初中数学优秀说课稿模板(五篇材料)

时间:2022-07-21 01:24:47下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初中数学优秀说课稿模板》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初中数学优秀说课稿模板》。

第一篇:初中数学优秀说课稿模板

初中数学优秀说课稿模板

作为一名为他人授业解惑的教育工作者,就不得不需要编写说课稿,借助说课稿可以让教学工作更科学化。写说课稿需要注意哪些格式呢?下面是小编帮大家整理的初中数学优秀说课稿模板,希望能够帮助到大家。

初中数学优秀说课稿模板1

下午好!(自我介绍略)我说课的内容是义务教育课程标准试验教科书北师大版八年级数学下册第三章第二节分式的乘除法。下面我将从教材、教法、学法、教学程序、板书设计等方面来进行阐述。

一、说教材

1、教材内容:我认为可以理解为探索法则——理解法则——应用法则,进一步体现了新课标中“情境引入——数学建模——解释、拓展与应用的模式”。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。

2、教材地位:分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。

3、教学目标

知识目标:(1)、理解分式的乘除运算法则

(2)、会进行简单的分式的乘除法运算

能力目标:(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。

(2)、能解决一些与分式有关的简单的实际问题。

情感目标:(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。

(2)、培养学生的创新意识和应用意识。

(3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。

4、教学重点:分式乘除法的法则及应用.5、教学难点:分子、分母是多项式的分式的乘除法的运算。

二、说教法

教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。

1、启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。

2、合作式教学,在师生平等的交流中评价学习。

三、说学法

学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。

1、类比学习的方法。通过与分数的乘除法运算类比。

2、合作学习。

四、说教学程序

1、类比学习,探索法则。(约3分钟)

让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)

复习:分数的乘除法法则(抽一学生口答)

猜一猜:

(a、b、c、d表示整数且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零)

类比:得出分式的乘除法法则(a、b、c、d表示整式且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零,a、c中含有字母)

活动目的:

让学生观察、计算、小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的法则。

教学效果:

通过类比分数的乘除法的法则,学生明白字母代表数、代表式,这样很顺利的得出分式的乘除法的法则。

2、理解法则:(约2分钟)

文字叙述:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;

两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.活动目的:

两种形式巩固对法则的理解。

教学效果:

理解法则,进一步发展学生的符号感。

3、应用:(约20分钟)

(1)牛刀小试

教材74页到76页的例1、做一做、例2.我准备把例1和例2先学习了。再学习做一做。

活动目的:

抓住学生刚学习了法则,跃跃欲试的学习激情,抽2名同学上黑板演算,其他学生在课堂作业本上演算。老师巡查,予以辅导,反复提醒学生像分数乘法一样来学习分式乘法(即类比)。

教学效果:

有的学生可能没有注意把结果化为最简分式,要提醒注意,有的学生可能一边计算一边就分解因式进行约分(化简)了的,说明已经很好地与分数的乘法进行类比学习了(分数是分解因数),应该予以表扬,让全班学生认真学习、领会。讲评时还应该让学生理解一步的算理。

(2)“西瓜问题”

活动目的:

能解决一些与分式有关的简单的实际问题。能有条理的进行表达。

教学效果:

通过以上例题帮助学生总结出分式乘除法的运算步骤(当分式的分子与分母都是单项式时和当分式的分子、分母中有多项式两种情况)

4、随堂练习。(约5分钟)

76页第一题,共3个小题。

教学效果:

在总结出分式乘除法的运算步骤后,大部分学生能很好的掌握,但是还有些学生忘记运算结果要化成最简形式,老师要及时提醒学生。分解因式的知识没掌握好,将会影响到分式的运算,所以有的学生有必要复习和巩固一下分解因式的知识。

5、数学理解(约5分钟)

教材77页的数学理解,学生很容易出现像小明那样的错误。但是也很容易找出错误的原因。

补充例3 计算(xy-x2)÷

教学效果:巩固分式乘除法法则,掌握分式乘除法混合运算的方法。提醒学生,负号要提到分式前面去。

6、课堂小结(约3分钟)

先学生分组小结,在全班交流,最后老师总结。

7、作业布置,凝固新知。(约2分钟)

教材77页到78页,习题3.1,1、2、4.并补充一题(分式乘除法混合运算的)

五.说板书设计

主板书采用纲要式,一目了然。

初中数学优秀说课稿模板2

各位评委:早上好

今天我说课的题目是 《有理数》复习课,这节课所选用的教材为人教版义务教育课程标准七年级上册教科书。

一、教材分析

1、教材的地位和作用

本节教材是初中数学七年级上册第一章《有理数》的复习内容,是初中数学的重要内容之一。有理数作为中学阶段的入门章节,非常重视与前面学段的衔接。一方面,数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是小学算术的延续和发展。另一方面,有理数的学习为学习实数等知识奠定了基础,是进一步研究代数式四则运算工具性内容。准确数和近似数、计算器的使用也是本章的教学内容,它是应用有理数解决实际问题所必需的。因此有理数在教材中具有承上启下的作用。

2、学情分析

学生在此之前已经学习了第一章有理数,对_有理数已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于有理数的知识的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

3、教学重难点

根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:有理数概念和有理数运算

难点确定为:负数和有理数法则的理解和运用

二、教学目标分析

根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

1.知识与技能目标:复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识

2.过程与方法目标:培养学生综合运用知识解决问题的能力,提高学生对知识的整合能力和分析能力

3.情感态度与价值目标:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。激发学生兴趣,感受数学之美。

三、教学方法分析 方法:分层次教学,讲授、练习相结合。

本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

1、师生互动探究式教学,以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知欲心理和已有的认知水平开展教学,形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

2、采用表格形式,将知识点归纳,让学生通过这个表格很容易看出二次函数与一元二次方程的联系,让学生形成以清晰、系统、完整的知识网络。

3、运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。

学法指导

“授人以鱼,不如授人以渔”。在教学过程中,不但要传授学生基本知识,还要培养学生主动观察、主动思考、亲自动手、自我发现等学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发与点拨,在积极的双边活动中,学生找到了解决疑问的方法,找准解决问题的关键。

四、教学过程分析

为有序、有效地进行教学,本节课我主要安排以下教学环节:

(1)复习就知,温故知新

设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2)创设情境,提出问题

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

初中数学优秀说课稿模板3

一、说教材

1、教材简析

平行四边形面积的计算,是在学生已掌握了长方形面积的计算、面积概念和面积单位,以及认识了平行四边形的基础上进行教学的。教材运用转化思想,在数方格法的基础叟,用割补法,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。

2、教学目标:

(1)引导学生自己推导出平行四边形的面积公式,沟通长方形和平行四边形之间的内在联系。

(2)通过操作,让学生尝试用转化的思想方法解决新的问题。

(3)理解平行四边形的面积与底和高有关,并会运用面积公式求平行四边形的面积。

3、教学重点:平行四边形的面积计算。

4、教学难点:理解平行四边形面积计算公式的推导过程。

二、教法学法

平行四边形面积的计算是一堂几何初步知识课,为以后学习三角形面积和梯形面积的计算,提供了知识准备。本课的教学设计由直观到抽象,层层深入。从动手操作 观察思考 归纳概括 初步反馈,遵循了概念教学的原则和学生的认知规律。通过动手操作,把平行四边形转化成长方形,再现已有的表象,借助已有的知识经验,进行观察、分析、比较、推理、概括出平行四边形面积的计算公式。这正体现了概念教学的顺序:动作感知 形成表象 抽象概念。

教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。引导学生自己去操作,自己去观察、比较,自己去探求,重视让学生自己去操作,自己去获取知识,以思维训练为主线,提高学生的思维水平。互助合作,以全体学生为教育对象,整体提高,营造良好的学习氛围。

三、教学过程

(一)复习铺垫

教具逐个出示:

1、图(1)是什么图形? 它的面积怎样算?现在量得长是7厘米,宽是4厘米,你知道这个长方形的面积是多少?

2、长方形的面积可以直接用公式计算,那么图(2)我们能直接用公式计算它的面积吗?用什么办法求它的面积?

学生独立思考,讨论后反馈。(教具演示把多的一块剪下来,拼过去正好是一个长方形,再用长乘以宽就是它的面积)

3、刚才我们用割下来补过去的方法将图(2)转化成和原来图形面积相等的长方形,再用长方形面积公式求出它的面积。现在谁能计算图(3)的面积?

学生独立计算后,反馈。你是怎么算的?为什么?(教具演示:把图(3)右边的三角形割下来补到左边,转化成一个长方形。)

(二)导入新课

图(2)、图(3)我们用割补的方法把它们转化成学过的长方形就能算出它们的面积。(教具出示下图)

你能想办法求出这个平行四边形的面积吗?下面我们一起来研究平行四边形的面积计算。出示课题。

(三)引导探究

1、学生独立思考,动手操作,尝试计算平行四边形的面积。

(教师巡视,学生计算1号学具纸片平行四边形的面积)

谁能说一说,这个平行四边形的面积是多少?你是怎样计算的?学生可能出现不同的答案。

到底怎样思考才是正确的呢?充分运用你手头的学具和有关工具(尺、剪刀等)来尝试操作,然后列式计算(四人小组进行合作、交流)

反馈交流:根据学生的回答教具演示“转化过程”。演示前先比较两个全等的平行四边形,再将其中一个平行四边形沿着平行四边形的高把图形剪开,将左边的三角形(或直角梯形)拼到右边去,正好是个长方形,量出它的长是7厘米,宽是4厘米,面积是7×4=28平方厘米。

追问:为什么可以这样算?

把平行四边形割补成长方形,图形的什么变了,什么没有变?

比较拼成的长方形的长、宽与原平行四边形的底、高之间的关系。

2、操作实践,验证想法。

是不是所有的平行四边形都能转化成长方形?任意画一个平行四边形或任意取一个学具平行四边形纸片,证明你的想法。(结论:由此看来,对于任何一个平行四边形,要计算它的面积,我们都可以用割补的访求将平行四边形转化成长方形来计算它的面积)

3、观察分析,归纳公式。

那么平行四边形的面积该怎样计算呢?为什么?(学生讨论)

结合回答,教具演示:因为割补的方法把平行四边形转化成长方形,形变面积不变,我们发现,长方形的长相当于平行四边形的底,宽相当于平行四边形的高,所以平行四边形的面积是底乘以高。

板书:长方形的面积=长×宽

平行四边形的面积=底×高

如果用字母S表示平行四边形的面积,a表示它的底,h表示它的高,那么平等四边形面积的字母公式是怎样的?

(四)小结

1、面对“平行四边形的面积”这个新问题,我们利用已有的“求长方形的面积知识”,通过转化的方法,推导出平行四边形的面积公式。

2、现在,你们说说,要求平行四边形的面积,关键是找哪两个条件?

(五)练习

1、计算下面平行四边形的面积。(练后讲评)

2、计算下面平行四边形的面积。

3、有一块平行四边形草地,底18米,高10米。这块草地的面积是多少?

4、口答下面每个平行四边形的面积。

底(厘米)

高(厘米)

面积(平方厘米)

(六)课堂小结

1、这节课,我们学到了什么?有什么体会?

2、同学们的表现好在哪里?

*3机动练习:

计算下面图中平行四边形的面积,正确列式为()。(单位:厘米)

初中数学优秀说课稿模板4

一、教材分析:

(一)教材的地位与作用

从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;

勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

(二)重点与难点

为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。

限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点。我将引导学生动手实验突出重点,合作交流突破难点。

二、学情分析

初二学生已具备一定的 分析,归纳的能力和运用数学的思想意识对于勾股定理的得出,需要学生通过动手操作,在观察的基础上,大胆猜想数学结论。但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

三、教学与学法分析

教学方法

叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

学法指导

为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

四、教学过程

首先,情境导入 激问设疑

给出生活中的实际问题,调动学生兴趣,启迪学生思维,激发学生创新热情和和情感体验。是学生带着好奇心开始本节课的学习。

其次,自主探究,获取新知

勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

1.追溯历史 解密真相

让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。

这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。

2.动手操作----探求新知

通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。

在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内交流,然后在全班交流,尽量学习更多的'方法。

这里首先引导学生观察图1、图2、图3,让学生计算每个图中的三个正方形的面积,(注意:学生可能有不同的方法,只要正确合理,各种方法都应给予肯定)。然后通过探究S1、S2、S3之间的关系,进而猜想、发现得出勾股定理,并用自己的语言表达,这样做不仅有利于学生主动参与探索,感受学习的过程,培养学生的语言表达能力,体会数形结合的思想;也有利于突破难点,让学生体会到观察、猜想、归纳的思路,让学生的分析问题、解决问题的能力在无形中得到提高,这对以后的学习有帮助。

从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此我引导学生利用“割”和“补”的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。

3、自己动手,拼出弦图

让同学们拿出了提前准备好的四个全等的边长为a、b、c的直角三角形进行拼图,小组活动,拼出自己喜爱的图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了学生,让他们在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,学生们拼得很好,并且都给出了正确的证明,在黑板上尽情地展示了一番。

突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。在求正方形C的面积时,学生将展示“割”的方法,“补”的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。

以上三个环节层层深入步步引导,学生归纳得到命题,从而培养学生的合情推理能力以及语言表达能力。

感性认识未必是正确的,推理验证证实我们的猜想。

合作交流,讲述论证

教材中直接给出“赵爽弦图”的证法对学生的思维是一种禁锢,我创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。同时我深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出“学生是学习的主体,教师是组织者、引导者与合作者”这一教学理念。学生会发现两种证明方案。

方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。

方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比“古”、“今”两种证法,让学生体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的自豪感。教师对“勾、股、弦”的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。增强了学生学习数学的兴趣和信心。

我按照“理解—掌握—运用”的梯度设计了如下四组习题。

(1)体会新知,初步运用(2)对应难点,巩固所学;(3)考查重点,深化新知;(4)解决问题,感受应用

最后、温故反思 任务后延

在课堂接近尾声时,我鼓励学生从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。

然后布置作业,分层作业体现了教育面向全体学生的理念。

五、板书设计

板书勾股定理,进而给出字母表示,培养学生的符号意识。

六、学习评价

本课意在创设和谐的乐学气氛,始终面向全体学生,“以学生的发展为本”的教育理念,课堂教学充分体现学生的主体性,给学生留下最大化的思维空间注重数学思想方法的渗透,从一般到特殊从特殊回归到一般的数学思想方法。重视数学式教育,激发学生的爱国情操,用数学知识解决生活中的实际问题,在这个过程中,很多时候需要老师帮助学生去理解和转化,而更多时候需要学生自己去探索,尝试,得出正确结论。

初中数学优秀说课稿模板5

各位评委:

大家好!我是 号说课者,今天我说课的题目是,所选用的教材为北师大版义务教育课程标准实验教科书。

根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析,教学目标分析,教法和学法分析,教学过程分析,板书设计六个方面展开说课。

一、教材的地位和作用

本节教材是初中数学 年级第 章第 节的内容,是初中数学的重要内容之一。一方面,这是在学习了 的基础上,对 的进一步深入和拓展;另一方面,又为学习等知识奠定了基础,是进一步研究 的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

二、学情分析

从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

从认知状况来说,学生在此之前已经学习了,对 已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

三、教学目标分析

新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感态度与价值观目标这三个方面,而这三维目标又是紧密联系的一个统一整体,学生在学会知识与技能的过程中,同时也是成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。所以,我将三维目标进行整合,确定本节课的教学目标为:

1.(了解、理解、熟记、初步掌握、会运用 等);

2.通过 的学习,培养学生 观察分析、类比归纳的探究 能力,加深对 函数与方程、数形结合、从特殊到一般、类比与转化、分类讨论 等数学思想的认识。

3.通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。

根据以上对教材的地位和作用,以及学情和教学目标的分析,结合新课标对本节课的要求,我将本节课的重点确定为: 难点确定为:

为了讲清教材的重难点,使学生能够达到本节课设定的教学目标,我再从教法和学法上谈谈。

四、教法和学法分析

1.教法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我采用直观演示法(利用图片等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握)、活动探究法(引导学生通过创设情境等活动形式获取知识,以学生为主体,使学生的独立探索精神得到充分发挥,培养学生的自学能力、思维能力、活动组织能力)、集体讨论法(针对学生提出的问题,组织学生进行集体或分组讨论,促使学生在学习中解决问题,培养学生的团结协作精神),以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

由于本节课内容与社会现实生活的关系比较密切,学生已经具有直观的感受。在教学中可以让学生自己阅读课本并列举社会上存在的一些相关现象,在老师的指导下进行讨论,然后进行归纳总结,得出正确的结论。这样有利于调动学生的积极性,发挥学生的主体作用,让学生对本节课知识的认识更清晰、更深刻。

2.学法

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”。因而,我在教学过程中特别重视学法的知道,让学生从机械的“学答”向“学问”转变,从“学会”向“会学”转变,成为学习的真正主人。这节课我在指导学生的学习方法和培养学生的学习能力方面主要采用以下方法:分析归纳法、自主探究法、总结反思法。

下面我具体来谈谈这堂课的教学过程。

五、教学过程分析

新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

(1)复习旧知,温故知新

设计意图:建构主义主张教学应从学生已有的知识体系出发,是本节课深入研究 的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2)创设情境,提出问题

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘

通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

(3)发现问题,探求新知

设计意图:现代数学教学论指出,的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳。

(4)分析思考,加深理解

设计意图:数学教学论指出,数学概念(定理等)要明确其 内涵和外延(条件、结论、应用范围等),通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第 环节。

(5)强化训练,巩固双基

设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1??例2??,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

(6)小结归纳,拓展深化

我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的知识、方法、体验三个个方面进行归纳,我设计了这么三个问题:

① 通过本节课的学习,你学会了哪些知识;

② 通过本节课的学习,你最大的体验是什么;

③ 通过本节课的学习,你掌握了哪些学习数学的方法?

