”给人类造成的危害是极大的。(看时间机动,谈谈你在生活中见过哪些次品。)
(二)、导入正题,开展研究。(活动一)
师:在我们的日常生活中,也常常有这样的情况,有些物品看起来完全一样,但事实上重量不同,混着一些个要么重一点要么轻一点的次品,这节课我们就一起来研究如何“找次品”。(板书:找次品)
师:这里有三瓶木糖醇,其中一瓶缺了三粒,你能想办法找出这一瓶次品吗?先说说你的想法。
生:办法一:数一数粒数。办法二:掂一掂,估计是哪瓶。办法三:用天平称。(等等)
师:能找出少三粒的那瓶的办法很多,你喜欢哪种,为什么?(简便,准确)。这节课我们就来讨论如何利用天平称的方法来找次品。(活动二)
师:在利用天平之前,我们先来了解一下天平的工作原理:天平左右各有一个托盘,如果两个托盘里的物品质量相等,天平就保持平衡,如果不相等,重的一端就会下垂,轻的一端就会上扬。
师:那怎样找出三瓶中的那瓶次品呢?先来看看操作提示: 出示:(1)你把待测物品分成几份?每份是多少?选哪些份量?(2)假如天平平衡,次品在哪里?(3)假如天平不平衡,次品又在哪里?
现在请你先自己想一想,然后和同桌说一说自己的想法。
师:好,谁有自己的想法了,到前面演示给大家看,注意:边演示边说说你的想法。B 学生汇报方案并上台边讲边在天平演示。师据生回答板书: 3(1,1,1)1次
(边板书边口述每部分代表什么:3是总数;1、1、1是每份的数量;下面的横线表示称这一组;最后在括号外面标上所用的次数)(活动三)
师:3瓶木糖醇只要称一次就能找到次品,那么如果数量增加到5,称一次能找到次品吗?请同学们拿出老师课前发给每个小组的装有5个珠子的袋子,这次是里面有一个是较重的,请你们还是先思考操作提示中的问题,再小组里合作称一称,至少要称几次才能保证我们一定能找到次品,然后到前边来汇报。出示:(1)你把待测物品分成几份?每份是多少?选哪些份量?(2)假如天平平衡,次品在哪里?(3)假如天平不平衡,次品又在哪里?
生:小组合作称5个珠子,找次品。汇报并操作,师记录到黑板上。
5(2,2,1)
平1次 不平2(1,1)2次
5(1,1,1,1,1)2次
师:至少要称几次才能保证我们一定能找到次品?
生:两次,因为我们不能保证一次就能找到平衡的那四个。
(三)师生小结:
师生:这就是利用天平找出次品的方法,除了用天平外,还可以用这种图示来帮助我们思考问题。回忆一下,老师是怎样记录的,比比谁善于观察。(先写好总数,然后一个括号代表分组,每组几个中间用逗号隔开,第一次称,就在第一组和第二组下划一条横线,箭头表示第一次称后可能出现的结果,假如平,那次品就是第三组的那个,如果不平,次品一定在高起的托盘里的2个里面,只要再称一次就能得出结果,所以在2的下面再下划一条线表示再称一次。最后数数用这种方法确保次品能找到,至少需要称2次。)
(四)、尝试解决实际问题,寻找最优方法。
师:我们学会了找次品的方法,也学会了记录帮助思考问题,就可以解决一些实际问题。出示:某工厂生产的9个零件里有一个是次品(比一般零件要重一些),请你想办法找出次品。
1、同学们可以将珠子当成零件,用天平称,尝试找次品的方法。
要求小组内完成,并由小组长将得出的方法记录下来。操作结束的小组就请坐好。学生探索方法,并记录,师巡视,选择几种典型方法请同学写到白纸上。(要求写大,写清楚。)
2、反馈:请哪组同学先来将自己的方法展示给大家看?(解释为什么取重的一组)
3、小结:同学们想出了这么多种不同的方法,你最喜欢哪种?为什么?(次数最少)
