第一篇:勾股定理说课稿,勾股定理说课稿[范文模版]
勾股定理说课稿,勾股定理说课稿范文
作为一名辛苦耕耘的教育工作者,总归要编写说课稿,借助说课稿可以提高教学质量,取得良好的教学效果。我们该怎么去写说课稿呢?以下是小编整理的勾股定理说课稿,勾股定理说课稿范文,仅供参考,大家一起来看看吧。
一、教材分析:
(一)本节内容在全书和章节的地位
这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。
(二)三维教学目标:
1.【知识与能力目标】
⒈理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;
⒉通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
2.【过程与方法目标】
在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。
3.【情感态度与价值观】通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
(三)教学重点、难点:
【教学重点】勾股定理的证明与运用
【教学难点】用面积法等方法证明勾股定理
【难点成因】对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。
【突破措施】:
⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;
⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;
⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。
二、教法与学法分析
【教法分析】数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业”六个方面。
【学法分析】新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的.习惯与能力,使学生真正成为学习的主人。
三、教学过程设计
(一)创设情景
多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?
问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。
(二)动手操作
⒈课件出示课本P99图19.2.1:
观察图中用阴影画出的三个正方形,你从中能够得出什么结论?
学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。
第二篇:勾股定理说课稿
说
课
稿
教
材: 九年义务教育三年制新教材(人教版)课
题: 八年级(下)§18.1
《勾股定理》
《勾股定理》说课稿
尊敬的各位评委、老师:
上午好!今天我说课的课题是《勾股定理》,我将从说教材,说教学任务,说教学过程及说远程教育资源在教学中的应用四个方面说课。
首先,说教材。
《勾股定理》是人教版新课标第十八章第一节的内容,是中学数学几个重要定理之一。勾股定理的发现、验证和应用蕴含着丰富的文化价值,它在理论上占有重要地位,学好本节至关重要。
其次,说教学任务。
根据新课程标准对学生知识、能力的要求,结合八年级学生实际水平、认知特点制定以下教学目标。
知识与技能:知道勾股定理的由来,理解和掌握勾股定理的证明方法,应用网络查询资料。
过程与方法:让学生经历“观察-猜想-归纳-验证”的数学过程,并从中体会数形结合及从特殊到一般的数学思想。
情感态度与价值观:介绍我国古代在研究勾股定理方面取得的伟大成就,激发学生爱国情感。在探索问题的过程中,培养学生的合作交流意识和探索精神。
本节课的重点是勾股定理的发现、验证和应用。难点是用拼图方法、面积法证明勾股定理。
教学工具使用勾股定理拼图模具以及学件,而多媒体辅助工具为
多媒体网络教室和课件。