(7)布置作业,提高升华

以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效率达到最佳状态。

六、板书设计

我比较注重直观、系统的板书设计,这有利于及时地体现教材中的知识点,便于学生理解掌握。我的板书设计分为三部分:第一部分,复习旧知,引入新课;第二部分,定义,法则和定理的说明;第三部分,通过例题巩固应用。

七、结束语

各位领导、老师们,本节课我根据 年级学生的心理特征及其认知规律,采用直观教学和活动探究的教学方法,以“教师为主导,学生为主体”完成教学。教师的“导”立足于学生的“学”,在教学中要以学法为重心,放手让学生自主探索地学习,使他们主动地参与到知识形成的整个思维过程中,在积极、愉快的课堂气氛中提高自己的认知水平,并最终达到预期的教学效果。

我的说课完毕,谢谢!

初中数学优秀说课稿模板6

一、教材分析:

(一)教材的地位与作用

从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

从同学们认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;

勾股定理又是对同学们进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

根据数学新课程标准以及八年级同学们的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发同学们热爱祖国悠久文化的情感。

(二)重点与难点

为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。

限于八年级同学们的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点。我将引导同学们动手实验突出重点,合作交流突破难点。

二、学情分析

初二同学们已具备一定的 分析,归纳的能力和运用数学的思想意识对于勾股定理的得出,需要同学们通过动手操作,在观察的基础上,大胆猜想数学结论。但同学们在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

三、教学与学法分析

教学方法

叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导同学们由浅入深的探索,设计实验让同学们进行验证,感悟其中所蕴涵的思想方法。

学法指导

为把学习的主动权还给同学们,教师鼓励同学们采用动手实践,自主探索、合作交流的学习方法,让同学们亲自感知体验知识的形成过程。

四、教学过程

首先,情境导入 激问设疑

给出生活中的实际问题,调动同学们兴趣,启迪同学们思维,激发同学们创新热情和和情感体验。是同学们带着好奇心开始本节课的学习。

其次,自主探究,获取新知

勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

1.追溯历史 解密真相

让同学们欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使同学们明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。

这样,一方面激发同学们的求知欲望,另一方面,也对同学们进行了学习方法指导和解决问题能力的培养。

2.动手操作----探求新知

通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。

在这一过程中,同学们充分利用学具去尝试解决,力求让同学们自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。

这里首先引导同学们观察图1、图2、图3,让同学们计算每个图中的三个正方形的面积,(注意:同学们可能有不同的方法,只要正确合理,各种方法都应给予肯定)。然后通过探究S1、S2、S3之间的关系,进而猜想、发现得出勾股定理,并用自己的语言表达,这样做不仅有利于同学们主动参与探索,感受学习的过程,培养同学们的语言表达能力,体会数形结合的思想;也有利于突破难点,让同学们体会到观察、猜想、归纳的思路,让同学们的分析问题、解决问题的能力在无形中得到提高,这对以后的学习有帮助。

从上面低起点的问题入手,有利于同学们参与探索。同学们很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。同学们会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此我引导同学们利用“割”和“补”的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。

3、自己动手,拼出弦图

让同学们拿出了提前准备好的四个全等的边长为a、b、c的直角三角形进行拼图,小组活动,拼出自己喜爱的图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了同学们,让他们在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,同学们们拼得很好,并且都给出了正确的证明,在黑板上尽情地展示了一番。

突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。在求正方形C的面积时,同学们将展示“割”的方法,“补”的方法,有的同学们可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定同学们的研究成果,培养同学们的类比、迁移以及探索问题的能力。

以上三个环节层层深入步步引导,同学们归纳得到命题,从而培养同学们的合情推理能力以及语言表达能力。

感性认识未必是正确的,推理验证证实我们的猜想。

合作交流,讲述论证

教材中直接给出“赵爽弦图”的证法对同学们的思维是一种禁锢,我创新使用教材,利用拼图活动解放同学们的大脑,让同学们发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,给同学们充分的自主探索的时间与空间,让同学们的思维在相互讨论中碰撞、在相互学习中完善。同时我深入到同学们中间,观察同学们探究方法接受同学们的质疑,对于不同的拼图方案给予肯定。从而体现出“同学们是学习的主体,教师是组织者、引导者与合作者”这一教学理念。同学们会发现两种证明方案。

方案1为赵爽弦图,同学们讲解论证过程,再现古代数学家的探索方法。方案2为同学们自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让同学们经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比“古”、“今”两种证法,让同学们体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的自豪感。教师对“勾、股、弦”的含义以及古今中外对勾股定理的研究做一个介绍,使同学们感受数学文化,培养民族自豪感和爱国主义精神。增强了同学们学习数学的兴趣和信心。

我按照“理解—掌握—运用”的梯度设计了如下四组习题。

(1)体会新知,初步运用(2)对应难点,巩固所学;(3)考查重点,深化新知;(4)解决问题,感受应用

最后、温故反思 任务后延

在课堂接近尾声时,我鼓励同学们从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。

然后布置作业,分层作业体现了教育面向全体同学们的理念。

五、板书设计

板书勾股定理,进而给出字母表示,培养同学们的符号意识。

六、学习评价

本课意在创设和谐的乐学气氛,始终面向全体同学们,“以同学们的发展为本”的教育理念,课堂教学充分体现同学们的主体性,给同学们留下最大化的思维空间注重数学思想方法的渗透,从一般到特殊从特殊回归到一般的数学思想方法。重视数学式教育,激发同学们的爱国情操,用数学知识解决生活中的实际问题,在这个过程中,很多时候需要老师帮助同学们去理解和转化,而更多时候需要同学们自己去探索,尝试,得出正确结论。

初中数学优秀说课稿模板7

一、教材分析

1、教材的地位和作用

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。

2、教学目标

根据大纲的要求、本节教材的内容和学生的好奇心、求知欲及已有的知识经验,本节课的三维目标主要体现在:

知识与能力目标: 要求学生会根据具体问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。

过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。

情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识。

3、教学重点与难点

要运用一元二次方程解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发。所以,本节课的重点是:由实际问题列出一元二次方程和一元二次方程的概念。鉴于学生比较缺乏社会生活经历,处理信息的能力也较弱,因此把由实际问题转化成数学方程确定为本节课的难点。

二、教法、学法

因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景---数学模型-----概念归纳”的模式。但是由于学生将实践问题转化为数学方程的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过直观形象的观察与演示,从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。

三、教学过程设计

1、创设情景,引入新课

因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过微机演示课本中的实例,并应用微机对其进行分析,充分显示微机演示中的生动性、灵活性,把图形的静变成动,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课。

初中数学优秀说课稿模板8

我说课的题目是冀教版小学数学教材四年级下册第六单元时《垂线》。下面我从四个方面进行说课:

一、教学设计:主要包括三个方面

1、教材分析:

垂线在生产、生活中有着广泛的应用,垂线的概念、性质是学生今后进一步学习数学的基础,在教材上起着承上启下的作用。

大多数学生感到数学枯燥,学习兴趣不高。我所教的班一直采用小组合作学习,学生基本养成了良好的预习习惯。这节课利用普通的多媒体教室,灵活运用现代教育技术,通过实例的展示及动画演示,让学生充分感知图形中蕴含的垂线特征,使知识的生成过程更直观更形象。对学生的认知、理解以及教学重难点突破起到了关键作用。

2、根据以上分析,我确定本节课的教学目标是:

知识与技能包括垂直的定义垂线的画法与性质。

数学思考包括

探索垂线的性质,发展学生的几何直觉,培养学生的猜想能力。并通过“做数学”,让学生对猜想进行检验,作出正确判断。

解决问题包括

培养学生数学语言表达能力,培养学生解决问题时的合作意识和习惯。

情感与态度包括

让学生体验数学充满着探索和创造,感受数学趣味,获得发现的喜悦。

鼓励学生感想敢说,让学生体验成功的快乐,树立学好数学的信心。

3、教学重难点:

教学重点:

垂直概念的建立、垂线的画法与性质。

教学难点:

用数学语言描述垂直的定义以及学生猜想能力的培养。

二、教学过程设计:

根据这节课的特点,我把整堂课分为课题导入、合作探究、课堂小结、拓展创新四个环节,灵活运用现代教育技术,突出重点,化解难点。为培养学生课前预习的习惯,设立了预习导航,准备了大量有关本节课的学习资料,并鼓励学生自己到网上查阅资料,提高学生的信息素养。

1、课题导入

课题导入运用多媒体展示学生熟悉的马路、篱笆、小棒等实物形象,并提出问题:仔细观察各组图形中两条直线的位置关系有什么共同点?让学生感到数学贴近生活,激发学生的表达欲望。

2、合作探究凸现学生的主体地位,让学生在学习中学会质疑、学会发现。合作探究分为垂直的定义、课堂练习、试试身手、垂线性质、你来当老师、走进生活五个小版块。其中,垂线的定义鼓励学生自己概括,并积极与大家交流。课堂练习梯度明显,答案灵活,尽量让每一个学生都有收获。“试试身手”让学生走上讲台,展示自己的发现,学生在轻松愉悦中很容易发现垂线的性质。“你来当老师”、“各抒己见”鼓励学生积极主动的发表自己的见解,营造平等、民主的学习氛围。激发学生探求的欲望,给学生一份自信,让学生在学习中学会质疑、学会发现。“走进生活”借助多媒体把学生的生活体验真实的再现给学生,让学生体验学有用的数学,增强学生学习数学的兴趣。

3、“课堂小结”让学生自己总结,谈本节课的收获、体会、本节课还有什么问题、新发现。鼓励学生大胆发言、锻炼学生的数学表达能力、语言概括能力。

4、探究创新:“创新园”让学生利用本节课所学知识,课后去思考、去动手制作、去创新发现。既能激发学生课后去学习、去探索的欲望,又能让学生感悟数学来源于生活,并反作用于生活的道理。培养学生学数学、用数学的创新意识,我想,只要我们教师用心,精心培育,创新园一定能育出创新果。

初中数学优秀说课稿模板9

一、教材分析

教材的地位和作用:

矩形是在学生已经学习了四边形、平行四边形,积累一定的经验的基础上学习的。它是这章的重点内容之一。既是平行四边形知识的延伸,又为学习其它特殊平行四边形提供了研究方法和学习策略,也为今后学习其它有关知识奠定了基础,起承上启下的重要作用。

二、教学目标

根据教学大纲对本节内容的要求及本课内容的特点,运用新课程理念,结合学生实际情况,我把本节课的教学目标确定为:

知识技能:

1.理解矩形有关概念,根据定义探究并掌握矩形的有关性质。

2.了解矩形在生活中的应用,根据矩形的性质解决简单的实际问题。

数学思考:

1.经历矩形的概念和性质的探索过程,发展学生合情推理意识,掌握几何思维方法。通过观察、思考、交流、探究等数学活动,发展学生的思维能力和语言表达能力。

2.根据矩形的性质进行简单的计算和应用,培养学生逻辑推理能力,培养几何直觉向思维逻辑转化的习惯,进一步体会类比及数形结合的思想方法。

解决问题:

通过学生观察、实验、分析、交流,引出矩形的概念,感受数学思考过程的条理性及解决问题策略的多样性,通过收集生活中的数学信息以及应用所学知识解决生活中的问题,进一步体会数学与生活的联系,增强应用数学意识。

情感态度:在与他人的交流合作中,让学生感受数学活动充满探索的乐趣,提高学生的学习热情和学习的积极性,培养学生合作交流的意识和大胆猜想、乐于探究的良好品质以及发现问题、探究问题的能力。发展学生的主动探索和独立思考的习惯。

三、教学重点:矩形的性质及其应用。

教学难点:理解矩形的特殊性,探究矩形特殊性质。

四、教法及手段:

根据本课内容和学生的特点及教学的要求,采用教师引导——自主探究——合作交流的方法。使教师的主导地位和学生的主体地位得到充分体现。

教学手段:采用多媒体(PowerPoint,几何画板)、实物投影辅助教学。

五、教学过程

本课的设计环节如下:创设情境 引入新课、动手操作 得出定义、引导探究 得出性质、运用新知 解决问题、归纳小节 巩固新知、分层作业 学有所得。

在本课各个环节设计中力求突出以下几个方面:

1、数学问题生活化

设计中我遵循数学源于生活又服务于生活课标要求。注重问题情境的创设,让数学问题生活化,活动1我展示给同学们一张校园门口的照片,让同学们感受生活中到处传递着数学信息,通过观察、搜集并分析熟悉的图形,体会数学在生活中的应用,进而引出活动2;性质应用中计算电视屏幕的大小,也是与生活联系非常密切的问题,有的学生还不知道电视的大小是指的对角线的长短,通过这道题目,让学生了解到生活的常识,也让学生进一步体会数学在生活中的作用,而且通过问题的解决培养学生爱数学、学数学的热情。

2、创设自主探究情境,发挥学生的主动性

矩形定义的探究,学生拿出自制平行四边形学具,分组活动,通过学生观察、实验、分析、交流,引出矩形的概念,把平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形。并通过学生找出生活中的实例,让学生感受数学美及数学与生活的联系。矩形性质的探究是让学生类比平行四边形的性质,通过观察、测量、分析、证明等手段,()让矩形的性质在活动中“浮出水面”.活动中让学生自己去探索,在探索中发现新知,在交流中归纳新知,把学习的主动权交给学生。我在评价中对活动积极的小组和个人进行表扬,增强学生创造的信心,体验到成功的快乐。性质1是学生小组交流完成的证明。而性质2要求学生认真写出已知、求证和证明过程,在此基础上请一个学生上黑板板书,其余学生观察其板书正确与否。培养几何直觉向思维逻辑化转化的习惯,培养学生发散思维能力,养成良好的解题习惯。活动中让学生充分经历知识形成的全过程。同时也积累了良好的学习经验。

3、训练学生的逻辑思维,培养学生严谨的解题习惯。

本节课新知应用环节,我设计了3个题目。练习1是性质的定义的直接应用,在巩固新知的同时,引导学生进一步发现与矩形中所包含的基本图形,从而让学生感受矩形与等腰三角形与直角三角形有密切的关系,让学生体会知识的联系与延伸,培养几何直觉向思维逻辑转化的习惯,培养学生发散思维能力。例题的设计是让学生体会性质应用的同时规范学生的解题步骤和格式,让学生感受数学思维的严谨性。练习2是生活中的问题,让学生体会生活中的数学,做到学用结合,培养学生学习数学的的热情和情趣。

4、教学活动中注重体现人人学有价值的数学

首先根据不同学生的智力、能力、基础不一,把学生编排成探究小组,在探究中注重组内帮带,以互帮互助促进不同层次的学生共同提高,其分组的原则是:数学成绩优秀的,组织能力强的、动手能力强的、成绩中等的、基础差的。其次是作业的设计体现的是层次性。我把作业分为必做题和选做题两种。必做题较基础,可以发现和弥补课堂学习的遗漏和不足。备选题则仅供学有余力的学生选用。另外数学日记是帮助学生总结本节课的收获和不足,培养学生善于总结和反思的习惯。

5、充分利用多媒体辅助教学

本节课是采用多媒体进行辅助教学的,给学生以直观感性的认识,培养学生观察、表述、归纳的能力。使教学目标得以顺利完成。

以上,是我设计本节课的一些做法和体会,有不妥之处请大家多提宝贵意见,谢谢大家!

初中数学优秀说课稿模板10

一。教材分析

1.教材的地位和作用

这节课是在同学们已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使同学们更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

2.教学目标和要求

(1)知识与技能:使同学们理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高同学们解决问题的能力。

(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展同学们的数学思维,增强学好数学的愿望与信心。

3.教学重点:对二次函数概念的理解。

4.教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

二。教法学法设计

1.从创设情境入手,通过知识再现,孕伏教学过程。

2.从同学们活动出发,通过以旧引新,顺势教学过程。

3.利用探索、研究手段,通过思维深入,领悟教学过程。

三。教学过程

(一)复习提问

1.什么叫函数?我们之前学过了那些函数?

(一次函数,正比例函数,反比例函数)

2.它们的形式是怎样的?

(y=kx+b,k≠0;y=kx ,k≠0;y=k/x , k≠0)

3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?

【设计意图】复习这些问题是为了帮助同学们弄清自变量、函数、常量等概念,加深对函数定义的理解。强调k≠0的条件,以备与二次函数中的a进行比较。

(二)引入新课

函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

例1圆的半径是r(cm)时,面积s(cm?)与半径之间的关系是什么?

解:s=πr?(r>0)

例2设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

解: y=100(1+x)?

=100(x?+2x+1)

= 100x?+200x+100(0

教师提问:以上两个例子所列出的函数与一次函数有何相同点与不同点?

