第一篇:数学分析课件13.2多元函数的极限和连续性457.5解读
零点存在定理 设 f x , y 在区域 D(不一定是有界闭 区域)内连续,并且在 D 内两点 M a , b , N , 异 号,也就是 f a , b f , 0,那么用完全位于 D 内 的任意的折线 l 联结 M 和 N 时,在 l 上必有一点 1 1 1 1 1 1 1 1 1 1 1 1 M x , y 满足 f x , y 0 【数学分析课件】 五、二重极限和二次极限 前面所考虑的 f x , y 的极限也称为二重极限。此外,我们还要讨论 x , y 先后相继地趋于各自的极限时 f x , y 的极限,称为 二次极限。定理 若 f x , y 在点
a , b 的二重极限为 lim f x , y A 有限或无限 x a y b f 且对任一靠近b 的 y,当 x a 时, x , y 存在 有限极 y lim f x , y 限 x a 则二次极限 lim lim f x , y lim y y b x a y存在且等于二重极限 b A.【数学分析课件】
第二篇:第十三章多元函数的极限和连续性
《数学分析(1,2,3)》教案
第十三章 多元函数的极限和连续性
§
1、平面点集
一 邻域、点列的极限
定义1 在平面上固定一点M0x0,y0,凡是与M0的距离小于的那些点M组成的平面点集,叫做M0的邻域,记为OM0,。
定义2 设Mnxn,yn,M0x0,y0。如果对M0的任何一个邻域OM0,,总存在正整数N,当nN时,有MnOM0,。就称点列Mn收敛,并且收敛于
M0,记为limMnnM0或xn,ynx0,y0n。
性质:(1)xn,ynx0,y0xnx0,yny0。(2)若Mn收敛,则它只有一个极限,即极限是唯一的。二 开集、闭集、区域
设E是一个平面点集。
1. 内点:设M0E,如果存在M0的一个邻域OM0,,使得OM0,E,就称M0是E的内点。2. 外点:设M1E,如果存在M1的一个邻域OM1,,使得OM1,E,就称M1是E的外点。
3. 边界点:设M*是平面上的一点,它可以属于E,也可以不属于E,如果对M*的任何邻域OM*,,其中既有E的点,又有非E中的点,就称M*是E的边界点。E的边界点全体叫做E的边界。4. 开集:如果E的点都是E的内点,就称E是开集。
5. 聚点:设M*是平面上的一点,它可以属于E,也可以不属于E,如果对M*的任何邻域OM*,,至少含有E中一个(不等于M*的)点,就称M*是E的聚点。性质:设M0是E的聚点,则在E中存在一个点列Mn以M0为极限。6. 闭集:设E的所有聚点都在E内,就称E是闭集。
7. 区域:设E是一个开集,并且E中任何两点M1和M2之间都可以用有限条直线段所组成的折线连接起来,而这条折线全部含在E中,就称E是区域。一个区域加上它的边界就是一个闭区域。三平面点集的几个基本定理
1.矩形套定理:设anxbn,cnydn是矩形序列,其中每一个矩形都含在前一个矩形中,并且
13-1
《数学分析(1,2,3)》教案
bnan0,dncn0,那么存在唯一的点属于所有的矩形。
2.致密性定理:如果序列Mnxn,yn有界,那么从其中必能选取收敛的子列。
3.有限覆盖定理:若一开矩形集合x,y覆盖一有界闭区域。那么从里,必可选出有限个开矩形,他们也能覆盖这个区域。
N4.收敛原理:平面点列Mn有极限的充分必要条件是:对任何给定的0,总存在正整数N,当n,m时,有rMn,Mm。
§2 多元函数的极限和连续
一 多元函数的概念