为了实现教学目标,突出教学重点,突破教学难点,在教学中我以“问题情境-分析探究-得出猜想-总结升华”为主线展开。而学法主要采用启发探究法、合作法、情境法。
第三,说教学过程。
整个教学过程打算分为以下八个活动。
活动一,展示两幅图片,第一幅图片为我国著名数学家华罗庚教授提议的向宇宙发射的勾股定理的图形,用来与外星人联系。第二幅图片为2002年在我国北京召开的第24届国际数学家大会的场景,值得一提的是这次大会的会徽,为著名的赵爽弦图。这样的导入富有科学特色和浓郁的数学气息,激起学生强烈的兴趣和求知欲。为什么要引入这两幅图呢?带着这个问题进入活动二。
活动二,通过讲述毕达哥拉斯的故事来进一步激发学生的学习兴趣,使学生在不知不觉中进入探究学习的最佳状态。然后提出三个问题,让学生沿着毕达哥拉斯的足迹去探寻勾股定理。问题一:在图中你能发现那些基本图形?同学可以发现等腰直角三角形。问题二:与等腰直角三角形相邻的正方形面积之间有怎样的关系?同学通过直接数等腰直角三角形的个数可以得出A的面积加上B的面积等于C的222面积。从而得到aac。紧接着抛出第三个问题:由此你可以得出等腰直角三角形三边存在着一种怎样特殊的数量关系吗?同学可以很快得出:等腰直角三角形两直角边的平方和等于斜边的平方。“问题是思维的起点”,通过层层设问,引导学生发现新知。等腰直角三
角形三边具有这样的特殊关系,那么一般的直角三角形呢?我们进入活动三。
活动三,为了学生方便计算,将一般的直角三角形放入到网格中,并使得直角三角形的两条直角边为正整数,让学生去计算图1和图2中六个正方形的面积。在计算C的面积时可能有一定的难度,此时就要用到数学当中常见的割补法。当同学顺利的计算出六个正方形的面积之后,可以发现,正方形A、B的面积之和等于正方形C的面积。从而得到abc。此时进一步发问,如果直角三角形的两条直
222角边并不是正整数,仍然满足abc吗?引入几何画板。老师222首先进行演示,拖动点A或点B,我们可以发现,虽然a、b、c的长度在发生变化,但是始终满足abc。然后可以通过多媒体网络教室将几何画板发送到学生的桌面上,让学生自己动手操作,学生
222通过几何画板验证出一般的直角三角形三边也满足abc之后,222并可以请个别学生进行演示。这样的设计渗透了从特殊到一般的数学思想,让学生参与到数学活动中。培养学生的类比迁移能力。
活动四,严格的几何验证。同学容易受前面知识的影响,想去构造以a、b、c三边为边长的正方形,从而验证正方形A的面积与正方形B的面积之和等于正方形C的面积。当同学经过一段时间的思考之后发现,这种证明存在一定的难度。此时,老师加以引导,在八年级上学期我们也曾经学习过用面积法证明公式的成立,就是完全平方公式。(出示图形)大正方形的面积既可以表示为(ab),也可以表示为a2abb。也就是说,大正方形的面积可以用两种不同的方
222
法表示,从而我们就得到面积法证明的实质:同一面积用两种的不同的方法计算,结果相同。此时,老师发放勾股定理拼图模具,让同学试试看,能不能仿照上面的例子,利用手中的纸质模具拼一拼,拼出一个规则图形,使得它的面积能用两种不同的方法表示。当学生利用纸质模具拼出之后,可以利用多媒体网络教室将比拼平台发送到学生桌面,让他们利用电脑进行拼图,此时可以进行分组合作互相协助。利用flash学件可以对直角三角形进行平移旋转。相信同学在老师的指导和互相帮助之下,可以很快的拼出赵爽弦图和毕达哥拉斯用来证明勾股定理的图形。通过这些实际操作,学生能够进一步加深对数形结合的理解,拼图也会产生感性认识,也为论证勾股定理做好准备,给学生充分的时间和空间参与到数学活动中来,并发挥他们的主观能动性,可以进一步提高学生的学习兴趣。利用分组讨论,加强学生的合作意识。此时,将毕达哥拉斯的图形通过动画沿中间正方形的对角线剪开,可以得到一个直角梯形,同样我们可以利用直角梯形的面积来证明勾股定理。这就是美国第二十届总统加菲尔德的证法,我们称之为总统证法。当学生完成这三种证法之后,可以让学生应用网络查询有关于勾股定理的知识。