【设计意图】通过具体事例,让同学们列出关系式,启发同学们观察,思考,归纳出二次函数与一次函数的联系:(1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。

(三)讲解新课

以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

二次函数的定义:形如y=ax2+bx+c(a≠0,a, b, c为常数)的函数叫做二次函数。

巩固对二次函数概念的理解:

1.强调“形如”,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

2.在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)

3.为什么二次函数定义中要求a≠0 ?

(若a=0,ax2+bx+c就不是关于x的二次多项式了)

4.在例2中,二次函数y=100x2+200x+100中,a=100, b=200, c=100.5.b和c是否可以为零?

由例1可知,b和c均可为零。

若b=0,则y=ax2+c;

若c=0,则y=ax2+bx;

若b=c=0,则y=ax2.注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式。

【设计意图】这里强调对二次函数概念的理解,有助于同学们更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.(1)y=3(x-1)?+1

(2)s=3-2t?

(3)y=(x+3)?-x?

(4)s=10πr?

(5)y=2?+2x

(6)y=x4+2x2+1(可指出y是关于x2的二次函数)

【设计意图】理论学习完二次函数的概念后,让同学们在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

(四)巩固练习

1.已知一个直角三角形的两条直角边长的和是10cm.(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;

(2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关于x的函数关系式。

【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让同学们经历由具体到抽象的过程,从而降低同学们学习的难度。

2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3.(1)分别写出S与x,V与x之间的函数关系式子;

(2)这两个函数中,那个是x的二次函数?

【设计意图】简单的实际问题,同学们会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让同学们体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3

(1)分别写出C关于r;V关于r的函数关系式;

(2)两个函数中,都是二次函数吗?

【设计意图】此题要求同学们熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

4.篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围。

【设计意图】此题较前面几题稍微复杂些,旨在让同学们能够开动脑筋,积极思考,让同学们能够“跳一跳,够得到”.(五)拓展延伸

1.已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a、b、c,并写出函数解析式。

【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

2.确定下列函数中k的值

(1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______

(2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______

【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.(六)小结思考

本节课你有哪些收获?还有什么不清楚的地方?

【设计意图】让同学们来谈本节课的收获,培养同学们自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到同学们还有哪些不清楚的地方,以便在今后的教学中补充。

(七)作业布置

必做题:

1.正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?

2.在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。

选做题:

1.已知函数 是二次函数,求m的值。

2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象

【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发同学们继续学习二次函数图象的兴趣。

四。教学设计思考

以实现教学目标为前提

以现代教育理论为依据

以现代信息技术为手段

贯穿一个原则——以同学们为主体的原则

突出一个特色——充分鼓励表扬的特色

渗透一个意识——应用数学的意识

第二篇:初中数学优秀说课稿

初中数学优秀说课稿模板《研究勾股定理》

一、教材分析

(一)教材所处的地位

这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(二)根据课程标准,本课的教学目标是:

1、能说出勾股定理的内容。

2、会初步运用勾股定理进行简单的计算和实际运用。

3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。

4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

(三)本课的教学重点:探索勾股定理

本课的教学难点:以直角三角形为边的正方形面积的计算。

二、教法与学法分析: 教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。

学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

三、教学过程设计

(一)提出问题:

首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?” 的问题。学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了。这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。

(二)实验操作:

1、投影课本图1—1,图1—2的有关直角三角形问题,让学生计算正方形A,B,C的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将C划分为4个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形A,B,C的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图1—(转载自大考吧网http://www.xiexiebang.com,请保留此标记。)3,图1—4,同样让学生计算正方形的面积,但正方形C的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助。

3、给出一个边长为0.5,1.2,1.3,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。

(三)归纳验证:

1、归纳 通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。

2、验证 为了让学生确信结论的正确性,引导学生在纸上任意作一个直角三角形,通过测量、计算来验证结论的正确性。这一过程有利于培养学生严谨、科学的学习态度。然后引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍“勾,股,弦”的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育。

(四)问题解决:

让学生解决开头的实际问题,前后呼应,学生从中能体会到成功的喜悦。完成课本“想一想”进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。

(五)课堂小结:

主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。

(六)布置作业:

课本P6习题1.1 1,2,3,4一方面巩固勾股定理,另一方面进一步体会定理与实际生活的联系。另外,补充一道开放题。

四、设计说明

1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

2、探索定理采用了面积法,引导学生利用实验由特殊到一般再到更一般的对直角三角形三边关系的研究,得出结论。这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用。

3、关于练习的设计,除两个实际问题和课本习题以外,我准备设计一道开放题,大致思路是在已画出斜边上的高的直角三角形中让学生尽量地找出线段之间的关系。

4、本课小结从内容,应用,数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识的意识是有很大的促进的。

初中数学说课稿范例《因式分解》说课稿

一、说教材

1、关于地位与作用。

本说课的内容是数学第二册7.1《因式分解》。因式分解不言而喻,就整个数学而言,它是打开整个代数宝库的一把钥匙。就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的相互关系。它是继乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理。这一思想实质贯穿后继学习的各种因式分解方法。通过这节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备。因此,它起到了承上启下的作用。

2、关于教学目标。

根据因式分解一节课的内容,对于掌握各种因式分解的方法,乃至整个代数教学中的地位和作用,特制定如下教学目标:

(一)知识与技能目标: ① 了解因式分解的必要性;

② 深刻理解因式分解的概念;

③ 掌握从整式乘法得出因式分解的方法。

(二)体验性目标:

①感受整式乘法与因式分解矛盾的对立统一观点;

②体验由和差到积的形成过程,初步获得因式分解的经验。

3、关于教学重点与难点。

重点是因式分解的概念。理由是理解因式分解的概念的本质属性是学习整章因式分解的灵魂,难点是理解因式分解与整式乘法的相互关系,以及它们之间的关系进行因式分解的思想。理由是学生由乘法到因式分解的变形是一个逆向思维。在前一章整式乘法的较长时间的学习,造成思维定势,学生容易产生“倒摄抑制”作用,阻碍学生新概念的形成。

4、关于教法与学法。

教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的学法。因此,我们应该重点阐述教法。一节课不能是单一的教法,教无定法。但遵循的原则——启发性原则是永恒的。在教师的启发下,让学生成为行为主体。正如新《数学课程标准》所要求的,让学生“动手实践、自主探索、合作交流 ”。在上述思想为出发点,就本节课而言,不妨利用对比教学,让学生体验因式分解的必要性;利用类比教学,以概念的形曾成和同化相结合,促进学生对因式分解概念的理解;利用尝试教学,让学生主动暴露思维过程,及时得到信息的反馈。教师充分依照学生的认知心理,不断创设“最近发展区”,造就认知冲突,促进学生不断发现、不断达到知识的内化。不管用什么教法,一节课应该不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终对学生充满情感创造和谐的课堂氛围,这是最重要的。

二、说过程。

第一环节,导入阶段。教师出示下列各题,让学生练习。

计算:(1)(a + b)^2 ;(2)(5a + 2b)(5a – 2b);(3)m(a + b).学生完成后,教师引导:把上述等式逆过来看,即

(1)a^2+2ab+b^2=(a + b)^2;(2)25a^2– 4b^2 =(5a + 2b)(5a – 2b);(3)ma+mb= m(a+ b).成立吗? △安排这一过程的意图是:一是复习整式的乘法,激活学生原有整式乘法的认知结构,促使新旧认知结构的联(转载自大考吧说课网,http://www.xiexiebang.com,请保留此标记。)结,满足“温故而知新”的教学原理。二是为本节课目标的达成作好垫铺。在此基础上引出课题——因式分解。

第二环节,新课阶段。

1、对比练习。让学生练习:当a=101,b=99时,求a2-b2的值.教师巡视,并代表性地抽取两名学生板演,给出两种解法。

△教师安排这一过程的意图是:利用对比分析,让学生体会,把a2-b2化为整式积的形式,给计算带来的优越性,顺应了因式分解概念的引出。

“ http://www.xiexiebang.com/shuoke/shuxue/cz/”该网址有107个说课稿范例请你慢慢看吧

第三篇:初中数学优秀说课稿

初中数学优秀说课稿

初中数学优秀说课稿1

尊敬的各位专家、老师:

大家好,本次信息技术与教学融合,我选取的课题是沪科版数学七年级下册第十章第一节第二课时的内容——《垂线及其性质》。

本单元所学习的知识都是几何的基础,是学生学习几何推理证明的初级阶段,在本阶,段学生要在深刻理解基本概念的基础上,通过观察积累直观经验,为学生学习几何说理打好基础。

本节课是单元起始阶段,要让学生充分理解基础知识,建立直观模型。因此我的教学目标是让学生经历观察和操作验证,理解垂线的两个性质——“过直线外一点有且只有一条直线与已知直线垂直”和“垂线段最短”;教学重点是学习垂线的画法和垂线的两个性质;教学难点是垂线段最短及简单应用。

在传统的教学中,学生在感受垂线的两个性质时,很难在直观上获得有效的感受,更谈不上操作验证。而垂线的两个性质又不能通过证明的方式得到,这样无形中就提高了课程的难度,也给学生的理解带来了不小的障碍。

如果将信息技术恰当地引入课堂,不仅能够让学生拥有有效的直观感受,更能在此基础上,培养学生的空间想象能力,为后续几何知识的学习做好准备。

学生学习是一个系统的.过程。包括课前预习提出问题、课中学习理解问题、课后复习解决问题。于是我将课堂教学和信息技术也分为三个部分进行了融合:

融合点一:课前学生自主预习并将预习中遇到的问题及时以跟帖留言的方式反馈给老师。

在学生预习这个环节,我就及时了解学生学习情况。用最常见的qq空间里的说说功能,发布预习要求,让学生跟帖留言,反馈学习情况。(出示图片)可以看到大部分同学对于基础的知薯解没有问题,但是对于几何语言的表述还存在障碍,针对这个问题我在教学中进行了适当的强化练习。

融合点二:课中,运用smart电子白板,带领学生回顾自学成果,并强调本节课的重点内容。(视频展示)课堂以问题驱动,层次分明地将学生自学的成果一一呈现,并引入重点内容。

融合点三:用课件展示画垂线的过程,让学生自己总结出画垂线的方法。(学生总结:一、靠;二、移;三、画;四、标)(课件展示)

融合点四:运用实物展台,让学生在黑板上操作演示。(视频演示)

融合点五:用几何画板演示垂线的两个基本性质,让学生在直观感受中积累经验,建立模型,帮助学生理解基本事实。(视频演示)

融合点六:课堂反馈及时有效,运用现有在线技术,迅速收集学生课堂学习情况,并做反馈。(视频演示)

融合点七:运用几何画板帮助学生解决问题,提升学生空间想象能力。(视频展示)

融合点八:课后微课拓展巩固。利用camtasia studio软件将本节课的重点内容录制成简单的微课,供学生复习巩固拓展知识。(视频展示)

通过上述的融合,基本可以将我的课堂生动有效的展示给学生,从而帮助学生加深对于本节课的学习。

本节课我所运用的信息技术,都是大家平时所熟悉的,希望能够给各位老师提供一点有益的参考,也欢迎各位专家的批评和建议!谢谢大家!

初中数学优秀说课稿2

一。教材分析

1.教材的地位和作用

这节课是在同学们已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使同学们更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

2.教学目标和要求

(1)知识与技能:使同学们理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高同学们解决问题的能力。

(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展同学们的数学思维,增强学好数学的愿望与信心。

3.教学重点:对二次函数概念的理解。

4.教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

二。教法学法设计

1.从创设情境入手,通过知识再现,孕伏教学过程。

2.从同学们活动出发,通过以旧引新,顺势教学过程。

3.利用探索、研究手段,通过思维深入,领悟教学过程。

三。教学过程

(一)复习提问

1.什么叫函数?我们之前学过了那些函数?

(一次函数,正比例函数,反比例函数)

2.它们的形式是怎样的?

(y=kx+b,k≠0;y=kx ,k≠0;y=k/x , k≠0)

3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?

【设计意图】复习这些问题是为了帮助同学们弄清自变量、函数、常量等概念,加深对函数定义的理解。强调k≠0的条件,以备与二次函数中的a进行比较。

(二)引入新课

函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

例1圆的半径是r(cm)时,面积s (cm?)与半径之间的关系是什么?

解:s=πr?(r>0)

例2设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

解: y=100(1+x)?

=100(x?+2x+1)

= 100x?+200x+100(0

教师提问:以上两个例子所列出的函数与一次函数有何相同点与不同点?

【设计意图】通过具体事例,让同学们列出关系式,启发同学们观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。

(三)讲解新课

以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

巩固对二次函数概念的理解:

1.强调“形如”,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

2.在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)

3.为什么二次函数定义中要求a≠0 ?

(若a=0,ax2+bx+c就不是关于x的二次多项式了)

4.在例2中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.

5.b和c是否可以为零?

由例1可知,b和c均可为零。

若b=0,则y=ax2+c;

若c=0,则y=ax2+bx;

若b=c=0,则y=ax2.

注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式。

【设计意图】这里强调对二次函数概念的理解,有助于同学们更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.

(1)y=3(x-1)?+1

(2)s=3-2t?

(3)y=(x+3)?- x?

(4) s=10πr?

(5) y=2?+2x

(6)y=x4+2x2+1(可指出y是关于x2的二次函数)

【设计意图】理论学习完二次函数的概念后,让同学们在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

(四)巩固练习

1.已知一个直角三角形的两条直角边长的和是10cm.

(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;

(2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关于x的函数关系式。

【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让同学们经历由具体到抽象的过程,从而降低同学们学习的难度。

2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3.

(1)分别写出S与x,V与x之间的函数关系式子;

(2)这两个函数中,那个是x的二次函数?

【设计意图】简单的实际问题,同学们会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让同学们体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的.信心。

3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3

(1)分别写出C关于r;V关于r的函数关系式;

(2)两个函数中,都是二次函数吗?

【设计意图】此题要求同学们熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围。

【设计意图】此题较前面几题稍微复杂些,旨在让同学们能够开动脑筋,积极思考,让同学们能够“跳一跳,够得到”.

(五)拓展延伸

1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式。

【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

2.确定下列函数中k的值

(1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______

(2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______

【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.

(六) 小结思考

本节课你有哪些收获?还有什么不清楚的地方?

【设计意图】让同学们来谈本节课的收获,培养同学们自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到同学们还有哪些不清楚的地方,以便在今后的教学中补充。

(七) 作业布置

必做题:

1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?

2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。

选做题:

1.已知函数 是二次函数,求m的值。

2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象

【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发同学们继续学习二次函数图象的兴趣。

四。教学设计思考

以实现教学目标为前提

以现代教育理论为依据

以现代信息技术为手段

贯穿一个原则——以同学们为主体的原则

突出一个特色——充分鼓励表扬的特色

渗透一个意识——应用数学的意识

初中数学优秀说课稿3

下午好!(自我介绍略)我说课的内容是义务教育课程标准试验教科书北师大版八年级数学下册第三章第二节分式的乘除法。下面我将从教材、教法、学法、教学程序、板书设计等方面来进行阐述。

一、说教材

1、教材内容:我认为可以理解为探索法则——理解法则——应用法则,进一步体现了新课标中“情境引入——数学建模——解释、拓展与应用的模式”。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。

2、教材地位:分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。

3、教学目标

知识目标:(1)、理解分式的乘除运算法则

(2)、会进行简单的分式的乘除法运算

能力目标:(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。

(2)、能解决一些与分式有关的简单的实际问题。

情感目标:(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。

(2)、培养学生的创新意识和应用意识。

(3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。

4、教学重点:分式乘除法的法则及应用.

5、教学难点:分子、分母是多项式的分式的乘除法的运算。

二、说教法

教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。

1、启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。

2、合作式教学,在师生平等的交流中评价学习。

三、说学法

学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的`分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。

1、类比学习的方法。通过与分数的乘除法运算类比。

2、合作学习。

四、说教学程序

1、类比学习,探索法则。(约3分钟)

让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)

复习:分数的乘除法法则(抽一学生口答)

猜一猜:

(a、b、c、d表示整数且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零)

类比:得出分式的乘除法法则(a、b、c、d表示整式且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零,a、c中含有字母)

活动目的:

让学生观察、计算、小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的法则。

教学效果:

通过类比分数的乘除法的法则,学生明白字母代表数、代表式,这样很顺利的得出分式的乘除法的法则。

2、理解法则:(约2分钟)

文字叙述:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;

两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.