“好,刚才我们在9个零件里找次品,方法就有四种了,如果待测物品更多一些,那方法也会更多,如果每次都这样找的话你觉得怎么样?(麻烦、复杂)对,那我们能不能找出一些规律呢?”看看我们在分9个零件的时候,你能发现些什么? 可能回答: ①分成3组。应对方式:分成3组找的确有优势,因为只要称了一次以后就能确定次品在3组中的哪组了,而其他分法称一次后还不能确定在哪一组里。可是分成3组的还有4,4,1,为什么它就要3次呢?引出平均分。
②平均分成3组。应对方式:这样分有什么好处呢?首先我们分析分3组有什么优势?分3组只要称一次以后就能确定次品在3组中的哪组了,而其他分法称一次后还不能确定在哪一组里。再体现平均分的优势,比较4,4,1,它也是分成了3组,但是需要称3次,原因是3,3,3称了一次以后不管平不平,次品都确定在3个里面,只要再称一次就能找到次品。而4,4,1,假如不平,次品需要在4个里面找,还需要称2次才能找到次品。小结:能平均分成3份的数(3的倍数),我们将它平均分成3份来找次品,次数是最少的。看来平均分在这里也真的很有价值。
据生回答出示:最好方法:把待测物品平均分成三份。
(五)、留有悬念,课余激发探索兴趣。
并不是所有的数都能平均分成3份。比如8,如果在8里找一个较重的次品,请大家想想怎么分组称次数最少?
首先我们有一点可以肯定,分几组最好?(生:分3组)那怎么分呢?思考后回答。学生举例
(1,1,6)3次,(2,2,4)3次,(3,3,2)2次,哪个方法次数最少?有什么规律?分的3个数最接近,第三组和前面相同的两组只差了1个。
得出:不能平均分成3份的,尽量平均分成3份,保证有两份数量相同,并且只和第三组差1个,所用的次数是最少的。
(板)据生回答出示:最好方法:把待测物品平均分成三份,不能平均分的差为1最好。
六、巩固提高
1、出示比尔·盖茨招聘公司职工的问题:假设有81个玻璃球,其中有一个球比其他的球稍重,如果只能利用没有砝码的天平来判定哪一个球重,请问你最少要称多少次,才能保证找到较重的球?
板书:81(27 27 27)4次
(七)、学习反思:
师:这节课你收获了什么?(把总个数平均分或者尽量平均分成3份来称找次品,这是最优的方法,所用的次数是最少的。)“同学们这节课上得不错,其实在日常生活中,我们经常会遇到这样的问题,希望同学们多观察、多思考,从而发现更多知识。”
附:板书设计
找 次 品
3(1,1,1)5(2,2,1)5(1,1,1,1,1)1次 1次 2次 平不平1次 1次(共2次)
尽量平均分
第三篇:找次品 教学设计
找次品 教学设计
表格式教学设计模式题《找次品》时1班级五1编写者
一、教材内容分析《找次品》是人教版数学五年级下册第七单元“数学广角”的内容。在现实生活中,“次品”的情况各不相同,有的是外观与合格品不同,有的是所用质量不合格等。这节的学习中要找的次品就是外观完全相同,但是质量有所差异,并且知道次品比合格品轻(或重),在所有待测物品中只有唯一的一个次品。
二、教学目标(知识与技能、过程与方法、情感态度与价值观)1.知识和技能:通过观察、猜测、操作、画图、推理与合作交流验证等学习方法,探究找次品的策略,能够借助抽象记法对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样化到优化的思维过程。2.过程与方法:经历用天平测次品的过程,体验实验探究、发现运用的学习方法。3情感态度与价值观:在学习活动中,体会数学的优化思想,感受数学知识的魅力,激发学习探究的欲望,培养学生的逻辑思维能力。
三、学习者特征分析五年级学生的思维水平总体上还处在具体运算操作的发展阶段,形象思维是他们的优势。由于在前段的学习中,学生已积累了探索数字规律的基本方法与策略,使学生学会灵活地、有序地思考,及时引导学生归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。