不论在数学的理论问题中还是在实际问题中,许多量的变化,不只由一个因素决定,而是由多个因素决定。例如平行四边行的面积A由它的相邻两边的长x和宽y以及夹角所确定,即Axysin;圆柱体体积V由底半径r和高h所决定,即Vrh。这些都是多元函数的例子。
2一般地,有下面定义:
定义1 设E是R的一个子集,R是实数集,f是一个规律,如果对E中的每一点(x,y),通过规律f,在R中有唯一的一个u与此对应,则称f是定义在E上的一个二元函数,它在点(x,y)的函数值是u,并记此值为f(x,y),即uf(x,y)。
有时,二元函数可以用空间的一块曲面表示出来,这为研究问题提供了直观想象。例如,二元函数xR22x2y2就是一个上半球面,球心在原点,半径为R,此函数定义域为满足关系式xyR222222的x,y全体,即D{(x,y)|xyR}。又如,Zxy是马鞍面。二 多元函数的极限
2定义2
设E是R的一个开集,A是一个常数,二元函数fMf(x,y)在点M0x0,y0E附近有定义.如果0,0,当0rM,M0时,有f(M)A,就称A是二元函数在M0点的极限。记为limfMA或fMAMM0。
MM02定义的等价叙述1 设E是R的一个开集,A是一个常数,二元函数fMf(x,y)在点M0x0,y0E附近有定义.如果0,0,当0xx0yy0时,有f(x,y)A,就称A是13-2
《数学分析(1,2,3)》教案
二元函数在M0点的极限。记为limfMA或fMAMM0。
MM02定义的等价叙述2 设E是R的一个开集,A是一个常数,二元函数fMf(x,y)在点M0x0,y0E附近有定义.如果0,0,当0xx0,0yy0且x,yx0,y0时,有
f0f(x,y)A,就称A是二元函数在M0点的极限。记为limMMMA或fMAMM0 。注:(1)和一元函数的情形一样,如果limf(M)A,则当M以任何点列及任何方式趋于M0时,f(M)MM0的极限是A;反之,M以任何方式及任何点列趋于M0时,f(M)的极限是A。但若M在某一点列或沿某一曲线M0时,f(M)的极限为A,还不能肯定f(M)在M0的极限是A。所以说,这里的“”或“”要比一元函数的情形复杂得多,下面举例说明。例:设二元函数f(x,y)xyx2y22,讨论在点(0,0)的的二重极限。
例:设二元函数f(x,y)2xyx2y或2,讨论在点(0,0)的二重极限是否存在。
0,例:f(x,y)1,xy其它y0,讨论该函数的二重极限是否存在。
二元函数的极限较之一元函数的极限而言,要复杂得多,特别是自变量的变化趋势,较之一元函数要复杂。例:limxyxyx2xyysinxyx2。
例:① limx0y0② lim(xy)ln(xy)③ lim(xy)ex0y0xy2222222(xy)
例:求f(x,y)xy3223xy在(0,0)点的极限,若用极坐标替换则为limrr0coscos32sin23sin0?(注意:cos3sin在374时为0,此时无界)。
xyx22例:(极坐标法再举例):设二元函数f(x,y)y2,讨论在点(0,0)的二重极限.
证明二元极限不存在的方法.
基本思想:根据重极限定义,若重极限存在,则它沿任何路径的极限都应存在且相等,故若1)某个特殊路径的极限不存在;或2)某两个特殊路径的极限不等;3)或用极坐标法,说明极限与辐角有关. 例:f(x,y)xyx2y2在(0,0)的二重极限不存在.
13-3
《数学分析(1,2,3)》教案
三
二元函数的连续性
定义3
设fM在M0点有定义,如果limf(M)f(M0),则称fM在M0点连续.