活动目的:

两种形式巩固对法则的理解。

教学效果:

理解法则,进一步发展学生的符号感。

3、应用:(约20分钟)

(1)牛刀小试

教材74页到76页的例1、做一做、例2.我准备把例1和例2先学习了。再学习做一做。

活动目的:

抓住学生刚学习了法则,跃跃欲试的学习激情,抽2名同学上黑板演算,其他学生在课堂作业本上演算。老师巡查,予以辅导,反复提醒学生像分数乘法一样来学习分式乘法(即类比)。

教学效果:

有的学生可能没有注意把结果化为最简分式,要提醒注意,有的学生可能一边计算一边就分解因式进行约分(化简)了的,说明已经很好地与分数的乘法进行类比学习了(分数是分解因数),应该予以表扬,让全班学生认真学习、领会。讲评时还应该让学生理解一步的算理。

(2)“西瓜问题”

活动目的:

能解决一些与分式有关的简单的实际问题。能有条理的进行表达。

教学效果:

通过以上例题帮助学生总结出分式乘除法的运算步骤(当分式的分子与分母都是单项式时和当分式的分子、分母中有多项式两种情况)

4、随堂练习。(约5分钟)

76页第一题,共3个小题。

教学效果:

在总结出分式乘除法的运算步骤后,大部分学生能很好的掌握,但是还有些学生忘记运算结果要化成最简形式,老师要及时提醒学生。分解因式的知识没掌握好,将会影响到分式的运算,所以有的学生有必要复习和巩固一下分解因式的知识。

5、数学理解(约5分钟)

教材77页的数学理解,学生很容易出现像小明那样的错误。但是也很容易找出错误的原因。

补充例3 计算(xy-x2)÷

教学效果:巩固分式乘除法法则,掌握分式乘除法混合运算的方法。提醒学生,负号要提到分式前面去。

6、课堂小结(约3分钟)

先学生分组小结,在全班交流,最后老师总结。

7、作业布置,凝固新知。(约2分钟)

教材77页到78页,习题3.1,1、2、4.并补充一题(分式乘除法混合运算的)

五.说板书设计

主板书采用纲要式,一目了然。

初中数学优秀说课稿4

一、教材分析

1、教材的地位和作用

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。

2、教学目标

根据大纲的要求、本节教材的'内容和学生的好奇心、求知欲及已有的知识经验,本节课的三维目标主要体现在:

知识与能力目标: 要求学生会根据具体问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。

过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念 。

情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识。

3、教学重点与难点

要运用一元二次方程解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发。所以,本节课的重点是:由实际问题列出一元二次方程和一元二次方程的概念。鉴于学生比较缺乏社会生活经历,处理信息的能力也较弱,因此把由实际问题转化成数学方程确定为本节课的难点。

二、教法、学法

因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景---数学模型-----概念归纳”的模式。但是由于学生将实践问题转化为数学方程的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过直观形象的观察与演示,从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。

三、教学过程设计

1、创设情景,引入新课

因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过微机演示课本中的实例,并应用微机对其进行分析,充分显示微机演示中的生动性、灵活性,把图形的静变成动,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课。

初中数学优秀说课稿5

一、教材分析:

(一) 教材的地位与作用

从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;

勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

(二)重点与难点

为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。

限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点。 我将引导学生动手实验突出重点,合作交流突破难点。

二、学情分析

初二学生已具备一定的 分析,归纳的能力和运用数学的思想意识对于勾股定理的得出,需要学生通过动手操作,在观察的基础上,大胆猜想数学结论。但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

三、教学与学法分析

教学方法

叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

学法指导

为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

四、教学过程

首先,情境导入 激问设疑

给出生活中的`实际问题,调动学生兴趣,启迪学生思维,激发学生创新热情和和情感体验。是学生带着好奇心开始本节课的学习。

其次,自主探究,获取新知

勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

1. 追溯历史 解密真相

让学生欣赏传说故事:相传25前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。

这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。

2.动手操作----探求新知

通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。

在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。

这里首先引导学生观察图1、图2、图3,让学生计算每个图中的三个正方形的面积,(注意:学生可能有不同的方法,只要正确合理,各种方法都应给予肯定)。然后通过探究S1、S2、S3之间的关系,进而猜想、发现得出勾股定理,并用自己的语言表达,这样做不仅有利于学生主动参与探索,感受学习的过程,培养学生的语言表达能力,体会数形结合的思想;也有利于突破难点,让学生体会到观察、猜想、归纳的思路,让学生的分析问题、解决问题的能力在无形中得到提高,这对以后的学习有帮助。

从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此我引导学生利用“割”和“补”的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。

3、自己动手,拼出弦图

让同学们拿出了提前准备好的四个全等的边长为a、b、c的直角三角形进行拼图,小组活动,拼出自己喜爱的图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了学生,让他们在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,学生们拼得很好,并且都给出了正确的证明,在黑板上尽情地展示了一番。

突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。在求正方形C的面积时,学生将展示“割”的方法, “补”的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。

以上三个环节层层深入步步引导,学生归纳得到命题,从而培养学生的合情推理能力以及语言表达能力。

感性认识未必是正确的,推理验证证实我们的猜想。

合作交流,讲述论证

教材中直接给出“赵爽弦图”的证法对学生的思维是一种禁锢,我创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。同时我深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出“学生是学习的主体,教师是组织者、引导者与合作者”这一教学理念。学生会发现两种证明方案。

方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。

方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比“古”、“今”两种证法,让学生体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的自豪感。教师对“勾、股、弦”的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。增强了学生学习数学的兴趣和信心。

我按照“理解—掌握—运用”的梯度设计了如下四组习题。

(1) 体会新知,初步运用(2)对应难点,巩固所学;(3)考查重点,深化新知;(4)解决问题,感受应用

最后、温故反思 任务后延

在课堂接近尾声时,我鼓励学生从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。

然后布置作业,分层作业体现了教育面向全体学生的理念。

五、板书设计

板书勾股定理,进而给出字母表示,培养学生的符号意识。

六、学习评价

本课意在创设和谐的乐学气氛,始终面向全体学生,“以学生的发展为本”的教育理念,课堂教学充分体现学生的主体性,给学生留下最大化的思维空间注重数学思想方法的渗透,从一般到特殊从特殊回归到一般的数学思想方法。重视数学式教育,激发学生的爱国情操,用数学知识解决生活中的实际问题,在这个过程中,很多时候需要老师帮助学生去理解和转化,而更多时候需要学生自己去探索,尝试,得出正确结论。

初中数学优秀说课稿6

一、教材分析:

反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。

二、教学目标分析

根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。

因此把教学目标确定为:1。掌握反比例函数的概念,能够根据已知条件求出反比例函数的'解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。2。在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3。通过学习培养学生积极参与和勇于探索的精神。

三、教学重点难点分析

本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;

难点则是如何抓住特征准确画出反比例函数的图象。

为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。

四、教学方法

鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法

和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨

初中数学优秀说课稿7

各位评委:早上好

今天我说课的题目是 《有理数》复习课 ,这节课所选用的教材为人教版义务教育课程标准七年级上册教科书。

一、教材分析

1、教材的地位和作用

本节教材是初中数学七年级上册第一章《有理数》的复习内容,是初中数学的重要内容之一。有理数作为中学阶段的入门章节,非常重视与前面学段的衔接。一方面,数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是小学算术的延续和发展。另一方面,有理数的学习为学习实数等知识奠定了基础,是进一步研究代数式四则运算工具性内容。准确数和近似数、计算器的使用也是本章的教学内容,它是应用有理数解决实际问题所必需的。因此有理数在教材中具有承上启下的作用。

2、学情分析

学生在此之前已经学习了第一章有理数,对_有理数已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于有理数的知识的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

3、教学重难点

根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的.重点确定为:有理数概念和有理数运算

难点确定为:负数和有理数法则的理解和运用

二、教学目标分析

根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

1. 知识与技能目标:复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识

2. 过程与方法目标:培养学生综合运用知识解决问题的能力,提高学生对知识的整合能力和分析能力

3. 情感态度与价值目标:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。激发学生兴趣,感受数学之美。

三、教学方法分析 方法:分层次教学,讲授、练习相结合。

本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

1、师生互动探究式教学,以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知欲心理和已有的认知水平开展教学,形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

2、采用表格形式,将知识点归纳,让学生通过这个表格很容易看出二次函数与一元二次方程的联系,让学生形成以清晰、系统、完整的知识网络。

3、运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。

学法指导

“授人以鱼,不如授人以渔”。在教学过程中,不但要传授学生基本知识,还要培养学生主动观察、主动思考、亲自动手、自我发现等学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发与点拨,在积极的双边活动中,学生找到了解决疑问的方法,找准解决问题的关键。

四、教学过程分析

为有序、有效地进行教学,本节课我主要安排以下教学环节:

(1) 复习就知,温故知新

设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2) 创设情境,提出问题

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

初中数学优秀说课稿8

下午好!今天我说课的题目是《分式的乘除法(第1课时)》,所选用是人教版的教材。根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从说教材、说学情、说教法学法、说教学过程、说板书等五个方面加以说明。

一、说教材

(一)教材的地位和作用

本节教材是八年级数学第十六章第二节第一课时的内容,是初中数学的重要内容之一。一方面,而这是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础。因此,本节课在整个的初中数学的学习中起着承上启下的过渡作用。

(二)教学目标分析

根据新课标的要求和本节课内容特点,考虑到年级学生的知识水平,以及对教材的地位与作用的分析,而我制定了如下三维教学目标:

1、认知目标:理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,亦能解决一些与分式乘除有关的实际问题。

2、技能目标:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。

3、情感目标:教学中让学生在主动探究,合作交流中渗透类比转化的思想,这使学生在学知识的同时感受探索的乐趣和成功的体验。

(三)教学重难点

本着课程标准,在充分理解教材的基础上,我确立了如下的教学重点、难点:

教学重点:运用分式的乘除法法则进行运算。

教学难点:分子、分母为多项式的分式乘除运算。

下面,为了讲清重点难点,使学生能达到本节课的教学目标,那么我再从教法和学法上谈谈:

二、说学情

1、学生已经学习分式基本性质、分式的约分和因式分解,要通过与分数的乘除法类比,促进知识的正迁移。

2、八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,而通过类比学习加快知识的学习。

三、说教法学法

(一)说教法

教学方式的改变是新课标改革的目标,新课标要求把过去单纯的老师讲,学生接受的教学方式,变为师生互动式教学。师生互动式教学以教学大纲为依据,渗透新的教育理念,遵循教师主导、学生为主体的原则,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以师生互动的形式,在教师的指导下突破难点:分式的乘除法运算,在例题的引导分析时,教学中应予以简单明白,深入浅出的分析本课教学难点:分子、分母为多项式的分式乘除运算。让学生在练习题中巩固难点,这从真正意义上完成对知识的自我建构。

另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

(二)说学法

从认知状况来说,学生在此之前对分数乘除法运算比较熟悉,再加上对本章第一节分式及其性质学习,抓住初中生具有丰富的想象能力和活跃的思维能力,爱发表见解,希望得到老师的表扬这些心理特征,因此,我认为本节课适合采用学生自主探索、合作交流的数学学习方式。一方面运用实际生活中的问题引入,激发学生的兴趣,使他们在课堂上集中注意力;另一方面,由于分式的乘除法法则与分数的乘除法法则类似,以类比的方法得出分式的乘除法则,易于学生理解、接受,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性。不但让学生“学会”还要让学生“会学”

四、说教学过程

新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,接下来,我再具体谈谈本节课的教学过程安排:

(一)提出问题,引入课题

俗话说:“好的开端是成功的一半”同样,好的引入能激发学生兴趣和求知欲。因此我用实际出发提出现实生活中的问题:

问题1求容积的高是,(引出分式乘法的学习需要)。

问题2求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。

从实际出发,引出分式的乘除的`实在存在意义,让学生感知学习分式的乘法和除法的实际需要,从而激发学生兴趣和求知欲。

(二)类比联想,探究新知

从学生熟悉的分数的乘除法出发,引发学生的学习兴趣。

解后总结概括:

(1)式是什么运算?依据是什么?

(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导)

(学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则。

【分式的乘除法法则】

乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。

除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

用式子表示为:

设计意图:由于分式的乘除法法则与分数的乘除法法则类似,故以类比的方法得出分式的乘除法则,易于学生理解、接受,体现了自主探索,合作学习的新理念。

(三)例题分析,应用新知

师生活动:教师参与并指导,学生独立思考,并尝试完成例题。

P11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使学生耳熟能详。P11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破本节课的难点我采取板演的形式,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法。

(四)练习巩固,培养能力

初中数学优秀说课稿9

一、说教材

1、教材简析

平行四边形面积的计算,是在学生已掌握了长方形面积的计算、面积概念和面积单位,以及认识了平行四边形的基础上进行教学的。教材运用转化思想,在数方格法的基础叟,用割补法,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。

2、教学目标:

(1)引导学生自己推导出平行四边形的面积公式,沟通长方形和平行四边形之间的内在联系。

(2)通过操作,让学生尝试用转化的思想方法解决新的问题。

(3)理解平行四边形的面积与底和高有关,并会运用面积公式求平行四边形的面积。

3、教学重点:平行四边形的面积计算。

4、教学难点:理解平行四边形面积计算公式的推导过程。

二、教法学法

平行四边形面积的计算是一堂几何初步知识课,为以后学习三角形面积和梯形面积的计算,提供了知识准备。本课的教学设计由直观到抽象,层层深入。从动手操作 观察思考 归纳概括 初步反馈,遵循了概念教学的原则和学生的认知规律。通过动手操作,把平行四边形转化成长方形,再现已有的表象,借助已有的知识经验,进行观察、分析、比较、推理、概括出平行四边形面积的计算公式。这正体现了概念教学的顺序:动作感知 形成表象 抽象概念。

教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。引导学生自己去操作,自己去观察、比较,自己去探求,重视让学生自己去操作,自己去获取知识,以思维训练为主线,提高学生的思维水平。互助合作,以全体学生为教育对象,整体提高,营造良好的学习氛围。

三、教学过程

(一)复习铺垫

教具逐个出示:

1、图(1)是什么图形? 它的面积怎样算?现在量得长是7厘米,宽是4厘米,你知道这个长方形的面积是多少?

2、长方形的面积可以直接用公式计算,那么图(2)我们能直接用公式计算它的面积吗?用什么办法求它的面积?

学生独立思考,讨论后反馈。(教具演示把多的一块剪下来,拼过去正好是一个长方形,再用长乘以宽就是它的面积)

3、刚才我们用割下来补过去的方法将图(2)转化成和原来图形面积相等的长方形,再用长方形面积公式求出它的面积。现在谁能计算图(3)的面积?

学生独立计算后,反馈。你是怎么算的?为什么?(教具演示:把图(3)右边的'三角形割下来补到左边,转化成一个长方形。)

(二)导入新课

图(2)、图(3)我们用割补的方法把它们转化成学过的长方形就能算出它们的面积。(教具出示下图)

你能想办法求出这个平行四边形的面积吗?下面我们一起来研究平行四边形的面积计算。出示课题。

(三)引导探究

1、学生独立思考,动手操作,尝试计算平行四边形的面积。

(教师巡视,学生计算1号学具纸片平行四边形的面积)

谁能说一说,这个平行四边形的面积是多少?你是怎样计算的?学生可能出现不同的答案。

到底怎样思考才是正确的呢?充分运用你手头的学具和有关工具(尺、剪刀等)来尝试操作,然后列式计算(四人小组进行合作、交流)

反馈交流:根据学生的回答教具演示“转化过程”。 演示前先比较两个全等的平行四边形,再将其中一个平行四边形沿着平行四边形的高把图形剪开,将左边的三角形(或直角梯形)拼到右边去,正好是个长方形,量出它的长是7厘米,宽是4厘米,面积是7×4=28平方厘米。

追问:为什么可以这样算?

把平行四边形割补成长方形,图形的什么变了,什么没有变?

比较拼成的长方形的长、宽与原平行四边形的底、高之间的关系。

2、操作实践,验证想法。

是不是所有的平行四边形都能转化成长方形?任意画一个平行四边形或任意取一个学具平行四边形纸片,证明你的想法。(结论:由此看来,对于任何一个平行四边形,要计算它的面积,我们都可以用割补的访求将平行四边形转化成长方形来计算它的面积)

3、观察分析,归纳公式。

那么平行四边形的面积该怎样计算呢?为什么?(学生讨论)

结合回答,教具演示:因为割补的方法把平行四边形转化成长方形,形变面积不变,我们发现,长方形的长相当于平行四边形的底,宽相当于平行四边形的高,所以平行四边形的面积是底乘以高。

板书:长方形的面积=长×宽

平行四边形的面积=底×高

如果用字母S表示平行四边形的面积,a表示它的底,h表示它的高,那么平等四边形面积的字母公式是怎样的?

(四)小结

1、面对“平行四边形的面积”这个新问题,我们利用已有的“求长方形的面积知识”,通过转化的方法,推导出平行四边形的面积公式。

2、现在,你们说说,要求平行四边形的面积,关键是找哪两个条件?

(五)练习

1、计算下面平行四边形的面积。(练后讲评)

2、计算下面平行四边形的面积。

3、有一块平行四边形草地,底18米,高10米。这块草地的面积是多少?

4、口答下面每个平行四边形的面积。

底(厘米)

50

12

100

9

高(厘米)

40

8

36

4

面积(平方厘米)

(六)课堂小结

1、这节课,我们学到了什么?有什么体会?

2、同学们的表现好在哪里?