活动五,播放一段介绍勾股定理有关历史的动画。我国古代劳动人民早在公元前一世纪前后成书的《周髀算经》中就有了有关于勾股定理的记载。而毕达哥拉斯证明勾股定理比我们晚了500多年。所以在我国被称之为勾股定理,而在我国召开的国际数学家大会也采用了赵爽弦图来作为大会的会徽。当学生倾听完有关于勾股定理的历史之
后,再让学生欣赏一下赵爽弦图,看看赵爽是怎样利用分割、拼接的方法来证明勾股定理的。在学生倾听历史,欣赏赵爽弦图的过程中,进行爱国主义教育,可以让他们充分体会到我国古代在数学研究方面取得的伟大成就,从而激发学生的爱国热情和民族自豪感。
活动六,课堂训练,首先是几道填空题,这几道填空题既有类似又有不同,通过变式训练,强调应用勾股定理时应注意的问题。一是勾股定理要应用于直角三角形当中,二是要注意哪一条边为斜边。简单的填空题之后,可以出示一道和学生生活密切相关的应用题,让学生充分体会到数学是来源于生活,应用于生活。
训练之后就进入活动七,让学生谈谈这节课的收获是什么,他最感兴趣的地方是什么,想进一步研究的问题又是什么。通过小结,培养学生的归纳概括能力。
最后活动八,布置作业。针对学生认知的差异设计有层次的作业,既能巩固知识,有使学有余力的学生获得最佳发展。
第四,谈谈远程教育资源的应用
本节课出现的三幅图片都是在远程教育资源网上下载的资源。而我通过对多媒体资源的引用和加工制作课件,创设了情境,加强了故事性、直观性,让枯燥的数学课堂充满了生气,提高了学生学习数学的浓厚兴趣和学习效果。而在课堂上我也充分利用模式三计算机网络教室这一平台,发送几何画板和比拼平台,让学生参与到数学活动中,提高了学生的动手动脑能力。在教学中将数学资源与网络有机结合,师生互动,构建起数学教学现代教育模式的课堂。
第三篇:《勾股定理》说课稿
《勾股定理》说课稿1
一、教材分析
1. 教材的地位和作用
它也是几何中最重要的定理,它将形和数密切联系起来,在数学的发展中起着重要的作用。
因此他的教育教学价值就具体体现在如下三维目标中:
知识与技能:
1、经历勾股定理的探索过程,体会数形结合思想。
2、理解直角三角形三边的关系,会应用勾股定理解决一些简单的实际问题。
过程与方法:
1、经历观察—猜想—归纳—验证等一系列过程,体会数学定理发现的过程,由特殊到一般的解决问题的方法。
2、在观察、猜想、归纳、验证等过程中培养学生们的数学语言表达能力和初步的逻辑推理能力。
情感、态度与价值观:
1、通过对勾股定理历史的了解,感受数学文化,激发学习兴趣。
2、在探究活动中,体验解决问题方法的多样性,培养学生们的合作意识和然所精神。
3、让学生们通过动手实践,增强探究和创新意识,体验研究过程,学习研究方法,逐步养成一种积极的生动的,自助合作探究的学习方式。
由于八年级的学生们具有一定分析能力,但活动经验不足,所以
本节课教学重点:勾股定理的探索过程,并掌握和运用它。
教学难点:分割,补全法证面积相等,探索勾股定理。
二..教法学法分析:
要上好一堂课,就是要把所确定的三维目标有机地溶入到教学过程中去,所以我采用了“引导探究式”的教学方法:
先从学生们熟知的生活实例出发,以生活实践为依托,将生活图形数学化,然后由特殊到一般地提出问题,引导学生们在自主探究与合作交流中解决问题,同时也真正体现了数学课堂是学生们自己的课堂。
学法:我想通过“操作+思考”这样方式,有效地让学生们在动手、动脑、自主探究与合作交流中来发现新知,同时让学生们感悟到:学习任何知识的最好方法就是自己去探究。
三、教学程序设计
1、故事引入新课,激起学生们学习兴趣。
牛顿,瓦特的故事,让学生们科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。毕达哥拉斯的发现引入新课。
2、探索新知
在这里我设计了四个内容:
①探索等腰直角三角形三边的关系
②边长为3、4、5为边长的直角三角形的三边关系
③学生们画两直角边为2,6的直角三角形,探索三边的关系
④三边为a、b、c的直角三角形的三边的关系,(证明)
⑤勾股定理历史介绍,让学生们体会勾股定理的文化价值。
体现从特殊到一般的发现问题的过程。
3、新知运用:
①举出勾股定理在生活中的运用。(老师讲解勾股定理在生活中的运用)
②在直角三角形中,已知∠ B=90° ,AB=6,BC=8,求AC.