MM0“语言”描述:0,0,当0 四 有界闭区域上连续函数的性质 有界性定理 若fx,y再有界闭区域D上连续,则它在D上有界。一致连续性定理 若fx,y再有界闭区域D上连续,则它在D上一致连续。 最大值最小值定理 若fx,y再有界闭区域D上连续,则它在D上必有最大值和最小值。 nP0和P1是D内任意两点,f是D内的连续函数,零点存在定理 设D是R中的一个区域,如果f(P0)0,f(P1)0,则在D内任何一条连结P0,P1的折线上,至少存在一点Ps,使f(Ps)0。 五 二重极限和二次极限 在极限limf(x,y)中,两个自变量同时以任何方式趋于x0,y0,这种极限也叫做重极限(二重极限).此xx0yy0外,我们还要讨论当x,y先后相继地趋于x0与y0时f(x,y)的极限.这种极限称为累次极限(二次极限),其定义如下: 若对任一固定的y,当xx0时,f(x,y)的极限存在:limf(x,y)(y),而(y)在yy0时的xx0极限也存在并等于A,亦即lim(y)A,那么称A为f(x,y)先对x,再对y的二次极限,记为yy0limlimf(x,y)A. yy0xx0同样可定义先y后x的二次极限:limlimf(x,y). xx0yy0上述两类极限统称为累次极限。 注意:二次极限(累次极限)与二重极限(重极限)没有什么必然的联系。例:(二重极限存在,但两个二次极限不存在).设 11xsinysinyxf(x,y)0x0,y0x0ory0 由f(x,y)xy 得limf(x,y)0(两边夹);由limsinx0y0y01y不存在知f(x,y)的累次极限不存在。 例:(两个二次极限存在且相等,但二重极限不存在)。设 13-4 《数学分析(1,2,3)》教案 f(x,y)xyx2y2,(x,y)(0,0) 由limlimf(x,y)limlimf(x,y)0知两个二次极限存在且相等。但由前面知limf(x,y)不存在。 x0y0y0x0x0y0例:(两个二次极限存在,但不相等)。设 f(x,y)xx22yy22,(x,y)(0,0) 则 limlimf(x,y)1,limlimf(x,y)1;limlimf(x,y)limlimf(x,y)(不可交换) x0y0y0x0x0y0y0x0上面诸例说明:二次极限存在与否和二重极限存在与否,二者之间没有一定的关系。但在某些条件下,它们之间会有一些联系。 定理1 设(1)二重极限limf(x,y)A;(2)y,yy0,limf(x,y)(y)。则 xx0yy0xx0yy0lim(y)limlimf(x,y)A。 yy0xx0(定理1说明:在重极限与一个累次极限都存在时,它们必相等。但并不意味着另一累次极限存在)。推论1 设(1)limf(x,y)A;(2)y,yy0,limf(x,y)存在;(3)x,xx0,limf(x,y)xx0yy0xx0yy0存在;则limlimf(x,y),limlimf(x,y)都存在,并且等于二重极限limf(x,y)。 yy0xx0xx0yy0xx0yy0推论2 若累次极限limlimf(x,y)与limlimf(x,y)存在但不相等,则重极限limf(x,y)必不存在(可xx0yy0yy0xx0xx0yy0用于否定重极限的存在性)。例:求函数fx,yxy22222xyxy在0,0的二次极限和二重极限。 13-5 §7.1多元函数的概念、极限与连续性 一.多元函数的基本概念 1.引例 在自然科学和工程技术中常常遇到一个变量依赖于多个自变量的函数关系,比如: 例1矩形面积S与边长x,宽y有下列依从关系: Sxy(x0,y0). 其中,长x与宽y是独立取值的两个变量.在它们变化范围内,当x,y取定值后,矩形面积S有一个确定值与之对应. 例2在第7章中我们学习了曲面的方程,例如椭圆抛物面的方程为:x2y2x2y2z22,双曲抛物面的方程为z22,这里的z坐标既跟x有关,又跟ababy有关,它是x,y的二元函数.2.多元函数的概念 定义1设D是R2的一个非空子集,映射f :DR称为定义在D上的二元函数,记为 zf(x,y)(x,y)D(或zf(P)PD)其中,点集D称为该函数的定义域,x,y称为自变量,z称为因变量.上述定义中,与自变量x、y的一对值(x,y)相对应的因变量z的值,也称为f 在点(x y)处的函数值,记作f(x,y),即zf(xy).