*3机动练习:

计算下面图中平行四边形的面积,正确列式为( )。(单位:厘米)

初中数学优秀说课稿10

各位评委:

大家好!我是 号说课者,今天我说课的题目是 ,所选用的教材为北师大版义务教育课程标准实验教科书。

根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析,教学目标分析,教法和学法分析,教学过程分析,板书设计六个方面展开说课。

一、教材的地位和作用

本节教材是初中数学 年级第 章第 节的内容,是初中数学的重要内容之一。一方面,这是在学习了 的基础上,对 的进一步深入和拓展;另一方面,又为学习等知识奠定了基础,是进一步研究 的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

二、学情分析

从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

从认知状况来说,学生在此之前已经学习了 ,对 已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

三、教学目标分析

新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感态度与价值观目标这三个方面,而这三维目标又是紧密联系的一个统一整体,学生在学会知识与技能的过程中,同时也是成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。所以,我将三维目标进行整合,确定本节课的教学目标为:

1. (了解、理解、熟记、初步掌握、会运用 等);

2. 通过 的学习,培养学生 观察分析、类比归纳的探究 能力,加深对 函数与方程、数形结合、从特殊到一般、类比与转化、分类讨论 等数学思想的认识。

3. 通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。

根据以上对教材的地位和作用,以及学情和教学目标的分析,结合新课标对本节课的要求,我将本节课的重点确定为: 难点确定为:

为了讲清教材的重难点,使学生能够达到本节课设定的教学目标,我再从教法和学法上谈谈。

四、教法和学法分析

1. 教法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我采用直观演示法(利用图片等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握)、活动探究法(引导学生通过创设情境等活动形式获取知识,以学生为主体,使学生的独立探索精神得到充分发挥,培养学生的自学能力、思维能力、活动组织能力)、集体讨论法(针对学生提出的问题,组织学生进行集体或分组讨论,促使学生在学习中解决问题,培养学生的团结协作精神),以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,

在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

由于本节课内容与社会现实生活的关系比较密切,学生已经具有直观的感受。在教学中可以让学生自己阅读课本并列举社会上存在的一些相关现象,在老师的指导下进行讨论,然后进行归纳总结,得出正确的结论。这样有利于调动学生的积极性,发挥学生的主体作用,让学生对本节课知识的认识更清晰、更深刻。

2. 学法

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”。因而,我在教学过程中特别重视学法的知道,让学生从机械的“学答”向“学问”转变,从“学会”向“会学”转变,成为学习的真正主人。这节课我在指导学生的.学习方法和培养学生的学习能力方面主要采用以下方法:分析归纳法、自主探究法、总结反思法。

下面我具体来谈谈这堂课的教学过程。

五、教学过程分析

新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

(1) 复习旧知,温故知新

设计意图:建构主义主张教学应从学生已有的知识体系出发, 是本节课深入研究 的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2) 创设情境,提出问题

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘

通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

(3) 发现问题,探求新知

设计意图:现代数学教学论指出, 的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳 。

(4) 分析思考,加深理解

设计意图:数学教学论指出, 数学概念(定理等) 要明确其 内涵和外延(条件、结论、应用范围等) ,通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第 环节。

(5) 强化训练,巩固双基

设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1??例2??,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

(6) 小结归纳,拓展深化

我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的知识、方法、体验三个个方面进行归纳,我设计了这么三个问题:

① 通过本节课的学习,你学会了哪些知识;

② 通过本节课的学习,你最大的体验是什么;

③ 通过本节课的学习,你掌握了哪些学习数学的方法?

(7) 布置作业,提高升华

以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,

选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效率达到最佳状态。

六、板书设计

我比较注重直观、系统的板书设计,这有利于及时地体现教材中的知识点,便于学生理解掌握。 我的板书设计分为三部分:第一部分,复习旧知,引入新课;第二部分,定义,法则和定理的说明;第三部分,通过例题巩固应用。

七、结束语

各位领导、老师们,本节课我根据 年级学生的心理特征及其认知规律,采用直观教学和活动探究的教学方法,以“教师为主导,学生为主体”完成教学。教师的“导”立足于学生的“学”,在教学中要以学法为重心,放手让学生自主探索地学习,使他们主动地参与到知识形成的整个思维过程中,在积极、愉快的课堂气氛中提高自己的认知水平,并最终达到预期的教学效果。

我的说课完毕,谢谢!

初中数学优秀说课稿11

各位评委:

大家上午好!

今天我说课的内容是《勾股定理》。根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析、教学目标、教学重难点、教法学法、教学过程等五个方面加以说明。

一、教材分析

本节内容是苏科版数学八年级上册第二章第1节《勾股定理》第1课时。它是在学生已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个三角形三条边之间的数量关系,它是解直角三角形的主要根据之一,是直角三角形的一条非常重要的性质,也是几何中最重要的定理之一,它将形与数密切联系起来,在数学的发展中起过重要的作用,在现实世界中也有着广泛的作用。由此可见,《勾股定理》是对直角三角形进一步的认识和理解,是后续学习的基础。因此,本节内容在整个知识体系中起着重要的作用。

二、教学目标

根据上述教材分析,考虑到学生已有的认知结构和心理特征,制定如下教学目标:

1、了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理

2、经历“观察—猜想—归纳—验证”的数学发现过程,发展合情合理的推理能力,沟通数学知识之间的内在联系,体会“数形结合”和“特殊到一般”的思想方法。

3、通过介绍中国古代研究勾股定理的成就,激发学生的爱国热情,感受数学文化,激发学生学习的热情。

三、教学重点、难点:

依据教学目标,我认为本节课的重点是:勾股定理的`探讨。

教学难点:利用数形结合的方法验证勾股定理。

四、教法和学法

本节课我将采用探究发现式教学,提供适当的问题情境.给学生自主探究交流的空间,引导学生有目的地探索.

五、教学过程:

根据以上分析,下面我具体谈一谈本节课的教学过程.

(一)创设情境以趣引新

一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?(提出问题,设置悬念,提高学生的学习积极性)

(二)实践探索猜想归纳

1、(课件出示课本P44图2—1),请同学们观察并回答问题:

根据计算正方形的面积来探索勾股定理,此处重在引导学生如何计算出以斜边为边的正方形的面积。学生可能会利用补,割,旋转,等方法算出,从而发现三个正方形的面积之间的数量关系,这样学生通过正方形面积之间的关系主动建立了由形到数,由数到形的联想,同时也初步感受到对于直角三角形而言,三边满足两直角边的平方和等于斜边的平方。

(这样的设计有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想,同时在合作交流中也突破了本节课的一大难点。)

2、提出问题:是否所有的直角三角形都有这个性质呢

先让学生大胆猜想,再让学生在准备好的方格纸上,任意画一个顶点都在格点上的直角三角形,进行验证。仿照上面的方法,学生容易进行类比联想,猜想结论成立,同样分别以各边为边向三角形外作正方形,通过计算这三个正方形的面积来验证猜想。教师可通过表格的形式展示部分学生的实验结果,从而为归纳提供基础,学生也更容易发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。

(这样设计不仅有利于突出重点,而且让学生体会到观察,猜想,归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到

初中数学优秀说课稿12

一、教材分析

教材的地位和作用:

矩形是在学生已经学习了四边形、平行四边形,积累一定的经验的基础上学习的。它是这章的重点内容之一。既是平行四边形知识的延伸,又为学习其它特殊平行四边形提供了研究方法和学习策略,也为今后学习其它有关知识奠定了基础,起承上启下的重要作用。

二、教学目标

根据教学大纲对本节内容的要求及本课内容的特点,运用新课程理念,结合学生实际情况,我把本节课的教学目标确定为:

知识技能:

1.理解矩形有关概念,根据定义探究并掌握矩形的有关性质。

2.了解矩形在生活中的应用,根据矩形的性质解决简单的实际问题。

数学思考:

1.经历矩形的概念和性质的探索过程,发展学生合情推理意识,掌握几何思维方法。通过观察、思考、交流、探究等数学活动,发展学生的思维能力和语言表达能力。

2.根据矩形的性质进行简单的计算和应用,培养学生逻辑推理能力,培养几何直觉向思维逻辑转化的习惯,进一步体会类比及数形结合的思想方法。

解决问题:

通过学生观察、实验、分析、交流,引出矩形的概念,感受数学思考过程的条理性及解决问题策略的多样性,通过收集生活中的数学信息以及应用所学知识解决生活中的问题,进一步体会数学与生活的联系,增强应用数学意识。

情感态度:在与他人的交流合作中,让学生感受数学活动充满探索的乐趣,提高学生的学习热情和学习的积极性,培养学生合作交流的意识和大胆猜想、乐于探究的良好品质以及发现问题、探究问题的能力。发展学生的主动探索和独立思考的习惯。

三、教学重点:矩形的性质及其应用。

教学难点:理解矩形的特殊性,探究矩形特殊性质。

四、教法及手段:

根据本课内容和学生的特点及教学的要求,采用教师引导——自主探究——合作交流的方法。使教师的主导地位和学生的主体地位得到充分体现。

教学手段:采用多媒体(PowerPoint,几何画板)、实物投影辅助教学。

五、教学过程

本课的设计环节如下:创设情境 引入新课、动手操作 得出定义、引导探究 得出性质、运用新知 解决问题、归纳小节 巩固新知、分层作业 学有所得。

在本课各个环节设计中力求突出以下几个方面:

1、数学问题生活化

设计中我遵循数学源于生活又服务于生活课标要求。注重问题情境的创设,让数学问题生活化,活动1我展示给同学们一张校园门口的照片,让同学们感受生活中到处传递着数学信息,通过观察、搜集并分析熟悉的图形,体会数学在生活中的应用,进而引出活动2 ; 性质应用中计算电视屏幕的大小,也是与生活联系非常密切的问题,有的学生还不知道电视的.大小是指的对角线的长短,通过这道题目,让学生了解到生活的常识,也让学生进一步体会数学在生活中的作用,而且通过问题的解决培养学生爱数学、学数学的热情。

2、创设自主探究情境,发挥学生的主动性

矩形定义的探究,学生拿出自制平行四边形学具,分组活动,通过学生观察、实验、分析、交流,引出矩形的概念,把平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形。并通过学生找出生活中的实例,让学生感受数学美及数学与生活的联系。矩形性质的探究是让学生类比平行四边形的性质,通过观察、测量、分析、证明等手段,让矩形的性质在活动中“浮出水面”.活动中让学生自己去探索,在探索中发现新知,在交流中归纳新知,把学习的主动权交给学生。我在评价中对活动积极的小组和个人进行表扬,增强学生创造的信心,体验到成功的快乐。性质1是学生小组交流完成的证明。而性质2要求学生认真写出已知、求证和证明过程,在此基础上请一个学生上黑板板书,其余学生观察其板书正确与否。培养几何直觉向思维逻辑化转化的习惯,培养学生发散思维能力,养成良好的解题习惯。 活动中让学生充分经历知识形成的全过程。同时也积累了良好的学习经验。

3、训练学生的逻辑思维,培养学生严谨的解题习惯。

本节课新知应用环节,我设计了3个题目。练习1是性质的定义的直接应用,在巩固新知的同时,引导学生进一步发现与矩形中所包含的基本图形,从而让学生感受矩形与等腰三角形与直角三角形有密切的关系,让学生体会知识的联系与延伸,培养几何直觉向思维逻辑转化的习惯,培养学生发散思维能力。例题的设计是让学生体会性质应用的同时规范学生的解题步骤和格式,让学生感受数学思维的严谨性。练习2是生活中的问题,让学生体会生活中的数学,做到学用结合,培养学生学习数学的的热情和情趣。

4、教学活动中注重体现人人学有价值的数学

首先根据不同学生的智力、能力、基础不一,把学生编排成探究小组,在探究中注重组内帮带,以互帮互助促进不同层次的学生共同提高,其分组的原则是:数学成绩优秀的,组织能力强的、动手能力强的、成绩中等的、基础差的。 其次是作业的设计体现的是层次性。我把作业分为必做题和选做题两种。必做题较基础,可以发现和弥补课堂学习的遗漏和不足。备选题则仅供学有余力的学生选用。另外数学日记是帮助学生总结本节课的收获和不足,培养学生善于总结和反思的习惯。

5、充分利用多媒体辅助教学

本节课是采用多媒体进行辅助教学的,给学生以直观感性的认识,培养学生观察、表述、归纳的能力。 使教学目标得以顺利完成。

以上,是我设计本节课的一些做法和体会,有不妥之处请大家多提宝贵意见,谢谢大家!

初中数学优秀说课稿13

师生活动:教师出示问题,学生独立思考解答,并让学生板演或投影展示学生的解题过程。

通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式和结果。

(五)课堂小结,回扣目标

引导学生自主进行课堂小结:

1、本节课我们学习了哪些知识?

2、在知识应用过程中需要注意什么?

3、你有什么收获呢?

师生活动:学生反思,提出疑问,集体交流。

设计意图:学习结果让学生作为反馈,让他们体验到学习数学的.快乐,在交流中与全班同学分享,从而加深对知识的理解记忆。

(六)布置作业

教科书习题6.2第1、2(必做)练习册P(选做),我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

五、说板书设计

在本节课中我将采用提纲式的板书设计,因为提纲式-条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆。

初中数学优秀说课稿14

一、教材分析:

(一) 教材的地位与作用

从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

从同学们认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;

勾股定理又是对同学们进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

根据数学新课程标准以及八年级同学们的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发同学们热爱祖国悠久文化的情感。

(二)重点与难点

为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。

限于八年级同学们的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点。 我将引导同学们动手实验突出重点,合作交流突破难点。

二、学情分析

初二同学们已具备一定的 分析,归纳的能力和运用数学的思想意识对于勾股定理的得出,需要同学们通过动手操作,在观察的基础上,大胆猜想数学结论。但同学们在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

三、教学与学法分析

教学方法

叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导同学们由浅入深的探索,设计实验让同学们进行验证,感悟其中所蕴涵的思想方法。

学法指导

为把学习的主动权还给同学们,教师鼓励同学们采用动手实践,自主探索、合作交流的学习方法,让同学们亲自感知体验知识的形成过程。

四、教学过程

首先,情境导入 激问设疑

给出生活中的实际问题,调动同学们兴趣,启迪同学们思维,激发同学们创新热情和和情感体验。是同学们带着好奇心开始本节课的学习。

其次,自主探究,获取新知

勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

1. 追溯历史 解密真相

让同学们欣赏传说故事:相传25前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使同学们明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。

这样,一方面激发同学们的求知欲望,另一方面,也对同学们进行了学习方法指导和解决问题能力的培养。

2.动手操作----探求新知

通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。

在这一过程中,同学们充分利用学具去尝试解决,力求让同学们自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。

这里首先引导同学们观察图1、图2、图3,让同学们计算每个图中的三个正方形的面积,(注意:同学们可能有不同的方法,只要正确合理,各种方法都应给予肯定)。然后通过探究S1、S2、S3之间的关系,进而猜想、发现得出勾股定理,并用自己的语言表达,这样做不仅有利于同学们主动参与探索,感受学习的过程,培养同学们的语言表达能力,体会数形结合的思想;也有利于突破难点,让同学们体会到观察、猜想、归纳的思路,让同学们的分析问题、解决问题的能力在无形中得到提高,这对以后的学习有帮助。

从上面低起点的问题入手,有利于同学们参与探索。同学们很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。同学们会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此我引导同学们利用“割”和“补”的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。

3、自己动手,拼出弦图

让同学们拿出了提前准备好的四个全等的边长为a、b、c的直角三角形进行拼图,小组活动,拼出自己喜爱的.图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了同学们,让他们在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,同学们们拼得很好,并且都给出了正确的证明,在黑板上尽情地展示了一番。

突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。在求正方形C的面积时,同学们将展示“割”的方法, “补”的方法,有的同学们可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定同学们的研究成果,培养同学们的类比、迁移以及探索问题的能力。

以上三个环节层层深入步步引导,同学们归纳得到命题,从而培养同学们的合情推理能力以及语言表达能力。

感性认识未必是正确的,推理验证证实我们的猜想。

合作交流,讲述论证

教材中直接给出“赵爽弦图”的证法对同学们的思维是一种禁锢,我创新使用教材,利用拼图活动解放同学们的大脑,让同学们发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,给同学们充分的自主探索的时间与空间,让同学们的思维在相互讨论中碰撞、在相互学习中完善。同时我深入到同学们中间,观察同学们探究方法接受同学们的质疑,对于不同的拼图方案给予肯定。从而体现出“同学们是学习的主体,教师是组织者、引导者与合作者”这一教学理念。同学们会发现两种证明方案。

方案1为赵爽弦图,同学们讲解论证过程,再现古代数学家的探索方法。方案2为同学们自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让同学们经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比“古”、“今”两种证法,让同学们体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的自豪感。教师对“勾、股、弦”的含义以及古今中外对勾股定理的研究做一个介绍,使同学们感受数学文化,培养民族自豪感和爱国主义精神。增强了同学们学习数学的兴趣和信心。

我按照“理解—掌握—运用”的梯度设计了如下四组习题。

(1) 体会新知,初步运用(2)对应难点,巩固所学;(3)考查重点,深化新知;(4)解决问题,感受应用

最后、温故反思 任务后延

在课堂接近尾声时,我鼓励同学们从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。

然后布置作业,分层作业体现了教育面向全体同学们的理念。

五、板书设计

板书勾股定理,进而给出字母表示,培养同学们的符号意识。

六、学习评价

本课意在创设和谐的乐学气氛,始终面向全体同学们,“以同学们的发展为本”的教育理念,课堂教学充分体现同学们的主体性,给同学们留下最大化的思维空间注重数学思想方法的渗透,从一般到特殊从特殊回归到一般的数学思想方法。重视数学式教育,激发同学们的爱国情操,用数学知识解决生活中的实际问题,在这个过程中,很多时候需要老师帮助同学们去理解和转化,而更多时候需要同学们自己去探索,尝试,得出正确结论。

初中数学优秀说课稿15

一、教学目标

1、使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

2、培养学生观察能力,提高他们分析问题和解决问题的能力;

3、使学生初步养成正确思考问题的良好习惯。

二、教学重点和难点

一元一次方程解简单的应用题的方法和步骤。

三、课堂教学过程设计

(一)从学生原有的认知结构提出问题

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题。

例1某数的3倍减2等于某数与4的和,求某数。

(首先,用算术方法解,由学生回答,教师板书)

解法1:(4+2)÷(3-1)=3。

答:某数为3。

(其次,用代数方法来解,教师引导,学生口述完成)

解法2:设某数为x,则有3x-2=x+4。

解之,得x=3。

答:某数为3。

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一。

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。

(二)师生共同分析、研究一元一次方程解简单应用题的方法和步骤

例2某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?