③要做一个人字梯,要求人字梯的跨度为6米,高为4米,请问怎么做?
④如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.
4、小结本课:
学完了这节课,你有什么收获?
老师补充:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。数学来源于实践,而又应用于实践。解决一个问题的方法是多样性的,我们要多思考。 勾股定是数学史上的明珠,证明方法有很多种,我们将在下一节课学习它。
《勾股定理》说课稿2
各位专家领导,上午好:今天我说课的课题是《勾股定理》
一、教材分析:
(一)本节内容在全书和章节的地位
这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。
(二)三维教学目标:
1.【知识与能力目标】
⒈理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;
⒉通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
2. 【过程与方法目标】
在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。
3.【情感态度与价值观】
通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
(三)教学重点、难点:
【教学重点】
勾股定理的证明与运用
【教学难点】
用面积法等方法证明勾股定理
【难点成因】
对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。
【突破措施】
⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;
⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;
⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。
二、教法与学法分析
【教法分析】
数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业”六个方面。
【学法分析】
新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。
三、教学过程设计
(一)创设情景
多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?
问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。
(二)动手操作
⒈课件出示课本P99图19.2.1:
观察图中用阴影画出的三个正方形,你从中能够得出什么结论?
学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。
⒉紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P100图19.2.2(一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能够发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。
⒊再问:当边长不为整数的直角三角形是否也存在这一结论呢?投影例题:一个边长分别为1.5,3.6,3.9这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。
(三)归纳验证
【归纳】通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,,使学生学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整堂课充分发挥学生的主体作用,真正获取知识,解决问题。
【验证】先后三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也有利于培养学生严谨、科学的学习态度。
(四)问题解决
⒈让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的快乐。
⒉自学课本P101例1,然后完成P102练习。
(五)课堂小结
1.小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。
2.教师用多媒体介绍“勾股定理史话”
①《周髀算径》:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。
②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创。
目的是对学生进行爱国主义教育,激励学生奋发向上。
(六)布置作业
课本P104习题19.2中的第1.2.3题。目的一方面是巩固“勾股定理”,另一方面是让学生进一步体会定理与实际生活的联系。
以上内容,我仅从“说教材”,“说学情”、“说教法”、“说学法”、“说教学过程”上来说明这堂课“教什么”和“怎么教”,也阐述了“为什么这样教”,希望各位专家领导对本次说课提出宝贵的意见,谢谢!
《勾股定理》说课稿3
一、说教材
本课时是华师大版八年级(上)数学第14章第二节内容,是在掌握勾股定理的基础上对勾股定理的应用之一。 勾股定理是我国古数学的一项伟大成就。勾股定理为我们提供了直角三角形的三边间的数量关系,它的逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法,这些成果被广泛应用于数学和实际生活的各个方面。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析,使学生获得较为直观的印象,通过联系和比较,了解勾股定理在实际生活中的广泛应用。 据此,制定教学目标如下:
1、知识和方法目标:通过对一些典型题目的思考,练习,能正确熟练地进行勾股定理有关计算,深入对勾股定理的理解。
2、过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的。
3、情感与态度目标:感受数学在生活中的应用,感受数学定理的美。
教学重点:勾股定理的应用。
教学难点:勾股定理的正确使用。
教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理。
二、说教法和学法
1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
2、切实体现学生的主体地位,让学生通过观察,分析,讨论,操作,归纳理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
3、通过演示实物,引导学生观察,操作,分析,证明,使学生获得新知的成功感受,从而激发学生钻研新知的欲望。
三、教学程序
本节内容的教学主要体现在学生的动手,动脑方面,根据学生的认知规律和学习心理,教学程序设置如下:
一、回顾问:
勾股定理的内容是什么? 勾股定理揭示了直角三角形三边之间的关系,今天我们来学习这个定理在实际生活中的应用。
二、新授课例
1、如图所示,有一个圆柱,它的高AB等于4厘米,底面周长等于20厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的C点处的食物,沿圆柱侧面爬行的最短路线是多少?(课本P57图14.2.1)
①学生取出自制圆柱,,尝试从A点到C点沿圆柱侧面画出几条路线。思考:那条路线最短?