函数f(x,y)值域:f(D){z|zf(x,y),(x,y)D}.函数的其它符号zz(x,y),zg(x,y)等.类似地可定义三元函数uf(x y z),(x y z)D以及三元以上的函数.一般地,把定义1中的平面点集D换成n维空间Rn内的点集D 映射f :DR称为定义在D上的n元函数,通常记为uf(x1,x2,...,xn),(x1,x2,...,xn)D,或简记为uf(x),x(x1,x2,...,xn)D,也可记为uf(P),P(x1,x2,...,xn)D.关于函数定义域的约定:在一般地讨论用算式表达的多元函数uf(x)时,就以使这个算式有意义的变元x的值所组成的点集为这个多元函数的自然定义域.因而,对这类函数它的定义域不再特别标出.例如: 函数zln(xy)的定义域为{(x,y)|xy>0}(无界开区域) 函数zarcsin(x2y2)的定义域为{(x,y)|x2y21}(有界闭区域) 二元函数的图形点集{(x,y,z)|zf(x,y),(x,y)D}称为二元函数zf(x,y)的图形,由第6章的学习知,二元函数的图形是一张曲面.例如zaxbyc是一张平面,而函数z=x2+y2的图形是旋转抛物面.例1求二元函数z9x2y2的定义域. 解 容易看出,当且仅当自变量x,y满足不等式 x2y29, 函数z才有定义.其几何表示是xOy平面上以原点为圆心,半径为3的圆内及圆周边界上点的全体,如图7.1.1所示.即函数z的定义域为 x2y29. 图7.1.1 图7.1.2 例2求函数zln(xy)的定义域. 解 函数的定义域为xy0,其几何图形是xOy平面上位于直线yx上方的半平面,而不包括直线的阴影部分,如图7.1.2所示. x2y2arcsec(x2y2)的定义域. 例3求函数zarcsin2解 函数z是两个函数的和,其定义域应是这两个函数的定义域的公共部分.函数的定义域由不等式组 22xy2 22xy1构成,即1x2y22. 定义域的图形是圆环(包括边界),如图7.1.3所示. 图7.1.3 图7.1.4 例5求函数z11xy22的定义域. 解 函数的定义域为 1(x2y2)0,即x2y21.它的图形是不包括边界的单位圆,如图7.1.4所示. 二多元函数的极限 与一元函数的极限概念类似,如果在P(x,y)P0(x0,y0)的过程中,对应的函数值f(x,y)无限接近于一个确定的常数A,则称A是函数f(x,y)当(x,y)(x0,y0)时的极限 定义2设二元函数f(P)f(xy)的定义域为D,P0(x0,y0)是D的聚点.如果存 (,)DUP(,)0时,在常数A,使得对于任意给定的正数,总存在正数,当Pxy总有 |f(P)A||f(xy)A| 成立,则称常数A为函数f(x,y)当(x,y)(x0,y0)时的极限,记为 (x,y)(x0,y0)limf(x,y)A,或f(x,y)A((x,y)(x0,y0)也可简记为 PP0limf(P)A或f(P)A(PP0)上面定义的极限也称为二重极限.定义用两个正数,和相关距离对极限过程做出了精确描述,这种描述通常称为—语言,该语言可以用来验证某个常数是函数在相关过程中的极限.极限概念的推广:在定义2中将P(x,y)改为P(x1,x2,…,xn)即可得到n元函数的极限.多元函数的极限运算法则与一元函数的运算法则类似.例5 设f(x,y)(x2y2)sin证 因为 |f(x,y)0||(x2y2)sin10| |x2y2||sin1| x2y2,x2y2x2y21,求证limf(x,y)0 (x,y)(0,0)x2y2可见 >0,取,则当 0(x0)2(y0)2 即P(x,y)DU(O,)时,总有 |f(xy)0|,因此(x,y)(0,0)limf(x,y)0 sin(x2y).例6求极限limx0x2y2y0sin(x2y)sin(x2y)x2ylim22,令u=x2y,则 解 lim222x0xyx0xyxyy0y0x2ysinu1sin(x2y)12xylimx1,lim=而x22222x0u0xyu2xy2xyy0x00,sin(x2y)0.