四、教学策略选择与设计“找次品”的教学,旨在通过“找次品”渗透优化思想,引导学生充分感受到数学与日常生活的密切联系。通过本节的教学培养学生用数学的能力。提高学生数学思维能力和解决问题的能力。本节以“找次品”的一系列操作活动为载体,让学生通过动手操作、观察等方式感受生活中解决问题方法的多样性,在此基础上,通过归纳、推理的方法体会运用最优化策略解决问题的有效性,感受数学的魅力。下面结合本次国培学习中贾福录教授主讲的《培养学生应用意识的策略》,来谈谈我在本教学中主要使用的策略及我的设计意图。
五、教学环境及资源准备天平、瓶装口香糖、六、教学过程教学过程教师活动预设学生行为设计意图及资源准备
一、情境导入,感受新知
二、学用天平,了解原理
三、归纳策略,体会最优
四、应用策略,拓展提高
五、堂回顾,知识延伸1986年1月28日,美国第二架航天飞机“挑战者”号在进行飞行时发生爆炸,价值12亿美元的航天飞机化作碎片坠入大西洋,造成世界航天史上最大的悲剧。据调查,这次灾难的主要原因是一个不合格的零(橡皮圈)引起的。可见,不合格零的危害有多大。合格的物品称为正品,不合格的零称为次品,在生活中往往次品与正品相差甚微,有些从外表根本无法辨别。有什么办法把它找出来呢?今天我们就来研究解决这类问题。板书:找次品。
1、师:我这里有3瓶口香糖,观察外观有什么特点?其中有一盒少了3颗。你有什么好办法把这盒少的找出来吗?教师积极评价各种方案,例如:打开瓶子数一数、用手掂掂、用秤称、用天平称等。板书:用天平称师:你会用天平称吗?怎样找出少的那瓶?谁来说一说?能不能一边放1个,另一边放2个呢?师:那么随意拿两盒放在天平上,可能会出现几种情况?看示意图,能否判断次品在哪个盘里?为什么?
2、教学例1师:接下来老师这里有盒钙片,其中一盒少了3颗,怎样利用天平保证把它找出来,你准备先怎样称?需要称几次呢?
(1)教师巡视指导找的方法。
(2)指名学生汇报:请把你的想法说给大家听,可以结合自己的示意图讲。(3)还有别的称法吗?指名说一说。(4)有没有简明快捷的方式可以记录下来呢?演示,教师:你能看懂吗?说一说。
(①、①、3)
3(①、①、1)
2次师:请你试试用这样的快捷记法把第二种称法表示出来。师:第一次称时次品在是在几个里面找?第二次呢?总共称了几次?谁能说说第二种称法的情况?师:一共几种称法?这两种称法有什么不同?(1个1个称,2个2个称)有什么相同地方?(次数,分法)强调:分成3份——左边、右边、旁边各1份。师:第一种称法称第一次时,你最希望看到什么情况?为什么?称了几次?那么为什么还要称第二次呢?(考虑全面:不顺利的情况)出示例2:有一些零,其中有一个是次品(次品重一些),你能用天平至少需要几次就能保证找出次品?(1)你们准备从几个里面找?学生回答后,师:我们从较少的开始9个去探寻其中的规律。请用快捷记法把你想的称法记录下来,在看哪一组写的多,找得快!教师巡视指导。
(3)出示:
生1:9(①、①、7)
7(①、①、)„„4次
生2:9(②、②、)
(②、②、1)„„3次
生3:9(③、③、3)
3(①、①、1)„„2次
生4:9(④、④、1)
4(②、②、0)„„3次(4)教师先引导学生观察、比较:有几种称法?哪种称法次数最少?为什么?引导学生观察比较第三种称法与其他各种称法每组数量。板书:最好平均分
结合板书引导学生小结解决找次品问题的最优策略。(1)有12瓶水,其中11瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水来?独立思考,在纸上进行分析。
(2)如果有27瓶水,其中26瓶质量相同,另有1瓶比其他的水略轻一些。至少称几次能保证找出这瓶盐水来呢?