②如图,将圆柱侧面剪开展成一个长方形,从A点到C点的最短路线是什么?你画得对吗?
③蚂蚁从A点出发,想吃到C点处的食物,它沿圆柱侧面爬行的最短路线是什么?
思路点拨:引导学生在自制的圆柱侧面上寻找最短路线;提醒学生将圆柱侧面展开成长方形,引导学生观察分析发现“两点之间的所有线中,线段最短”。 学生在自主探索的基础上兴趣高涨,气氛异常的活跃,他们发现蚂蚁从A点往上爬到B点后顺着直径爬向C点爬行的路线是最短的!我也意外的发现了这种爬法是正确的,但是课本上是顺着侧面往上爬的,我就告诉学生:“课本中的圆柱体是没有上盖的”。只有这样课本上的解答才算是完全正确的。例2.(课本P58图14.2.3)
思路点拨:厂门的宽度是足够的,这个问题的关键是观察当卡车位于厂门正中间时其高度是否小于CH,点D在离厂门中线0.8米处,且CD⊥AB, 与地面交于H,寻找出Rt△OCD,运用勾股定理求出2.3m,CD= = =0.6,CH=0.6+2.3=2.9>2.5可见卡车能顺利通过 。详细解题过程看课本 引导学生完成P58做一做。
三、课堂小练
1、课本P58练习第1,2题。
2、探究: 一门框的尺寸如图所示,一块长3米,宽2.2米的薄木板是否能从门框内通过?为什么?
四、小结
直角三角形在实际生活中有更为广泛的应用希望同学们能紧紧抓住直角三角形的性质,学透勾股定理的具体应用,那样就能很轻松的解决现实生活中的许多问题,达到事倍功半的效果。
五、布置作业
课本P60习题14.2第1,2,3题。
《勾股定理》说课稿4
说课,就是教师备课之后讲课之前(或者在讲课之后)把教材、教法、学法、授课程序等方面的思路、教学设计、|板书设计及其依据面对面地对同行(同学科教师)或其他听众作全面讲述的一项教研活动或交流活动。以下是小编整理的初中数学《勾股定理的逆定理》说课稿,欢迎大家阅读参考。
一、教材分析:
(一)、本节课在教材中的地位作用
“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课标要求学生必须掌握。
(二)、教学目标:
根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。
知识技能:
1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形
过程与方法:
1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程
2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用
3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。
情感态度:
1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系
2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神
(三)、学情分析:
尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。
重点:勾股定理逆定理的应用
难点:勾股定理逆定理的证明
关键:辅助线的添法探索
二、教学过程:
本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。
(一)、复习回顾:复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。
(二)、创设问题情境
一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课的探究宗旨。(演示)古代埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样的三角形,便得到一个直角三角形。这是为什么?……。这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创造了我要学的气氛,同时也说明了几何知识来源于实践,不失时机地让学生感到数学就在身边。
(三)、学生在教师的指导下尝试解决问题,总结规律(包括难点突破)
因为几何来源于现实生活,对初二学生来说选择适当的时机,让他们从个体实践经验中开始学习,可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。