所以limx0x2y2y0例7证明limxy不存在.x0x2y2y0证取ykx(k为常数),则 limx0y0xyxkxklim,x2y2x0x2k2x21k2ykx易见,所要求的极限值随k的变化而变化,故limx3y例8证明lim6不存在.x0xy2y0xy不存在.x0x2y2y0kx3yx3kx3,其极限值随k的不同而变证取ykx,lim6limx0xy2x0x6k2x61k233y0ykx化,故极限不存在.例9证明lim(1xy)x0y01xy极限不存在.证取xn0,ynlim(1xnyn)n1xnyn1(n为自然数),则当n时,yn0,且 nlim(10)n101/n1.11,则当n时,xn0,yn0,且 取xn,ynnn1lim(1xnyn)n1xnyn1lim1nn(n1)n(n1)1, e1xy因为对于不同的子列,所求得的极限的值不同,故lim(1xy)x0y0不存在.三多元函数的连续性 1.多元函数连续性概念 定义3设二元函数f(P)f(x,y)的定义域为D(1)P0(x0,y0)为D的聚点且P0D.如果 (x,y)(x0,y0)limf(x,y)f(x0,y0),则称函数f(x,y)在点P0(x0,y0)连续.(2)设D内的每一点都是D的聚点,如果函数f(x,y)在D的每一点都连续 则称函数f(x,y)在D上连续 或称f(x,y)是D上的连续函数.二元函数的连续性概念可相应地推广到n元函数f(P)上去.一元基本初等函数可看成其中一个自变量不出现的二元函数,很容易证明,把一元基本初等函数看成二元函数时它们都是连续的.例10 设f(x,y)cosx,证明f(x y)是R2上的连续函数.证 对于任意的P0(x0,y0)R2,因为 (x,y)(x0,y0)limf(x,y)(x,y)(x0,y0)limcosxcosx0f(x0,y0) 所以,函数f(x,y)cosx在点P0(x0,y0)连续,由P0的任意性知 cosx作为x y的二元函数在R2上连续.类似的讨论可知 一元基本初等函数看成二元函数或二元以上的多元函数时,它们在各自的定义域内都是连续的.定义4设函数f(xy)的定义域为D P0(x0y0)是D的聚点.如果函数f(xy)在点P0(x0y0)不连续 则称P0(x0,y0)为函数f(xy)的间断点.注 间断点可能是孤立点也可能是曲线上的点.可以证明 多元连续函数的和、差、积仍为连续函数,连续函数的商在分母不为零处的点仍连续;多元连续函数的复合函数也是连续函数.多元初等函数 与一元初等函数类似,多元初等函数是指可用一个式子所表示的多元函数,这个式子是由常数及具有不同自变量的一元基本初等函数经过有限次的四则运算和复合运算而得到的.xx2y2x2y2z2例如 cos(xy+z)都是多元初等函数.e1y2一切多元初等函数在其定义区域内是连续的.所谓定义区域是指包含在定义域内的区域或闭区域.由多元连续函数的连续性 如果要求多元连续函数f(P)在点P0处的极限 而该点又在此函数的定义区域内 则 pp0limf(P)f(P0) 例11讨论二元函数 x3y3,(x,y)(0,0)f(x,y)x2y2 0,(x,y)(0,0)在(0,0)处的连续性.解由f(x,y)表达式的特征,利用极坐标变换:令 xcos,ysin,则 (x,y)(0,0)limf(x,y)lim(sin3cos3)0f(0,0),0所以函数在(0,0)点处连续.y例12求极限limln(yx).x021xy1y1解 limln(yx)ln(10)1.x021x10y1exy.例13求limx0xyy1exye01exy2.解 因初等函数f(x,y)在(0,1)处连续,故 limx0xy01xyy12.多元连续函数的性质 性质1(有界性与最大值最小值定理)在有界闭区域D上的多元连续函数,必定在D上有界且在D上取得它的最大值和最小值.性质1表明:若f(P)在有界闭区域D上连续,则必存在常数M0,使得对一切PD,有|f(P)|M,且存在P1、P2D,使得 f(P1)max{f(P)|PD},f(P2)min{f(P)|PD} 性质2(介值定理)在有界闭区域D上的多元连续函数必取得介于最大值和最小值之间的任何值.问题讨论: 1.若点(x,y)沿着无数多条平面曲线趋向于点(x0,y0)时,函数f(x,y)都趋向于A,能否断定2.