通过这节你学会了解决什么问题?怎样解决最优?师:这节我们研究的是总数可以平均分成3份的这一类找次品问题,总数不可以平均分成3份的找次品问题下一时再继续研究。还有一些这类问题,比如说:次品不止一个;不知是较轻还是较重;总数里可能有也可能没有等等。果感兴趣的同学,后可以再去研究研究。指名学生说明天平的使用方法和特点。请试试用你喜欢的方法把你的想法清晰地表示出来,再和同座说一说。学生展示记录方法小组互相说一说,想到几种就写几种。(2)请学生展示方法并说明,教师帮助整理称法。引导学生观察比较第二次次品所在范围,为什么第三种称法次品所在范围最小?学生汇报。说说自己的想法。重点表述:分成几份?每份是多少?至少需要几次就可以找出这瓶水?吸引学生兴趣,自然引入新,同时进行德育渗透:做事要细心谨慎,小小的错误可能造成很大的危害。让学生初步感受到化繁为简的数学探究方法。板书设计:
找
次
品
用天平称
分成3份
平均分——最优
(②、②、1)
2(①、①、0)
2次
七、教学反思
第四篇:找次品教学设计
《找次品》教学设计
济渎路学校 苗洁
教学目标:
1.借助实物操作、画图等活动,理解并解决简单的找次品问题。
2.不断经历“找次品问题”的优化过程,寻找最优分组策略,体会优化的本质。教学难点:寻找最优分组策略,体会优化的本质 教学过程:
一、感知天平的用法
1.出示两颗棋子,里面有一颗比较轻的次品,怎样找出其中的次品? 学生谈自己的方法,之后师引导:利用天平的平衡去研究 2.出示无托盘的天平,引导学生简单了解。
二、新知探究: 1.研究1:
生谈2棋子中次品的找法 2.研究2:从3个棋子中找次品 师:几次可以找出来呢?
(1)生谈自己的想法,师组织交流(2)师边听学生发言边板书
(3)根据学生的汇报,师问:为什么不分成(2,1),交流小结:天平两端棋子的数量应该相等
3.研究3:从5颗棋子中找次品
(1)学生同桌二人一组尝试(可借助棋子动手操作,但注意做好记录)(2)提名汇报,师根据学生的交流板书不同的情况 可能有:5(1,1,1,1,1);5(1,1,3);5(2,2,1); 注意让学生汇报自己探究得到的次数。(4)根据学生交流的次数小结: 并不是分的份数越多用的次的就越少。
(5)讨论:5(2,2,1)和5(1,1,3)这种方法都只用了2次,它的时间节省在哪里? 引导学生发表意见,小结:因为它分了三份,天平上两边各一份,外面一份,没有产生浪费和闲置的情况。
4.研究4:从8个棋子中找次品(1)学生尝试
(2)汇报交流,师板书分法
可能有:8(1,1,6)3次;8(2,2,4)3次;8(3,3,2)2次(3)研讨分析:为什么8(3,3,2)的次数最少? 学生发表自己的意见,师引导分析:
8(1,1,6),当第一次平衡时,次品在剩余的6个棋子中; 8(2,2,4),当第一次平衡时,次品在剩余的4个棋子中;
8(3,3,2),当第一次平衡时,次品在剩余的2颗棋子中;当第一次不平衡时,次品在剩余的4颗棋子中。也就是说,最不好的情况就是在剩余的4颗棋子中。小结:8(3,3,2)这种分法,把次品缩小在最小的范围内,所以次数最少。5.研究5:从9个棋子中找次品
(1)学生尝试(不具体推理,只说分法)(2)汇报交流
可能还会有:9(1,1,7);9(2,2,5);9(3,3,3);9(4,4,1)A.引导学生交流:猜想哪种分法所用的次数最少?为什么? B、验证,分组进行次数研究
(3)根据学生交流的结果,小结:平均分3份的话,不论怎么秤,次品限定的范围是一样的,也是最小的,所以这种方法所用的次数最少。
(4)回到“8个”,它不能平均分成3份啊,那最少的情况是怎样的? 引导小结:能平均分的要平均分,不能平均分的要让每份之间相差最少。6.研究6:从27个棋子中找次品
(1)同桌一组进行交流,看哪组最快找到次数(2)最快的小组谈方法
师根据学生交流的方法适当进行引导:27(9,9,9),把前两组秤一下,不论平衡不平衡,第二步总要从锁定的个中找次品,根据前面的经验,还需要次,所以加上之前的一次,27个中找次品就只需要3次了。
(3)师小结:前面积累的知识经验可以成为后面知识探究的基础。
三、拓展: 1.如果从81个棋子中找出一个次品,需要几次? 2.如果从243个棋子中找出一个次品,需要几次?