师生共同分析:

1、本题中给出的已知量和未知量各是什么?

2、已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

3、若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得

x-15%x=42 500,所以x=50 000。

答:原来有50 000千克面粉。

此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

教师应指出:

(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

(2)例2的解方程过程较为简捷,同学应注意模仿。

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的`方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(1)仔细审题,透彻理解题意。即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);

(3)根据相等关系,正确列出方程。即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案。这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。

例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨。解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式。)

解:设第一小组有x个学生,依题意,得

3x+9=5x-(5-4),解这个方程:2x=10,所以x=5。

其苹果数为3× 5+9=24。

答:第一小组有5名同学,共摘苹果24个。

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。

(设第一小组共摘了x个苹果,则依题意,得)

(三)课堂练习

1、买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

2、我国城乡居民1988年末的储蓄存款达到3 802亿元,比1978年末的储蓄存款的18倍还多4亿元。求1978年末的储蓄存款。

3、某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数。

(四)师生共同小结

首先,让学生回答如下问题:

1、本节课学习了哪些内容?

2、列一元一次方程解应用题的方法和步骤是什么?

3、在运用上述方法和步骤时应注意什么?

依据学生的回答情况,教师总结如下:

(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案。其中第三步是关键;

(2)以上步骤同学应在理解的基础上记忆。

(五)作业

1、买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?

2、用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

3、某厂去年10月份生产电视机20xx台,这比前年10月产量的2倍还多150台。这家工厂前年10月生产电视机多少台?

4、箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?

5、把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元。求得到一等奖与二等奖的人数。

第四篇:初中数学优秀说课稿

初中数学说课稿模板

潘亚飞

各位评委:

大家好!我是()号说课者,今天我说课的题目是(),所选用的教材为北师大版义务教育课程标准实验教科书。

根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析,教学目标分析,教法和学法分析,教学过程分析,板书设计六个方面展开说课。

一、教材的地位和作用

本节教材是初中数学()年级第()章第()节的内容,是初中数学的重要内容之一。一方面,这是在学习了的基础上,对的进一步深入和拓展;另一方面,又为学习

等知识奠定了基础,是进一步研究的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

二、学情分析

从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

从认知状况来说,学生在此之前已经学习了,对 已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

三、教学目标分析

新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感态度与价值观目标这三个方面,而这三维目标又是紧密联系的一个统一整体,学生在学会知识与技能的过程中,同时也是成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。所以,我将三维目标进行整合,确定本节课的教学目标为:

1.(了解、理解、熟记、初步掌握、会运用 等);

2.通过的学习,培养学生 观察分析、类比归纳的探究 能力,加深对 函数与方程、数形结合、从特殊到一般、类比与转化、分类讨论 等数学思想的认识。

3.通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。

根据以上对教材的地位和作用,以及学情和教学目标的分析,结合新课标对本节课的要求,我将本节课的重点确定为:

难点确定为:

为了讲清教材的重难点,使学生能够达到本节课设定的教学目标,我再从教法和学法上谈谈。

四、教法和学法分析

1.教法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我采用直观演示法(利用图片等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握)、活动探究法(引导学生通过创设情境等活动形式获取知识,以学生为主体,使学生的独立探索精神得到充分发挥,培养学生的自学能力、思维能力、活动组织能力)、集体讨论法(针对学生提出的问题,组织学生进行集体或分组讨论,促使学生在学习中解决问题,培养学生的团结协作精神),以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

由于本节课内容与社会现实生活的关系比较密切,学生已经具有直观的感受。在教学中可以让学生自己阅读课本并列举社会上存在的一些相关现象,在老师的指导下进行讨论,然后进行归纳总结,得出正确的结论。这样有利于调动学生的积极性,发挥学生的主体作用,让学生对本节课知识的认识更清晰、更深刻。

2.学法 我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”。因而,我在教学过程中特别重视学法的知道,让学生从机械的“学答”向“学问”转变,从“学会”向“会学”转变,成为学习的真正主人。这节课我在指导学生的学习方法和培养学生的学习能力方面主要采用以下方法:分析归纳法、自主探究法、总结反思法。

下面我具体来谈谈这堂课的教学过程。

五、教学过程分析

新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

(1)复习旧知,温故知新

设计意图:建构主义主张教学应从学生已有的知识体系出发,是本节课深入研究的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2)创设情境,提出问题

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘

通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

(3)发现问题,探求新知

设计意图:现代数学教学论指出,的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳。

(4)分析思考,加深理解

设计意图:数学教学论指出,数学概念(定理等)要明确其 内涵和外延(条件、结论、应用范围等),通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第 环节。

(5)强化训练,巩固双基

设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1„„例2„„,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

(6)小结归纳,拓展深化

我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的知识、方法、体验三个个方面进行归纳,我设计了这么三个问题:

① 通过本节课的学习,你学会了哪些知识;

② 通过本节课的学习,你最大的体验是什么;

③ 通过本节课的学习,你掌握了哪些学习数学的方法?

(7)布置作业,提高升华

以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效率达到最佳状态。

六、板书设计

我比较注重直观、系统的板书设计,这有利于及时地体现教材中的知识点,便于学生理解掌握。我的板书设计分为三部分:第一部分,复习旧知,引入新课;第二部分,定义,法则和定理的说明;第三部分,通过例题巩固应用。

结束语 各位领导、老师们,本节课我根据()年级学生的心理特征及其认知规律,采用直观教学和活动探究的教学方法,以“教师为主导,学生为主体”完成教学。教师的“导”立足于学生的“学”,在教学中要以学法为重心,放手让学生自主探索地学习,使他们主动地参与到知识形成的整个思维过程中,在积极、愉快的课堂气氛中提高自己的认知水平,并最终达到预期的教学效果。

我的说课完毕,谢谢!

第五篇:初中数学优秀说课稿

初中数学优秀说课稿

初中数学优秀说课稿1

一、教材分析

1、教材的地位和作用

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。

2、教学目标

根据大纲的要求、本节教材的内容和学生的好奇心、求知欲及已有的知识经验,本节课的三维目标主要体现在:

知识与能力目标: 要求学生会根据具体问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。

过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念 。

情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识。

3、教学重点与难点

要运用一元二次方程解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发。所以,本节课的重点是:由实际问题列出一元二次方程和一元二次方程的概念。鉴于学生比较缺乏社会生活经历,处理信息的能力也较弱,因此把由实际问题转化成数学方程确定为本节课的难点。

二、教法、学法

因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景---数学模型-----概念归纳”的.模式。但是由于学生将实践问题转化为数学方程的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过直观形象的观察与演示,从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。

三、教学过程设计

1、创设情景,引入新课

因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过微机演示课本中的实例,并应用微机对其进行分析,充分显示微机演示中的生动性、灵活性,把图形的静变成动,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课。

初中数学优秀说课稿2

尊敬的各位专家、老师:

大家好,本次信息技术与教学融合,我选取的课题是沪科版数学七年级下册第十章第一节第二课时的内容——《垂线及其性质》。

本单元所学习的知识都是几何的基础,是学生学习几何推理证明的初级阶段,在本阶,段学生要在深刻理解基本概念的基础上,通过观察积累直观经验,为学生学习几何说理打好基础。

本节课是单元起始阶段,要让学生充分理解基础知识,建立直观模型。因此我的教学目标是让学生经历观察和操作验证,理解垂线的两个性质——“过直线外一点有且只有一条直线与已知直线垂直”和“垂线段最短”;教学重点是学习垂线的画法和垂线的两个性质;教学难点是垂线段最短及简单应用。

在传统的教学中,学生在感受垂线的'两个性质时,很难在直观上获得有效的感受,更谈不上操作验证。而垂线的两个性质又不能通过证明的方式得到,这样无形中就提高了课程的难度,也给学生的理解带来了不小的障碍。

如果将信息技术恰当地引入课堂,不仅能够让学生拥有有效的直观感受,更能在此基础上,培养学生的空间想象能力,为后续几何知识的学习做好准备。

学生学习是一个系统的过程。包括课前预习提出问题、课中学习理解问题、课后复习解决问题。于是我将课堂教学和信息技术也分为三个部分进行了融合:

融合点一:课前学生自主预习并将预习中遇到的问题及时以跟帖留言的方式反馈给老师。

在学生预习这个环节,我就及时了解学生学习情况。用最常见的qq空间里的说说功能,发布预习要求,让学生跟帖留言,反馈学习情况。(出示图片)可以看到大部分同学对于基础的知薯解没有问题,但是对于几何语言的表述还存在障碍,针对这个问题我在教学中进行了适当的强化练习。

融合点二:课中,运用smart电子白板,带领学生回顾自学成果,并强调本节课的重点内容。(视频展示)课堂以问题驱动,层次分明地将学生自学的成果一一呈现,并引入重点内容。

融合点三:用课件展示画垂线的过程,让学生自己总结出画垂线的方法。(学生总结:一、靠;二、移;三、画;四、标)(课件展示)

融合点四:运用实物展台,让学生在黑板上操作演示。(视频演示)

融合点五:用几何画板演示垂线的两个基本性质,让学生在直观感受中积累经验,建立模型,帮助学生理解基本事实。(视频演示)

融合点六:课堂反馈及时有效,运用现有在线技术,迅速收集学生课堂学习情况,并做反馈。(视频演示)

融合点七:运用几何画板帮助学生解决问题,提升学生空间想象能力。(视频展示)

融合点八:课后微课拓展巩固。利用camtasia studio软件将本节课的重点内容录制成简单的微课,供学生复习巩固拓展知识。(视频展示)

通过上述的融合,基本可以将我的课堂生动有效的展示给学生,从而帮助学生加深对于本节课的学习。

本节课我所运用的信息技术,都是大家平时所熟悉的,希望能够给各位老师提供一点有益的参考,也欢迎各位专家的批评和建议!谢谢大家!

初中数学优秀说课稿3

一、教材分析:

反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。

二、教学目标分析

根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。

因此把教学目标确定为:1。掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的'图象;掌握图象的特征以及由函数图象得到的函数性质。2。在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3。通过学习培养学生积极参与和勇于探索的精神。

三、教学重点难点分析

本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;

难点则是如何抓住特征准确画出反比例函数的图象。

为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。

四、教学方法

鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法

和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨

初中数学优秀说课稿4

一、说教材

1、教材简析

平行四边形面积的计算,是在学生已掌握了长方形面积的计算、面积概念和面积单位,以及认识了平行四边形的基础上进行教学的。教材运用转化思想,在数方格法的基础叟,用割补法,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。

2、教学目标:

(1)引导学生自己推导出平行四边形的面积公式,沟通长方形和平行四边形之间的内在联系。

(2)通过操作,让学生尝试用转化的思想方法解决新的问题。

(3)理解平行四边形的面积与底和高有关,并会运用面积公式求平行四边形的面积。

3、教学重点:平行四边形的面积计算。

4、教学难点:理解平行四边形面积计算公式的推导过程。

二、教法学法

平行四边形面积的计算是一堂几何初步知识课,为以后学习三角形面积和梯形面积的计算,提供了知识准备。本课的教学设计由直观到抽象,层层深入。从动手操作 观察思考 归纳概括 初步反馈,遵循了概念教学的原则和学生的认知规律。通过动手操作,把平行四边形转化成长方形,再现已有的表象,借助已有的知识经验,进行观察、分析、比较、推理、概括出平行四边形面积的计算公式。这正体现了概念教学的顺序:动作感知 形成表象 抽象概念。

教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。引导学生自己去操作,自己去观察、比较,自己去探求,重视让学生自己去操作,自己去获取知识,以思维训练为主线,提高学生的思维水平。互助合作,以全体学生为教育对象,整体提高,营造良好的学习氛围。

三、教学过程

(一)复习铺垫

教具逐个出示:

1、图(1)是什么图形? 它的面积怎样算?现在量得长是7厘米,宽是4厘米,你知道这个长方形的面积是多少?

2、长方形的面积可以直接用公式计算,那么图(2)我们能直接用公式计算它的面积吗?用什么办法求它的面积?

学生独立思考,讨论后反馈。(教具演示把多的一块剪下来,拼过去正好是一个长方形,再用长乘以宽就是它的面积)

3、刚才我们用割下来补过去的方法将图(2)转化成和原来图形面积相等的长方形,再用长方形面积公式求出它的面积。现在谁能计算图(3)的面积?

学生独立计算后,反馈。你是怎么算的?为什么?(教具演示:把图(3)右边的三角形割下来补到左边,转化成一个长方形。)

(二)导入新课

图(2)、图(3)我们用割补的方法把它们转化成学过的长方形就能算出它们的面积。(教具出示下图)

你能想办法求出这个平行四边形的面积吗?下面我们一起来研究平行四边形的面积计算。出示课题。

(三)引导探究

1、学生独立思考,动手操作,尝试计算平行四边形的面积。

(教师巡视,学生计算1号学具纸片平行四边形的面积)

谁能说一说,这个平行四边形的面积是多少?你是怎样计算的?学生可能出现不同的答案。

到底怎样思考才是正确的呢?充分运用你手头的学具和有关工具(尺、剪刀等)来尝试操作,然后列式计算(四人小组进行合作、交流)

反馈交流:根据学生的回答教具演示“转化过程”。 演示前先比较两个全等的平行四边形,再将其中一个平行四边形沿着平行四边形的高把图形剪开,将左边的三角形(或直角梯形)拼到右边去,正好是个长方形,量出它的长是7厘米,宽是4厘米,面积是7×4=28平方厘米。

追问:为什么可以这样算?

把平行四边形割补成长方形,图形的什么变了,什么没有变?

比较拼成的长方形的长、宽与原平行四边形的底、高之间的`关系。

2、操作实践,验证想法。

是不是所有的平行四边形都能转化成长方形?任意画一个平行四边形或任意取一个学具平行四边形纸片,证明你的想法。(结论:由此看来,对于任何一个平行四边形,要计算它的面积,我们都可以用割补的访求将平行四边形转化成长方形来计算它的面积)

3、观察分析,归纳公式。

那么平行四边形的面积该怎样计算呢?为什么?(学生讨论)

结合回答,教具演示:因为割补的方法把平行四边形转化成长方形,形变面积不变,我们发现,长方形的长相当于平行四边形的底,宽相当于平行四边形的高,所以平行四边形的面积是底乘以高。

板书:长方形的面积=长×宽

平行四边形的面积=底×高

如果用字母S表示平行四边形的面积,a表示它的底,h表示它的高,那么平等四边形面积的字母公式是怎样的?

(四)小结

1、面对“平行四边形的面积”这个新问题,我们利用已有的“求长方形的面积知识”,通过转化的方法,推导出平行四边形的面积公式。

2、现在,你们说说,要求平行四边形的面积,关键是找哪两个条件?

(五)练习

1、计算下面平行四边形的面积。(练后讲评)

2、计算下面平行四边形的面积。

3、有一块平行四边形草地,底18米,高10米。这块草地的面积是多少?

4、口答下面每个平行四边形的面积。

底(厘米)

50

12

100

9

高(厘米)

40

8

36

4

面积(平方厘米)

(六)课堂小结

1、这节课,我们学到了什么?有什么体会?

2、同学们的表现好在哪里?