讨论函数 xy2,x2y2024f(x,y)xy 20,xy20(x,y)(x0,y0)limf(x,y)A? 的连续性.3.你能否用—语言证明 sin(x2y)lim220.x0xyy0 本节引入了多元函数概念,给出了多元函数极限的定义和计算方法,通过例题介绍了根据定义证明极限存在(即-语言)和不存在(沿不同方向或取不同子列得不同值)的方法,最后讨论了多元连续函数,给出了定义和它的基本性质.习题7.1 y1.设fxy,x2y2,求f(x,y).xx22已知函数f(x,y)xyxycot2,试求f(tx,ty).y3求下列各函数的定义域(1)zln(y25xy1)(2)z11 22xyxyxy(3)z(4)uR2x2y2z21(Rr0) 2222xyzr(5)uarcsinzxy22 4 求下列各极限 1x2y(1)lim(x,y)(0,3)x3y3(2)limln(yex)xy22(x,y)(1,1)(3)2xy4 xy(x,y)(0,0)limlimxy xy11(4)(5)(x,y)(0,0)sin(xy) (x,y)(0,2)xlim1cos(x2y2)(6)lim22(x,y)(0,0)(x2y2)exy5证明下列极限不存在(1)xy (x,y)(0,0)xylim(2)xy (x,y)(0,0)xyxylimeyax6函数z(a为常数)在何处间断? y2x7用 - 语言证明 (x,y)(0,0)limxy0 22xy 一、多元函数、极限与连续 ㈠二元函数 .二元函数的定义:设 D 是平面上的一个点集,如果对于每个点 P(x,y)∈ D,变量 按照 一定法则总有确定的值与它对应,则称 是变量 x、y 的二元函数(或点 P 的函数),记为 (或),点集 D 为该函数的定义域,x、y 为自 为该函数值域。由此变量,为因变量,数集也可定义三元函数以及三元以上的函数。二元函数的图形通常是一张曲面。例如 面。 ㈡二元函数的极限 ⒈设函数 f(x,y)在开区域(或闭区域)D 内有定义,是 D 的内点或边界点,如果对于任意给定的正数,总存在正数,使得对于适合不等式,都有 的一切点 是球心在原点,半径为 1 的上半球 成立,则称常数 A 为函数f(x,y)当 或 , 这里 时的极限,记作 。为了区别一元函数的极限,我们把二元函数的极限叫做二重极限。⒉注意:二重极限存在是指 都无限接近A。因此,如果条定直线或定曲线趋于 沿任意路径趋于,函数 沿某一特殊路径,例如沿着一时,即使函数无限接近于某一确定值,我们也不能由此判定函数的极限存在。 ㈢多元函数的连续性 .定义:设函数 f(x,y)在开区间(或闭区间)D 内有定义,是 D 的内点或边界点且 。如果 连续。如果函,则称函数 f(x,y)在点 数 f(x,y)在开区间(或闭区间)D 内的每一点连续,那么就称函数 f(x,y)在 D 内连续,或者称 f(x,y)是 D 内的连续函数。2 .性质 ⑴一切多元初等函数在其定义域内是连续的; ⑵在有界闭区域 D 上的多元连续函数,在 D 上一定有最大值和最小值; ⑶在有界闭区域 D 上的多元连续函数,如果在 D 上取两个不同的函数值,则它在 D 上取得介于这两 个值之间的任何值至少一次; ⑷在有界闭区域 D 上的多元连续函数必定在 D 上一致连续。 二、偏导数和全微分 ㈠偏导数 ⒈偏导数定义:设函数 在点 的某一邻域内有定义,时,相应地函数有增量 存在,则称此极限为 处对 的偏导数,记作,当 固定 在而 在处有增量,如果函数 或 类似,函数 在点 在点 处对 的偏导数定义为,记作 际中求,或。在实的偏导数,并不需要用新的方法,因为这里只有一个自变量在变动,另一个自变量是看作固定的,所以求 时只要将暂时看作常量而对 求导数;求 时,则只要将 暂时看作常量而对 求导数。偏导数可以推广到二元以上的函数 注意:对于一元函数来说 可以看作函数的微分 分 之商,而偏导数的记 与自变量微号是一个整体符号,不能看作分母与分子之商。⒉偏导数的几何意义:设 过 做平面,截此曲面得一曲线,此曲线在平面,则导数 上的方程为 为曲面 上的一点,即偏导数 对 轴的 斜率。同样,偏导数 截得的曲线在点 的切线 处,就是这曲线在点 处的切线 的几何意义是曲面被平面 所对 轴的斜率。 