引导生小结:研究简单的问题,可以帮助我们探究复杂的问题,这种方法叫做“化繁为简”。从简单问题入手,在各中方案和方法中选出最优的方法,就叫“方法的优化”,优化的方法和规律可以成为解决复杂问题的手段。
第五篇:《找次品》教学设计
《找次品》教案设计
教学设计:朱芬
教学内容:教科书第111页例
1、例2 教学重、难点:借助操作、画图等活动理解并解决简单的找次品的问题,再次基础上归纳出解决这类问题的最优分组策略,经历由多样化到优化的思维过程。教具准备:3瓶木糖醇(其中一瓶少2片)教学过程:
一、导入
师:在生活中常常有这样一些情况,在一些看起来完全相同的物品中混着一个质量不同的,轻一点或者是重一点,我们习惯把这类物品称之为“次品”。(板书课题:次品)
我买了3瓶木糖醇作为你们今天的奖励,想吃吗?我也喜欢吃呀!忍不住就打开1瓶吃了2片,哪瓶我吃过你们能想办法找出来吗?(老师板书:找)
这个问题同学们先独立思考一下,有办法的同学举手。1)独立思考、鼓励发言、全班汇报
生:用手掂掂,打开瓶子数一数,用天平称,用秤称。师:刚才有同学说使用天平,(课件出示天平图片)
师:同学们,大家会使用天平吗?请学生说
天平有两个托盘,如果两个托盘里的物品质量相等,天平就保持平衡,如果不相等,轻的一端就会怎么样(上扬),重的一端就会怎么样(下沉)。
(板书:平衡 不平衡 下沉,上扬)
师:如果使用天平来找出这3瓶木糖醇的1瓶次品,你会怎么做呢? 师:刚才有同学说一瓶一瓶的称,要称3次才能找到,那你能告诉我你用天平称要称几次呢
生:1次。
师:我没听错吧!1次怎么行?
师:那你上台来,说说你的办法,我还就不信了,称1次就找到了 3)学生上台展示(生上台)生:没天平
师:好办!那你现在就是天平。听我口令,两手侧——平——举,掌心向上。大家注意看啦,世界上体积最大的天平即将开始工作,来吧。
生:天平两端各放1瓶,(是任意拿的吗)如果天平两端平衡,那次品就在天平外的那瓶;如果天平两端不平衡,那次品就在上扬的一端。
师:你们都听明白了吗?(明白)这种办法是1次找到次品吗?(是)称1次一定可以找到吗?(一定)【板书一定】
师:这个方法真好,看来这台太平还真是智能型的,不尽说明白了,也让我们看明白了,你请回吧。
4)小结,板书记录
师:那如果是次品比较重的话,用天平称,也是1次可以找到吗? 生:是的。师:能保证找到吗? 生:能。【板书保证】
师:如此看来,次品轻重不会影响称的次数,要找到它,我们需要判断的是次品到底在天平上扬的一端,还是在下沉的一端。
我们把刚才的推理用简单的形式记录下来 3(1,1,1)1次
边板书边讲解:先任意拿2瓶放在天平的两端,天平可能平衡也可能不平衡,如果平衡,上扬的那瓶是次品,如果平衡,则第3 瓶是次品。只称1次就找到。
师:3个太少了,是吧,你看,不用老师教,你们都知道了。我们来点挑战性的。想挑战吗?
二、再次探究“关键数目”‘初步感知、归纳规律
出示问题:8个零件里有1个是次品(次品重一些)。假如用天平称,至少称几次能保证找出次品?