这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。
接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。
在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍,充分发挥教课书的作用,养成学生看书的习惯,这也是在培养学生的自学能力。
(四)、组织变式训练
本着由浅入深的原则,安排了三个题目。(演示)第一题比较简单,让学生口答,让所有的学生都能完成。第二题则进了一层,字母代替了数字,绕了一个弯,既可以检查本课知识,又可以提高灵活运用以往知识的能力。第三题则要求更高,要求学生能够推出可能的结论,这些作法培养了学生灵活转换、举一反三的能力,发展了学生的思维,提高了课堂教学的效果和利用率。在变式训练中我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈,调节教法,同时注意加强有针对性的个别指导,把发展学生的思维和随时把握学生的学习效果结合起来。
(五)、归纳小结,纳入知识体系
本节课小结先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法,培养能力方面,比如辅助线的添法,数形结合的思想,并告诉同学今天的勾股定理逆定理是同学们通过自己亲手实践发现并证明的,这种讨论问题的方法是培养我们发现问题认识问题的好方法,希望同学在课外练习时注意用这种方法,这都是教给学习方法。
(六)、作业布置
由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两组作业。A组是基本的思维训练项目,全体都要做,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。B组题适当加大难度,拓宽知识,供有能力又有兴趣的学生做,日积月累,对训练和培养他们的思维素质,发展学生的个性有积极作用。
三、说教法、学法与教学手段
为贯彻实施素质教育提出的面向全体学生,使学生全面发展主动发展的精神和培养创新活动的要求,根据本节课的教学内容、教学要求以及初二学生的年龄和心理特征以及学生的认知规律和认知水平,本节课我主要采用了以学生为主体,引导发现、操作探究的教学方法,即不违反科学性又符合可接受性原则,这样有利于培养学生的学习兴趣,调动学生的学习积极性,发展学生的思维;有利于培养学生动手、观察、分析、猜想、验证、推理能力和创新能力;有利于学生从感性认识上升到理性认识,加深对所学知识的理解和掌握;有利于突破难点和突出重点。
此外,本节课我还采用了理论联系实际的教学原则,以教师为主导、学生为主体的教学原则,通过联系学生现有的经验和感性认识,由最邻近的知识去向本节课迁移,通过动手操作让学生独立探讨、主动获取知识。
总之,本节课遵循从生动直观到抽象思维的认识规律,力争最大限度地调动学生学习的积极性;力争把教师教的过程转化为学生亲自探索、发现知识的过程;力争使学生在获得知识的过程中得到能力的培养。
《勾股定理》说课稿5
尊敬的各位领导、各位老师,大家好:
我叫李朝红,是第十四中学的一名教师。我今天说课的题目《勾股定理的逆定理》,选自人教课标实验版教科书数学八年级下册第十八章第二节,本节课共分两个课时,我今天分析的是第一个课时,下面我将从教材、教法学法、教学过程、教学反思四个方面进行阐述。
一、教材分析
1、教材的地位和作用:
在学习本节课之前学生已经学习了勾股定理,全等三角形的判定等相关知识,为本节课的学习打好了基础,学习好本节课不但可以巩固学生已有的知识,而且为后面利用勾股定理的逆定理判断一个三角形是否直角三角形等相关知识的学习做好了铺垫。
2、教学目标
教学目标支配着教学过程,教学目标的制定和落实是实施课堂教学的关键。考虑到学生已有的认知结构心理特征及本班学生的实际情况,我制定了如下教学目标
知识与技能:掌握勾股定理的逆定理,会用勾股定理的逆定理判断一个三角形是否直角三角形。
过程与方法:通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成
过程,体会数形结合和由特殊到一般的数学思想,进一步提高学生分析问题、解决问题的能力。
情感、态度、价值观:在探究勾股定理的逆定理的活动中,渗透与他人交流、合作的意识和探究精神.