在区域 D 内具有偏导数,都是,⒊高阶偏导数:设函数,那么在 D 内 的函数,如果这两个函数的偏导数也存在,则称它们是函数 的二阶偏导数。按照对变量求导次序的不同有以下四个二阶偏导数: ,。二阶及二阶以上的偏导数统称为高阶偏导数。 定理:如果函数 的两个二阶混合偏导数 及 在区域 D 内连续,那么在该区域内这两个二阶混合偏导数必相等。(即二阶混合偏导数在连续的条件下与求导的次序无关。)㈡全微分 ⒈全微分定义:如果函数 可表示为 赖于、而仅与、有关,在点 可微分,而 称 在点 的全增量,其中 A、B 不依,则称函数 为函数 在点 的全微分,记作,即。如果函数在区域 D 内各点都可微分,那么称这函数在 D 内可微分。定理 1(必要条件):如果函数 函数在点 的偏导数 在点 的全微分为 在点 可微分,则该必定存在,且函数 。定理2(充分条件):如果函数续,则函数在该点可微分。的偏导数 在点 连以上关于二元函数全微分的定义及可微分的必要条件和充分条件,可以完全类似地推广到三元和三元以上的多元函数。习惯上将自变量的增量、分别记作、;并分别称为自变量的微分,则函数 的全微分可表示为 分等于它的两个偏微分之和 这件事称为二元函数的微分符合叠加原理。叠加原理也适用于二元以上的函数的情形。 三、多元复合函数的求导法则 ㈠复合函数的全导数:如果函数 函数 在对应点 在点 可导,且 及 都在点 可导。通常将二元函数的全微具有连续偏导数,则复合函数 其导数可用下列公式计算:。此定理可推广到中间变量多余两个的情况,例如,,则,其中 称为全导数。上述定理还可推广 到中间变量不是一元函数而是多元函数的情形。㈡复合函数的偏导数 : 设 则 是 可微,函数,对,并且,的复合函数。如果 的偏导数存在,则 复合函数 对 的偏导数存在,且 ㈢全微分形式的不变性 : 设函数 则有全微分 果、又是,如 的函数、具有连续偏导数,且这两个函数也具有连续偏导数,则复合 函数 的全微分为 由此可见,无论 是自变量、的函数或中间变量、的函数,它的全微分形式是一样的,这个性质叫做全微分形式不变性。 四、隐函数的求导公式 ㈠、一个方程的情形 隐函数存在定理 1 :设函数 有连续的偏导数,且,内恒能 唯一确定一个单值连续且具有连续偏导数的函数,它满,则方程 在点 的某一邻域 在点 的某一邻域内具 足条件,并有 隐函数存在定理 2 :设函数 具有连续的偏导数,且,一邻域 内恒能唯一确定一个单值连续且具有连续偏导数的函数,它满足条件,则方程 在点 的某 在点 的某一邻域内,并有 ㈡、方程组的情况 隐函数存在定理 3 :设 某一邻域内、在点 的具有对各个变量的连续偏导数,又,且,偏导数所组成的函数行列式(或称雅可比(Jacobi)行列式): 在点 点 不等于零,则方程组,在的某一邻域内恒能唯一确定一组单值连续且具有连续偏导数的函数,它们满足条件,并有,,五、方向导数、梯度 ㈠、方向导数 1、定义:设函数 在点 的某一邻域 内有定义,自点 P 引射线。设轴正向到射线 的转角为 , 并设 为 上的另一点,且 。我们考虑函数的增量 的比 与 和 两点间的距离 值。当 沿着 趋于 时,如果这个比的极限存在,则称这极限为函数 在点沿着方向的方向导数,记作,即。、定理:如果函数 在点 是可微分的,那么函数,在该点沿任一方向 的方向导数都存在,且有 其中 为 x 轴到方向 的转角。上述定义也可推广到三元函数 着方向(设方向 的方向角为,其中,它在空间一点 沿)的方向导数可以定义为,如果函数在所考虑的点处可微,则函数在该点沿着方向 的方向导数为 ㈡、梯度、定义(二元函数的情形):设函数 内具有一阶连续偏导数,则对于每一点量,这个向量称为函数,即,在点 在平面区域 D,都可定出一个向的梯度,记作,由梯度的定义可知,梯度的模为: 当 不为零时,x 轴到梯度的转角的正切为 2、与方向导数的关系:如果设 是与方向 同方向的单位向量,则由方向导数的计算公式可知: 由此可知,就是梯度在 上的投影,当方向 与梯度的方向一致时,有,从而 有最大值。所以沿梯度方向的方向导数达最大值,也就是说,梯度的方向是函数 在该点增长最快的方向,因此,函数在某点的梯度的方向与取得最大方向导数的方向一致,而它的模为方向导数的最大值。※上述所讲的梯度的概念也可推广到三元函数的情况。