*3机动练习:

计算下面图中平行四边形的面积,正确列式为( )。(单位:厘米)

初中数学优秀说课稿5

各位评委:

大家好!我是 号说课者,今天我说课的题目是 ,所选用的教材为北师大版义务教育课程标准实验教科书。

根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析,教学目标分析,教法和学法分析,教学过程分析,板书设计六个方面展开说课。

一、教材的地位和作用

本节教材是初中数学 年级第 章第 节的内容,是初中数学的重要内容之一。一方面,这是在学习了 的基础上,对 的进一步深入和拓展;另一方面,又为学习等知识奠定了基础,是进一步研究 的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

二、学情分析

从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

从认知状况来说,学生在此之前已经学习了 ,对 已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

三、教学目标分析

新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感态度与价值观目标这三个方面,而这三维目标又是紧密联系的一个统一整体,学生在学会知识与技能的过程中,同时也是成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。所以,我将三维目标进行整合,确定本节课的教学目标为:

1. (了解、理解、熟记、初步掌握、会运用 等);

2. 通过 的学习,培养学生 观察分析、类比归纳的探究 能力,加深对 函数与方程、数形结合、从特殊到一般、类比与转化、分类讨论 等数学思想的认识。

3. 通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。

根据以上对教材的地位和作用,以及学情和教学目标的分析,结合新课标对本节课的.要求,我将本节课的重点确定为: 难点确定为:

为了讲清教材的重难点,使学生能够达到本节课设定的教学目标,我再从教法和学法上谈谈。

四、教法和学法分析

1. 教法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我采用直观演示法(利用图片等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握)、活动探究法(引导学生通过创设情境等活动形式获取知识,以学生为主体,使学生的独立探索精神得到充分发挥,培养学生的自学能力、思维能力、活动组织能力)、集体讨论法(针对学生提出的问题,组织学生进行集体或分组讨论,促使学生在学习中解决问题,培养学生的团结协作精神),以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,

在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

由于本节课内容与社会现实生活的关系比较密切,学生已经具有直观的感受。在教学中可以让学生自己阅读课本并列举社会上存在的一些相关现象,在老师的指导下进行讨论,然后进行归纳总结,得出正确的结论。这样有利于调动学生的积极性,发挥学生的主体作用,让学生对本节课知识的认识更清晰、更深刻。

2. 学法

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”。因而,我在教学过程中特别重视学法的知道,让学生从机械的“学答”向“学问”转变,从“学会”向“会学”转变,成为学习的真正主人。这节课我在指导学生的学习方法和培养学生的学习能力方面主要采用以下方法:分析归纳法、自主探究法、总结反思法。

下面我具体来谈谈这堂课的教学过程。

五、教学过程分析

新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

(1) 复习旧知,温故知新

设计意图:建构主义主张教学应从学生已有的知识体系出发, 是本节课深入研究 的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2) 创设情境,提出问题

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘

通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

(3) 发现问题,探求新知

设计意图:现代数学教学论指出, 的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳 。

(4) 分析思考,加深理解

设计意图:数学教学论指出, 数学概念(定理等) 要明确其 内涵和外延(条件、结论、应用范围等) ,通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第 环节。

(5) 强化训练,巩固双基

设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1??例2??,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

(6) 小结归纳,拓展深化

我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的知识、方法、体验三个个方面进行归纳,我设计了这么三个问题:

① 通过本节课的学习,你学会了哪些知识;

② 通过本节课的学习,你最大的体验是什么;

③ 通过本节课的学习,你掌握了哪些学习数学的方法?

(7) 布置作业,提高升华

以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,

选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效率达到最佳状态。

六、板书设计

我比较注重直观、系统的板书设计,这有利于及时地体现教材中的知识点,便于学生理解掌握。 我的板书设计分为三部分:第一部分,复习旧知,引入新课;第二部分,定义,法则和定理的说明;第三部分,通过例题巩固应用。

七、结束语

各位领导、老师们,本节课我根据 年级学生的心理特征及其认知规律,采用直观教学和活动探究的教学方法,以“教师为主导,学生为主体”完成教学。教师的“导”立足于学生的“学”,在教学中要以学法为重心,放手让学生自主探索地学习,使他们主动地参与到知识形成的整个思维过程中,在积极、愉快的课堂气氛中提高自己的认知水平,并最终达到预期的教学效果。

我的说课完毕,谢谢!

初中数学优秀说课稿6

我说课的题目是冀教版小学数学教材四年级下册第六单元时《垂线》。下面我从四个方面进行说课:

一、教学设计:主要包括三个方面

1、教材分析:

垂线在生产、生活中有着广泛的应用,垂线的概念、性质是学生今后进一步学习数学的基础,在教材上起着承上启下的作用。

大多数学生感到数学枯燥,学习兴趣不高。我所教的班一直采用小组合作学习,学生基本养成了良好的预习习惯。这节课利用普通的多媒体教室,灵活运用现代教育技术,通过实例的展示及动画演示,让学生充分感知图形中蕴含的垂线特征,使知识的生成过程更直观更形象。对学生的认知、理解以及教学重难点突破起到了关键作用。

2、根据以上分析,我确定本节课的教学目标是:

知识与技能包括垂直的定义垂线的画法与性质。

数学思考包括

探索垂线的性质,发展学生的几何直觉,培养学生的猜想能力。并通过“做数学”,让学生对猜想进行检验,作出正确判断。

解决问题包括

培养学生数学语言表达能力,培养学生解决问题时的合作意识和习惯。

情感与态度包括

让学生体验数学充满着探索和创造,感受数学趣味,获得发现的喜悦。

鼓励学生感想敢说,让学生体验成功的快乐,树立学好数学的信心。

3、教学重难点:

教学重点:

垂直概念的建立、垂线的画法与性质。

教学难点:

用数学语言描述垂直的定义以及学生猜想能力的培养。

二、教学过程设计:

根据这节课的特点,我把整堂课分为课题导入、合作探究、课堂小结、拓展创新四个环节,灵活运用现代教育技术,突出重点,化解难点。为培养学生课前预习的习惯,设立了预习导航,准备了大量有关本节课的学习资料,并鼓励学生自己到网上查阅资料,提高学生的信息素养。

1、课题导入

课题导入运用多媒体展示学生熟悉的.马路、篱笆、小棒等实物形象,并提出问题:仔细观察各组图形中两条直线的位置关系有什么共同点?让学生感到数学贴近生活,激发学生的表达欲望。

2、合作探究凸现学生的主体地位,让学生在学习中学会质疑、学会发现。合作探究分为垂直的定义、课堂练习、试试身手、垂线性质、你来当老师、走进生活五个小版块。其中,垂线的定义鼓励学生自己概括,并积极与大家交流。课堂练习梯度明显,答案灵活,尽量让每一个学生都有收获。“试试身手”让学生走上讲台,展示自己的发现,学生在轻松愉悦中很容易发现垂线的性质。“你来当老师”、“各抒己见”鼓励学生积极主动的发表自己的见解,营造平等、民主的学习氛围。激发学生探求的欲望,给学生一份自信,让学生在学习中学会质疑、学会发现。“走进生活”借助多媒体把学生的生活体验真实的再现给学生,让学生体验学有用的数学,增强学生学习数学的兴趣。

3、“课堂小结”让学生自己总结,谈本节课的收获、体会、本节课还有什么问题、新发现。鼓励学生大胆发言、锻炼学生的数学表达能力、语言概括能力。

4、探究创新:“创新园”让学生利用本节课所学知识,课后去思考、去动手制作、去创新发现。既能激发学生课后去学习、去探索的欲望,又能让学生感悟数学来源于生活,并反作用于生活的道理。培养学生学数学、用数学的创新意识,我想,只要我们教师用心,精心培育,创新园一定能育出创新果。

初中数学优秀说课稿7

下午好!(自我介绍略)我说课的内容是义务教育课程标准试验教科书北师大版八年级数学下册第三章第二节分式的乘除法。下面我将从教材、教法、学法、教学程序、板书设计等方面来进行阐述。

一、说教材

1、教材内容:我认为可以理解为探索法则——理解法则——应用法则,进一步体现了新课标中“情境引入——数学建模——解释、拓展与应用的模式”。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。

2、教材地位:分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。

3、教学目标

知识目标:(1)、理解分式的乘除运算法则

(2)、会进行简单的分式的乘除法运算

能力目标:(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。

(2)、能解决一些与分式有关的简单的实际问题。

情感目标:(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。

(2)、培养学生的创新意识和应用意识。

(3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。

4、教学重点:分式乘除法的法则及应用.

5、教学难点:分子、分母是多项式的分式的乘除法的运算。

二、说教法

教学方法是我们实现教学目标的催化剂,好的'教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。

1、启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。

2、合作式教学,在师生平等的交流中评价学习。

三、说学法

学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。

1、类比学习的方法。通过与分数的乘除法运算类比。

2、合作学习。

四、说教学程序

1、类比学习,探索法则。(约3分钟)

让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)

复习:分数的乘除法法则(抽一学生口答)

猜一猜:

(a、b、c、d表示整数且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零)

类比:得出分式的乘除法法则(a、b、c、d表示整式且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零,a、c中含有字母)

活动目的:

让学生观察、计算、小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的法则。

教学效果:

通过类比分数的乘除法的法则,学生明白字母代表数、代表式,这样很顺利的得出分式的乘除法的法则。

2、理解法则:(约2分钟)

文字叙述:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;

两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.

活动目的:

两种形式巩固对法则的理解。

教学效果:

理解法则,进一步发展学生的符号感。

3、应用:(约20分钟)

(1)牛刀小试

教材74页到76页的例1、做一做、例2.我准备把例1和例2先学习了。再学习做一做。

活动目的:

抓住学生刚学习了法则,跃跃欲试的学习激情,抽2名同学上黑板演算,其他学生在课堂作业本上演算。老师巡查,予以辅导,反复提醒学生像分数乘法一样来学习分式乘法(即类比)。

教学效果:

有的学生可能没有注意把结果化为最简分式,要提醒注意,有的学生可能一边计算一边就分解因式进行约分(化简)了的,说明已经很好地与分数的乘法进行类比学习了(分数是分解因数),应该予以表扬,让全班学生认真学习、领会。讲评时还应该让学生理解一步的算理。

(2)“西瓜问题”

活动目的:

能解决一些与分式有关的简单的实际问题。能有条理的进行表达。

教学效果:

通过以上例题帮助学生总结出分式乘除法的运算步骤(当分式的分子与分母都是单项式时和当分式的分子、分母中有多项式两种情况)

4、随堂练习。(约5分钟)

76页第一题,共3个小题。

教学效果:

在总结出分式乘除法的运算步骤后,大部分学生能很好的掌握,但是还有些学生忘记运算结果要化成最简形式,老师要及时提醒学生。分解因式的知识没掌握好,将会影响到分式的运算,所以有的学生有必要复习和巩固一下分解因式的知识。

5、数学理解(约5分钟)

教材77页的数学理解,学生很容易出现像小明那样的错误。但是也很容易找出错误的原因。

补充例3 计算(xy-x2)÷

教学效果:巩固分式乘除法法则,掌握分式乘除法混合运算的方法。提醒学生,负号要提到分式前面去。

6、课堂小结(约3分钟)

先学生分组小结,在全班交流,最后老师总结。

7、作业布置,凝固新知。(约2分钟)

教材77页到78页,习题3.1,1、2、4.并补充一题(分式乘除法混合运算的)

五.说板书设计

主板书采用纲要式,一目了然。

初中数学优秀说课稿8

各位评委:早上好

今天我说课的题目是 《有理数》复习课 ,这节课所选用的教材为人教版义务教育课程标准七年级上册教科书。

一、教材分析

1、教材的地位和作用

本节教材是初中数学七年级上册第一章《有理数》的复习内容,是初中数学的重要内容之一。有理数作为中学阶段的入门章节,非常重视与前面学段的衔接。一方面,数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是小学算术的延续和发展。另一方面,有理数的学习为学习实数等知识奠定了基础,是进一步研究代数式四则运算工具性内容。准确数和近似数、计算器的使用也是本章的教学内容,它是应用有理数解决实际问题所必需的。因此有理数在教材中具有承上启下的作用。

2、学情分析

学生在此之前已经学习了第一章有理数,对_有理数已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于有理数的知识的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的.形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

3、教学重难点

根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:有理数概念和有理数运算

难点确定为:负数和有理数法则的理解和运用

二、教学目标分析

根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

1. 知识与技能目标:复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识

2. 过程与方法目标:培养学生综合运用知识解决问题的能力,提高学生对知识的整合能力和分析能力

3. 情感态度与价值目标:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。激发学生兴趣,感受数学之美。

三、教学方法分析 方法:分层次教学,讲授、练习相结合。

本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

1、师生互动探究式教学,以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知欲心理和已有的认知水平开展教学,形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

2、采用表格形式,将知识点归纳,让学生通过这个表格很容易看出二次函数与一元二次方程的联系,让学生形成以清晰、系统、完整的知识网络。

3、运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。

学法指导

“授人以鱼,不如授人以渔”。在教学过程中,不但要传授学生基本知识,还要培养学生主动观察、主动思考、亲自动手、自我发现等学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发与点拨,在积极的双边活动中,学生找到了解决疑问的方法,找准解决问题的关键。

四、教学过程分析

为有序、有效地进行教学,本节课我主要安排以下教学环节:

(1) 复习就知,温故知新

设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2) 创设情境,提出问题

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

初中数学优秀说课稿9

各位评委:

大家上午好!

今天我说课的内容是《勾股定理》。根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析、教学目标、教学重难点、教法学法、教学过程等五个方面加以说明。

一、教材分析

本节内容是苏科版数学八年级上册第二章第1节《勾股定理》第1课时。它是在学生已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个三角形三条边之间的数量关系,它是解直角三角形的主要根据之一,是直角三角形的一条非常重要的性质,也是几何中最重要的定理之一,它将形与数密切联系起来,在数学的发展中起过重要的作用,在现实世界中也有着广泛的作用。由此可见,《勾股定理》是对直角三角形进一步的认识和理解,是后续学习的基础。因此,本节内容在整个知识体系中起着重要的作用。

二、教学目标

根据上述教材分析,考虑到学生已有的认知结构和心理特征,制定如下教学目标:

1、了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理

2、经历“观察—猜想—归纳—验证”的数学发现过程,发展合情合理的推理能力,沟通数学知识之间的内在联系,体会“数形结合”和“特殊到一般”的思想方法。

3、通过介绍中国古代研究勾股定理的成就,激发学生的爱国热情,感受数学文化,激发学生学习的热情。

三、教学重点、难点:

依据教学目标,我认为本节课的重点是:勾股定理的探讨。

教学难点:利用数形结合的方法验证勾股定理。

四、教法和学法

本节课我将采用探究发现式教学,提供适当的问题情境.给学生自主探究交流的空间,引导学生有目的地探索.

五、教学过程:

根据以上分析,下面我具体谈一谈本节课的教学过程.

(一)创设情境以趣引新

一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?(提出问题,设置悬念,提高学生的`学习积极性)

(二)实践探索猜想归纳

1、(课件出示课本P44图2—1),请同学们观察并回答问题:

根据计算正方形的面积来探索勾股定理,此处重在引导学生如何计算出以斜边为边的正方形的面积。学生可能会利用补,割,旋转,等方法算出,从而发现三个正方形的面积之间的数量关系,这样学生通过正方形面积之间的关系主动建立了由形到数,由数到形的联想,同时也初步感受到对于直角三角形而言,三边满足两直角边的平方和等于斜边的平方。

(这样的设计有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想,同时在合作交流中也突破了本节课的一大难点。)

2、提出问题:是否所有的直角三角形都有这个性质呢

先让学生大胆猜想,再让学生在准备好的方格纸上,任意画一个顶点都在格点上的直角三角形,进行验证。仿照上面的方法,学生容易进行类比联想,猜想结论成立,同样分别以各边为边向三角形外作正方形,通过计算这三个正方形的面积来验证猜想。教师可通过表格的形式展示部分学生的实验结果,从而为归纳提供基础,学生也更容易发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。

(这样设计不仅有利于突出重点,而且让学生体会到观察,猜想,归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到

初中数学优秀说课稿10

一、教材分析:

(一) 教材的地位与作用

从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

从同学们认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;

勾股定理又是对同学们进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

根据数学新课程标准以及八年级同学们的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发同学们热爱祖国悠久文化的情感。

(二)重点与难点

为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。

限于八年级同学们的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点。 我将引导同学们动手实验突出重点,合作交流突破难点。

二、学情分析

初二同学们已具备一定的 分析,归纳的能力和运用数学的思想意识对于勾股定理的得出,需要同学们通过动手操作,在观察的基础上,大胆猜想数学结论。但同学们在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

三、教学与学法分析

教学方法

叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导同学们由浅入深的探索,设计实验让同学们进行验证,感悟其中所蕴涵的思想方法。

学法指导

为把学习的主动权还给同学们,教师鼓励同学们采用动手实践,自主探索、合作交流的学习方法,让同学们亲自感知体验知识的形成过程。

四、教学过程

首先,情境导入 激问设疑

给出生活中的实际问题,调动同学们兴趣,启迪同学们思维,激发同学们创新热情和和情感体验。是同学们带着好奇心开始本节课的学习。

其次,自主探究,获取新知

勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

1. 追溯历史 解密真相

让同学们欣赏传说故事:相传25前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使同学们明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。

这样,一方面激发同学们的求知欲望,另一方面,也对同学们进行了学习方法指导和解决问题能力的培养。

2.动手操作----探求新知

通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。

在这一过程中,同学们充分利用学具去尝试解决,力求让同学们自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。

这里首先引导同学们观察图1、图2、图3,让同学们计算每个图中的三个正方形的面积,(注意:同学们可能有不同的方法,只要正确合理,各种方法都应给予肯定)。然后通过探究S1、S2、S3之间的关系,进而猜想、发现得出勾股定理,并用自己的语言表达,这样做不仅有利于同学们主动参与探索,感受学习的过程,培养同学们的语言表达能力,体会数形结合的思想;也有利于突破难点,让同学们体会到观察、猜想、归纳的思路,让同学们的分析问题、解决问题的能力在无形中得到提高,这对以后的学习有帮助。