3、重点难点
本着课程标准,在吃透教材的基础上,我确立了如下的教学重、难点
重点:理解并掌握勾股定理的逆定理,并会应用。
难点:理解勾股定理的逆定理的推导。
二、教法学法分析
八年级学生的特点是思维比较活跃,喜欢发表自己的见解,善于进行小组合作学习,所以我将采用启发教学与诱导教学相结合的方法,老师为主导,学生为主体,充分调动学生的学习积极性,让学生动手操作,动脑思考,动口表达,积极参与到本节课的教学过程中来,在锻炼学生思考、观察、实践能力的同时,使其科学文化修养与思想道德修养进一步提升。
教法学法分析完毕,我再来分析一下教学过程,这是我本次说课的重点。
三、教学过程分析:
(一)创设情景,引入新课
1、展示图片:古埃及人制作直角的方法
2、让学生试一试用一根绳子确定直角
设计意图:通过古埃及人制作直角的方法,提出让学生动手操作,进而使学生产生好奇心:“这样就能确定直角吗”,激发学生的求知欲,点燃其学习的激情,充分调动学生的学习积极性 ,同时也使学生感受到几何来源于生活,服务于生活的道理,体会数学的价值。
(二)动手检测,提出假设
在本环节中通过情境中的问题,引导学生分别用(1)6cm,8cm,10cm (2)5 cm、12cm、13cm (3)3.5 cm 、12cm、12.5 cm
上面三组线段为边画出三角形,猜测验证出其形状。
再引导启发诱导学生从上面的活动中归纳思考:如果一个三角形的三边a,b,c满足a2+b2=c2,那这个三角形是直角三角形吗?在整个过程的活动中,尽量给学生足够的时间和空间,以平等身份参与到学生活动中来,对其实践活动予以指导。让学生通过作图、测量等实践活动,给出合理的假设与猜测。整个环节通过设置的问题串,引导学生动手、动脑、动口相结合,激活学生的思维,培养学生严谨的科学态度,合理的推测能力,严密的逻辑思维能力和灵活的动手实践能力。
(三) 探索归纳,证明假设:
勾股定理逆定理的证明与以往不同,需要构造直角三角形才能完成,如何构造直角三角形就成为解决问题的关键。如果直接将问题抛给学生证明,他们定会无从下手,所以为了解决这一问题,突破这个难点,我先
1、让学生画了一个三边长度为3cm,4cm,5cm的三角形和一个以3cm,4cm为直角边的直角三角形,剪下其中的直角三角形放在另一个三角形上看出现了什么情况?并请学生简单说明理由。通过操作验证两三角形全等,从而显示了符合条件的三角形是直角三角形,
2、然后在黑板上画一个三边长为a、b、c,且满足 a2+b2=c2的△ABC,与一个以a、b为直角边的直角三角形,让学生观察它们之间有什么联系呢?你们又是如何想的?试说明理由。通过推理证明得出勾股定理的逆定理。
在这个过程中,首先让学生从特殊的实例中动手操作到证明,学生自然地联想到了全等三角形的判定,进而由特殊到一般发现三边长为a、b、c,且满足 a2+b2=c2的△ABC与以a、b为直角边的直角三角形的关系。
设计意图:让学生从特殊的实例动手到证明,进而由特殊到一般,顺利地利用构建法证明了勾股定理的逆定理,整个过程自然、无神秘感,实现从直观印象向抽象思维的转化,同时学生亲身体会了“操作——观察——猜测——探索——论证”的过程,体验了“特殊到一般,个性到共性”的伟大数学思想在实际中的应用。
这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。
(四)学以致用、巩固提升
本着由浅入深的原则,安排了三个题。第一题比较简单,判断由a,b,c组成的三角形是不是直角三角形?(1)a=15 b=8 c=17 (2)a=13 b=15 c=14.让学生仿照课本上的例题,独立完成,教师提醒书写格式。并说明像15,8,17能够成为直角三角形的三条边长的正整数,我们称为勾股数。第二题我改变题的形式,把一些符合a+b=c的三角形放入网格中让学生运用勾股定理及其逆定理来说明理由。第三题是求一个不规则四边形的面积,让学生思考如何添加辅助线,把它分成一个直角三角形和一个非直角但能判定是直角的三角形,让学生运用勾股定理及其逆定理证明并求解。