设函数 续偏导数,则对于每一点,这个向量称为函数 六、多元函数的泰勒公式、极值和几何应用 ㈠、二元函数的泰勒公式 定理:设 的连续偏导数,在点 的某一邻域内连续且有直到 阶 在空间区域 G 内具有一阶连,都可定出一个向量 在点 的梯度,即 为此邻域内任一点,则有 一般地,记号 表示 设,则上式可表示为 ⑴,公式⑴称为二元函数 在点的n阶泰勒公式,而的表达式为拉格朗日型余项。在泰勒公式⑴中,如果取 公式,则⑴式成为 n 阶麦克劳林 ㈡、多元函数的极值 定理 1(必要条件):设函数 数,且在点 在点(,)具有偏导(,)处有极值,则它在该点的偏导数必然为零: 定理 2(充分条件): 设函数 内连续且 有一阶及二阶连续偏导数,又)=A,(,)=B,(,)=C, 则 f(x,y)在(,)处是否取得极值的条件如下:,令 (,,在点(,)的某邻域⑴ AC->0 时具有极值,且当 A<0 时有极大值,当 A>0 时有极小值; ⑵ AC-<0 时没有极值; ⑶ AC-=0 时可能有极值,也可能没有极值,还需另作讨论。㈢、几何应用、空间曲线的切线和法平面: ⑴设空间曲线 的参数方程为 在曲线上取相应于 的一点,这里假设 解析几何中有,假设三个函数都可导,则曲线在点 M 处的切线方程为 均不为零。如果有个别为零,则应按空间关直线的对称式方程来理解。切线的方向向量成为曲线的切向量。向量 就是曲线 在点 M 处的一个切向量。 ⑵通过点 M 而与切线垂直的平面称为曲线 在点 M 处的法平面,它是通过点 而与 T 为法向量的平面,因此方程为。 ⑶若空间曲线 的方程以 为: 的形式给出 , 则切线方程,其中分母中带下标 0 的行列式表示 行列式在点 的值;曲线在点 处的法平面方程为 的值;曲线在点 处的法平面方程为、曲面的切平面和法线 ⑴若曲面方程为 M 处的 切平面的方程为: ;,是曲面上一点,则曲面在点 法线方程为: ⑵若曲面方程为,则切平面方程为 或 ;而法线方程为 §2 函数极限的性质 在§1中我们引入了下述六种类型的函数极限: 1); 2); 3); 4); 5); 6)。 它们具有与数列极限相类似的一些性质,下面以第4)种类型的极限为代表来叙述并证明这些性质。 至于其他类型极限的性质及其证明,只要相应的作些修改即可。 定理3.2(唯一性)若极限 证 设与、都是 当 存在,则此极限是唯一的。 时的极限,则对任给的,分别存在正数,使得当 时有 (1) 当 时有 (2) 取,则当时,(1)式与(2)式同时成立,故有 由的任意性得。这就证明了极限是唯一的。定理3.3(局部有界性)若极限 内有界。 存在,则在某空心邻域证 设。取,则存在,使得对一切。 有 这就证明了在内有界。 定理3.4(局部保号性)若(或),存在,使得对一切 有 (或),则对任何正数 (或证 设有,这就证得结论。对于,对任何,取,则存在)。,使得对一切的情形可类似地证明。 定理3.5(保不等式性)设 内有,则 与都存在,且在某邻域。 (3) 证 设,使得当,时,则对任给的,分别存在正数与 (4) 当 时有 (5) 令,则当 时,不等式 与(4),(5)式同时成立,于是 有式成立。,从而 。由的任意性得,即(3)定理3.6(迫敛性)设==,且在某内有 (6) 则。 证 按假设,对任给的时 (7),分别存在正数 与,使得当当时有 (8) 令,则当 时,不等式(6)、(7)、(8)式同时成立,故有,由此得,所以。定理3.7(四则运算法则)若极限数,当 与 都存在,则函 时极限也存在,且 1)= 2)= 又若,则当时极限也存在,且有 3) 这个定理的证明类似于数列极限中的相应定理,留给读者作为练习。利用函数极限的迫敛性与四则运算法则,我们可从一些简单的函数极限出发计算较复杂的函数极限。 例1求。 解 由第一章§3习题13,当 时有,而,故由迫敛性得 。另一方面,当时有,故由迫敛性又可得。 综上,我们求得。 例2 求。 解 由 及§1例4所得的 并按四则运算法则有 = 例3 求 解 当 时有。故所求极限等于。 例4 证明 证 任给(不妨设),为使 (9) 即,利用对数函数 (当 时)的严格增性,只要 于是,令成立,从而证得结论。,则当时,就有(9)式第三篇:7.1多元函数的概念、极限与连续性
第四篇:一、多元函数、极限与连续解读
第五篇:2函数极限的性质解读