师:“至少称几次能保证找出次品”你是怎样理解这句话的? 8个零件中要保证找到那1个次品,至少需要称几次呢?你们猜猜
学生进行猜测:3次 4次
教师:似乎不太容易很快得出结论,那么请同学们以小组为单位合作探究
1)、出示合作要求: 学习任务:
(1)拿出天平图片和8个圆片,8个圆片代替8个次品。小组合作、交流,称看看
(2)想一想还有其它方法称吗?试一试,每种称法至少几次一定能找到次品?(3)将你们组的结论填在学习卡1上。
提示:小组长做好分工,汇报时要说出思考过程。将你们组的结论填在学习卡1上。
(学生操作)
2)全班交流,对比策略,统一认识。
师:现在我们来交流一下,看看大家有哪些办法可以找到次品。师:为了公平起见,这次我们请出一台女天平。
学生1:现将8个球放在天平的两端,每边各放4个。如果那边上扬,次品就在那边。再将4个球在放在天平两侧,每边2个,„„
学生边说老师边用图示表示出来
评价语:你分析得非常全面,非常透彻。感谢这台漂亮的天平。还有没有不用的方法,也可以保证找到次品?
生2:(3,3,2)2次
评价:这台天平也很有特点,不仅操作得好,说的也明白。生3:(2,2,4)3次 注意提示学生思考,保证能找到吗? 生4:(1,1,6)3次
师:经过大家的讨论,看来最少的次数应该是2次。如果是9个零件呢?
2、探究9个零件的情况。
教师:9个比8个多一个,怎样称用的次数最少呢?和刚才一样小组讨论一下吧!提示:可以像老师这样画图表示过程
学生讨论 学生汇报: 生
1、(4,4,1,)生2(3,3,3,)生3(2,2,5)生4(1,1,7)师:经过大家的讨论得出了9个零件中找1个次品,至少称2次。
3、对比总结。
教师:大家回过头来比较一下,我们将8个零件分成(3,3,2)三组称了2次,可是把8个零件分成(4,4)2组却称了3次,多称的一次多在哪儿呢?
学生思考回答
教师:你们明白他的意思吗?你们看,称(3,3)或(4,4),都只称一次就能确定次品在哪边。可接下来,第一种是要在3个里找,只需要称一次;第二个是要在4个里找,就必须称两次,所以就多了一次。
教师:我们再来看看9分成的这4种情况中,(4,4,1)比(3,3,2)也多称了一次,多的一次多在哪儿呢?(生回答)
教师:8个零件分成这四种情况,称的次数不同;9个零件也有四中情况,称的次数也不同,到底是什么原因呢?
生:分组的组数不同,每组的数量也不同。
教师:到底怎么分,才能既保证找到次品,又能使称的次数最少呢?结合黑板上的表
学生思考-小组讨论
学生
1、我觉得应该分成3组,分成3组称一次就能确定次品在哪组里。学生
2、我觉得也应该分成3组,能平均分的要平均分,不能平均分的每组数量要尽量接近。这样每次称完,次品就被确定在更小的范围内了,称的次数也就最少。
教师小结:你们太了不起了!通过刚才的实验、讨论、交流、不仅解决了问题,而且还发现了其中分组的秘密和规律。
三、巩固联系
1、有6颗外表一模一样的玻璃珠子,其中有一颗玻璃珠子稍微轻一些。用天平称,至少称几次能保证找到次品?
2、在26个金币中,有一枚假金币,假金币除了质量轻一些外,其他无任何差别,如果用天平称,至少称几次就能保证找出这枚假金币?
能力提高题
一个古玩商店经理不小心将一枚假铜币混入了10个真铜币中,这10枚真铜币外形、质量完全相同,假铜币外形与真铜币一样,只是质量不一样,但不知道比真铜币轻还是重。如果用天平称,至少称几次,就能保证帮助经理从11枚铜币中找出假铜币?
结束语:最后一个问题:是谁帮助你掌握了找次品的方法?(天平)附:脑筋急转弯