从上面低起点的问题入手,有利于同学们参与探索。同学们很容易发现,在等腰三角形中存在如下关系。巧妙的.将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。同学们会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此我引导同学们利用“割”和“补”的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。

3、自己动手,拼出弦图

让同学们拿出了提前准备好的四个全等的边长为a、b、c的直角三角形进行拼图,小组活动,拼出自己喜爱的图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了同学们,让他们在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,同学们们拼得很好,并且都给出了正确的证明,在黑板上尽情地展示了一番。

突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。在求正方形C的面积时,同学们将展示“割”的方法, “补”的方法,有的同学们可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定同学们的研究成果,培养同学们的类比、迁移以及探索问题的能力。

以上三个环节层层深入步步引导,同学们归纳得到命题,从而培养同学们的合情推理能力以及语言表达能力。

感性认识未必是正确的,推理验证证实我们的猜想。

合作交流,讲述论证

教材中直接给出“赵爽弦图”的证法对同学们的思维是一种禁锢,我创新使用教材,利用拼图活动解放同学们的大脑,让同学们发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,给同学们充分的自主探索的时间与空间,让同学们的思维在相互讨论中碰撞、在相互学习中完善。同时我深入到同学们中间,观察同学们探究方法接受同学们的质疑,对于不同的拼图方案给予肯定。从而体现出“同学们是学习的主体,教师是组织者、引导者与合作者”这一教学理念。同学们会发现两种证明方案。

方案1为赵爽弦图,同学们讲解论证过程,再现古代数学家的探索方法。方案2为同学们自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让同学们经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比“古”、“今”两种证法,让同学们体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的自豪感。教师对“勾、股、弦”的含义以及古今中外对勾股定理的研究做一个介绍,使同学们感受数学文化,培养民族自豪感和爱国主义精神。增强了同学们学习数学的兴趣和信心。

我按照“理解—掌握—运用”的梯度设计了如下四组习题。

(1) 体会新知,初步运用(2)对应难点,巩固所学;(3)考查重点,深化新知;(4)解决问题,感受应用

最后、温故反思 任务后延

在课堂接近尾声时,我鼓励同学们从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。

然后布置作业,分层作业体现了教育面向全体同学们的理念。

五、板书设计

板书勾股定理,进而给出字母表示,培养同学们的符号意识。

六、学习评价

本课意在创设和谐的乐学气氛,始终面向全体同学们,“以同学们的发展为本”的教育理念,课堂教学充分体现同学们的主体性,给同学们留下最大化的思维空间注重数学思想方法的渗透,从一般到特殊从特殊回归到一般的数学思想方法。重视数学式教育,激发同学们的爱国情操,用数学知识解决生活中的实际问题,在这个过程中,很多时候需要老师帮助同学们去理解和转化,而更多时候需要同学们自己去探索,尝试,得出正确结论。

初中数学优秀说课稿11

一、教材分析

教材的地位和作用:

矩形是在学生已经学习了四边形、平行四边形,积累一定的经验的基础上学习的。它是这章的重点内容之一。既是平行四边形知识的延伸,又为学习其它特殊平行四边形提供了研究方法和学习策略,也为今后学习其它有关知识奠定了基础,起承上启下的重要作用。

二、教学目标

根据教学大纲对本节内容的要求及本课内容的特点,运用新课程理念,结合学生实际情况,我把本节课的教学目标确定为:

知识技能:

1.理解矩形有关概念,根据定义探究并掌握矩形的有关性质。

2.了解矩形在生活中的应用,根据矩形的性质解决简单的实际问题。

数学思考:

1.经历矩形的概念和性质的探索过程,发展学生合情推理意识,掌握几何思维方法。通过观察、思考、交流、探究等数学活动,发展学生的思维能力和语言表达能力。

2.根据矩形的性质进行简单的计算和应用,培养学生逻辑推理能力,培养几何直觉向思维逻辑转化的习惯,进一步体会类比及数形结合的思想方法。

解决问题:

通过学生观察、实验、分析、交流,引出矩形的概念,感受数学思考过程的条理性及解决问题策略的多样性,通过收集生活中的数学信息以及应用所学知识解决生活中的问题,进一步体会数学与生活的联系,增强应用数学意识。

情感态度:在与他人的交流合作中,让学生感受数学活动充满探索的乐趣,提高学生的学习热情和学习的积极性,培养学生合作交流的意识和大胆猜想、乐于探究的良好品质以及发现问题、探究问题的能力。发展学生的`主动探索和独立思考的习惯。

三、教学重点:矩形的性质及其应用。

教学难点:理解矩形的特殊性,探究矩形特殊性质。

四、教法及手段:

根据本课内容和学生的特点及教学的要求,采用教师引导——自主探究——合作交流的方法。使教师的主导地位和学生的主体地位得到充分体现。

教学手段:采用多媒体(PowerPoint,几何画板)、实物投影辅助教学。

五、教学过程

本课的设计环节如下:创设情境 引入新课、动手操作 得出定义、引导探究 得出性质、运用新知 解决问题、归纳小节 巩固新知、分层作业 学有所得。

在本课各个环节设计中力求突出以下几个方面:

1、数学问题生活化

设计中我遵循数学源于生活又服务于生活课标要求。注重问题情境的创设,让数学问题生活化,活动1我展示给同学们一张校园门口的照片,让同学们感受生活中到处传递着数学信息,通过观察、搜集并分析熟悉的图形,体会数学在生活中的应用,进而引出活动2 ; 性质应用中计算电视屏幕的大小,也是与生活联系非常密切的问题,有的学生还不知道电视的大小是指的对角线的长短,通过这道题目,让学生了解到生活的常识,也让学生进一步体会数学在生活中的作用,而且通过问题的解决培养学生爱数学、学数学的热情。

2、创设自主探究情境,发挥学生的主动性

矩形定义的探究,学生拿出自制平行四边形学具,分组活动,通过学生观察、实验、分析、交流,引出矩形的概念,把平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形。并通过学生找出生活中的实例,让学生感受数学美及数学与生活的联系。矩形性质的探究是让学生类比平行四边形的性质,通过观察、测量、分析、证明等手段,让矩形的性质在活动中“浮出水面”.活动中让学生自己去探索,在探索中发现新知,在交流中归纳新知,把学习的主动权交给学生。我在评价中对活动积极的小组和个人进行表扬,增强学生创造的信心,体验到成功的快乐。性质1是学生小组交流完成的证明。而性质2要求学生认真写出已知、求证和证明过程,在此基础上请一个学生上黑板板书,其余学生观察其板书正确与否。培养几何直觉向思维逻辑化转化的习惯,培养学生发散思维能力,养成良好的解题习惯。 活动中让学生充分经历知识形成的全过程。同时也积累了良好的学习经验。

3、训练学生的逻辑思维,培养学生严谨的解题习惯。

本节课新知应用环节,我设计了3个题目。练习1是性质的定义的直接应用,在巩固新知的同时,引导学生进一步发现与矩形中所包含的基本图形,从而让学生感受矩形与等腰三角形与直角三角形有密切的关系,让学生体会知识的联系与延伸,培养几何直觉向思维逻辑转化的习惯,培养学生发散思维能力。例题的设计是让学生体会性质应用的同时规范学生的解题步骤和格式,让学生感受数学思维的严谨性。练习2是生活中的问题,让学生体会生活中的数学,做到学用结合,培养学生学习数学的的热情和情趣。

4、教学活动中注重体现人人学有价值的数学

首先根据不同学生的智力、能力、基础不一,把学生编排成探究小组,在探究中注重组内帮带,以互帮互助促进不同层次的学生共同提高,其分组的原则是:数学成绩优秀的,组织能力强的、动手能力强的、成绩中等的、基础差的。 其次是作业的设计体现的是层次性。我把作业分为必做题和选做题两种。必做题较基础,可以发现和弥补课堂学习的遗漏和不足。备选题则仅供学有余力的学生选用。另外数学日记是帮助学生总结本节课的收获和不足,培养学生善于总结和反思的习惯。

5、充分利用多媒体辅助教学

本节课是采用多媒体进行辅助教学的,给学生以直观感性的认识,培养学生观察、表述、归纳的能力。 使教学目标得以顺利完成。

以上,是我设计本节课的一些做法和体会,有不妥之处请大家多提宝贵意见,谢谢大家!

初中数学优秀说课稿12

一。教材分析

1.教材的地位和作用

这节课是在同学们已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使同学们更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

2.教学目标和要求

(1)知识与技能:使同学们理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高同学们解决问题的能力。

(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展同学们的数学思维,增强学好数学的愿望与信心。

3.教学重点:对二次函数概念的理解。

4.教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

二。教法学法设计

1.从创设情境入手,通过知识再现,孕伏教学过程。

2.从同学们活动出发,通过以旧引新,顺势教学过程。

3.利用探索、研究手段,通过思维深入,领悟教学过程。

三。教学过程

(一)复习提问

1.什么叫函数?我们之前学过了那些函数?

(一次函数,正比例函数,反比例函数)

2.它们的形式是怎样的?

(y=kx+b,k≠0;y=kx ,k≠0;y=k/x , k≠0)

3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?

【设计意图】复习这些问题是为了帮助同学们弄清自变量、函数、常量等概念,加深对函数定义的理解。强调k≠0的条件,以备与二次函数中的a进行比较。

(二)引入新课

函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

例1圆的半径是r(cm)时,面积s (cm?)与半径之间的关系是什么?

解:s=πr?(r>0)

例2设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

解: y=100(1+x)?

=100(x?+2x+1)

= 100x?+200x+100(0

教师提问:以上两个例子所列出的函数与一次函数有何相同点与不同点?

【设计意图】通过具体事例,让同学们列出关系式,启发同学们观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。

(三)讲解新课

以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

巩固对二次函数概念的理解:

1.强调“形如”,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

2.在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)

3.为什么二次函数定义中要求a≠0 ?

(若a=0,ax2+bx+c就不是关于x的二次多项式了)

4.在例2中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.

5.b和c是否可以为零?

由例1可知,b和c均可为零。

若b=0,则y=ax2+c;

若c=0,则y=ax2+bx;

若b=c=0,则y=ax2.

注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式。

【设计意图】这里强调对二次函数概念的理解,有助于同学们更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.

(1)y=3(x-1)?+1

(2)s=3-2t?

(3)y=(x+3)?- x?

(4) s=10πr?

(5) y=2?+2x

(6)y=x4+2x2+1(可指出y是关于x2的二次函数)

【设计意图】理论学习完二次函数的概念后,让同学们在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

(四)巩固练习

1.已知一个直角三角形的两条直角边长的和是10cm.

(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;

(2)设这个直角三角形的'面积为Scm2,其中一条直角边为xcm,求S关于x的函数关系式。

【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让同学们经历由具体到抽象的过程,从而降低同学们学习的难度。

2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3.

(1)分别写出S与x,V与x之间的函数关系式子;

(2)这两个函数中,那个是x的二次函数?

【设计意图】简单的实际问题,同学们会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让同学们体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3

(1)分别写出C关于r;V关于r的函数关系式;

(2)两个函数中,都是二次函数吗?

【设计意图】此题要求同学们熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围。

【设计意图】此题较前面几题稍微复杂些,旨在让同学们能够开动脑筋,积极思考,让同学们能够“跳一跳,够得到”.

(五)拓展延伸

1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式。

【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

2.确定下列函数中k的值

(1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______

(2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______

【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.

(六) 小结思考

本节课你有哪些收获?还有什么不清楚的地方?

【设计意图】让同学们来谈本节课的收获,培养同学们自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到同学们还有哪些不清楚的地方,以便在今后的教学中补充。

(七) 作业布置

必做题:

1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?

2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。

选做题:

1.已知函数 是二次函数,求m的值。

2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象

【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发同学们继续学习二次函数图象的兴趣。

四。教学设计思考

以实现教学目标为前提

以现代教育理论为依据

以现代信息技术为手段

贯穿一个原则——以同学们为主体的原则

突出一个特色——充分鼓励表扬的特色

渗透一个意识——应用数学的意识

初中数学优秀说课稿13

一、教材分析:

(一) 教材的地位与作用

从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;

勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

(二)重点与难点

为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。

限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点。 我将引导学生动手实验突出重点,合作交流突破难点。

二、学情分析

初二学生已具备一定的 分析,归纳的能力和运用数学的思想意识对于勾股定理的得出,需要学生通过动手操作,在观察的基础上,大胆猜想数学结论。但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

三、教学与学法分析

教学方法

叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

学法指导

为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

四、教学过程

首先,情境导入 激问设疑

给出生活中的实际问题,调动学生兴趣,启迪学生思维,激发学生创新热情和和情感体验。是学生带着好奇心开始本节课的学习。

其次,自主探究,获取新知

勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

1. 追溯历史 解密真相

让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。

这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。

2.动手操作----探求新知

通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。

在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。

这里首先引导学生观察图1、图2、图3,让学生计算每个图中的三个正方形的面积,(注意:学生可能有不同的方法,只要正确合理,各种方法都应给予肯定)。然后通过探究S1、S2、S3之间的关系,进而猜想、发现得出勾股定理,并用自己的语言表达,这样做不仅有利于学生主动参与探索,感受学习的过程,培养学生的语言表达能力,体会数形结合的思想;也有利于突破难点,让学生体会到观察、猜想、归纳的思路,让学生的分析问题、解决问题的能力在无形中得到提高,这对以后的学习有帮助。

从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此我引导学生利用“割”和“补”的方法求正方形C的`面积,为下一步探索复杂图形的面积做铺垫。

3、自己动手,拼出弦图

让同学们拿出了提前准备好的四个全等的边长为a、b、c的直角三角形进行拼图,小组活动,拼出自己喜爱的图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了学生,让他们在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,学生们拼得很好,并且都给出了正确的证明,在黑板上尽情地展示了一番。

突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。在求正方形C的面积时,学生将展示“割”的方法, “补”的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。

以上三个环节层层深入步步引导,学生归纳得到命题,从而培养学生的合情推理能力以及语言表达能力。

感性认识未必是正确的,推理验证证实我们的猜想。

合作交流,讲述论证

教材中直接给出“赵爽弦图”的证法对学生的思维是一种禁锢,我创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。同时我深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出“学生是学习的主体,教师是组织者、引导者与合作者”这一教学理念。学生会发现两种证明方案。

方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。

方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比“古”、“今”两种证法,让学生体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的自豪感。教师对“勾、股、弦”的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。增强了学生学习数学的兴趣和信心。

我按照“理解—掌握—运用”的梯度设计了如下四组习题。

(1) 体会新知,初步运用(2)对应难点,巩固所学;(3)考查重点,深化新知;(4)解决问题,感受应用

最后、温故反思 任务后延

在课堂接近尾声时,我鼓励学生从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。

然后布置作业,分层作业体现了教育面向全体学生的理念。

五、板书设计

板书勾股定理,进而给出字母表示,培养学生的符号意识。

六、学习评价

本课意在创设和谐的乐学气氛,始终面向全体学生,“以学生的发展为本”的教育理念,课堂教学充分体现学生的主体性,给学生留下最大化的思维空间注重数学思想方法的渗透,从一般到特殊从特殊回归到一般的数学思想方法。重视数学式教育,激发学生的爱国情操,用数学知识解决生活中的实际问题,在这个过程中,很多时候需要老师帮助学生去理解和转化,而更多时候需要学生自己去探索,尝试,得出正确结论。

下载初中数学优秀说课稿模板(五篇材料)word格式文档
下载初中数学优秀说课稿模板(五篇材料).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初中数学优秀说课稿

    初中数学优秀说课稿模板《有理数》 有理数说课稿教学目的: 1.知识目标 使学生了解了负数产生的背景,理解正、负数及零的意义,掌握正、负数的表示方法,会用正、负数表示具有相反......

    初中优秀数学说课稿

    初中数学对比小学数学来说,难度增加了不少,学生们也难以理解一些知识点,那么老师在讲课的时候,应该怎样讲才能激发学生对数学的兴趣呢?以下是小编整理的初中优秀数学说课稿,欢迎阅......

    初中数学说课稿

    初中数学说课稿模板 各位评委,大家好!今天我说课的题目是___,所选用的教材为人民教育出版社义务教育课程标准实验教科书。 根据新课标的理念,对于本节课,我将以教什么,怎样教,为什......

    初中数学说课稿

    初中数学说课稿-《数轴》 各位领导、各位教师: 大家好! 今天我说课的题目是“数轴” 我用的教材是鲁教版六年级上册教科书。 下面我将从教材分析、教学目标、教学方法、教学过......

    初中数学说课稿

    一、教材分析 1、教材的地位和作用 一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、......

    初中数学说课稿

    关于的说课稿 各位老师你们好! 今天我要为大家说课的题目是: 首先,是我对本节教材进行的一些分析: 一、教材分析(说教材): 1、教材所处的地位和作用: 本节内容《》是年级数学版教材......

    初中数学说课稿

    初中数学说课稿 初中数学说课稿1 我说课的内容是人教版七年级(下)册第七章第三节《多边形及其内角和》的第二课时。我将在新课程理念的指导下从以下七个方面进行说课。一、......

    初中数学说课稿

    《一元二次方程》说课稿 第一篇: 一、教材分析 1、教材的地位和作用 一元二次方程是人教版九年级上第二十二章第一节的内容,在初中数学中占有重要地位。通过一元二次方程的学......