设计意图:采用启发教学与诱导教学方法相结合的方法分层练习,由浅入深地逐步提高学生解决实际问题的能力,达到巩固知识,学以致用的目的
(五)回顾总结,强化认知
课堂小结以填空体的形式检测、归纳总结
设计意图:让学生以填空题的形式进行总结,不仅能够起到检测的目的,而且帮助学生理清知识脉络,起到重点强调,产生高度重视的效果。
(六)作业布置
教材33页练习
设计意图:加强学生对勾股定理逆定理的理解,使学生的练习范围拓展到多个题型。
教学反思:本节课以学生为主体、教师为主导,通过启发与诱导,使学生动手操作、动脑思考、动口表达,让学生在实践与探究中发挥自我,充分调动了学生的自主性与积极性,整个过程注重了学生课上知识的形成与巩固,以及学生各方面素质的培养。总之本节课的知识目标基本达成,能力目标基本实现,情感目标基本落实。
以上是我对本节课的理解,还望各位老师指正。
《勾股定理》说课稿6
一、教材分析
教材所处的地位与作用
“探索勾股定理”是人教版八年级《数学》下册内容。“勾股定理”是安排在学生学习了三角形、全等三角形、等腰三角形等有关知识之后,它揭示了直角三角形三边之间的一种美妙关系,将数与形密切联系起来,在几何学中占有非常重要的位置。同时勾股定理在生产、生活中也有很大的用途。
二、教学目标
综上分析及教学大纲要求,本课时教学目标制定如下:
1、知识目标
知道勾股定理的由来,初步理解割补拼接的面积证法。
掌握勾股定理,通过动手操作利用等积法理解勾股定理的证明过程。
2、能力目标
在探索勾股定理的过程中,让学生经历“观察——合理猜想——归纳——验证”的数学思想,并体会数形结合以及由特殊到一般的思想方法,培养学生的观察力、抽象概括能力、创造想象能力以及科学探究问题的能力。
3、情感目标
通过观察、猜想、拼图、证明等操作,使学生深刻感受到数学知识的发生、发展过程。
介绍“赵爽弦图”,让学生感受到中国古代在勾股定理研究方面所取得的伟大成就,激发学生的数学激情及爱国情感。
三、教学重难点
本课重点是掌握勾股定理,让学生深刻感悟到直角三角形三边所具备的特殊关系。由于八年级学生构造能力较低以及对面积证法的不熟悉,因此本课的难点便是勾股定理的证明。
四、教学问题诊断
本 节主要攻克的问题就是本节的难点:勾股定理的证明。我打算采用面积法来讲解,但这种借助于图形的面积来探索、验证数学结论的数形结合思想,对于学生来说, 有些陌生,难以理解,又加之数学课本身的课程特征,在讲解时,没有文科那么深动形象,所以针对这一现状,我在教法和学法上都进行了改进。
五、教法与学法分析
[教学方法与手段] 针对八年级学生的知识结构和心理特征,本节课选择引导探索法,由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,并利用多媒体进行教学。
[学法分析] 在教师组织引导下,采用自主探索、合作交流的方式,让学生自己实验,自己获取知识,并感悟学习方法,借此培养学生动手、动口、动脑能力,使学生真正成为学习的主体。让学生感受到自己是学习的主体,增强他们的主动感和责任感,这样对掌握新知会事半功倍。
六、教学流程设计
1、创设情境,引入新课
本节课开始利用多媒体介绍了在北京召开的20xx年 国际数学家大会的会标,其图案为“赵爽弦图”,由此导入新课,是为了激发学生的兴趣和民族自豪感,它是课堂教学的重要一环。“好的开始是成功的一半”,在 课的起始阶段迅速集中学生注意力,把他们的思绪带进特定的学习情境中,激发学生浓厚的学习兴趣和强烈的求知欲。多媒体展示这一有意义的图案,可有效开启学 生思维的闸门,激励探究,使学生的学习状态由被动变为主动,在轻松愉悦的氛围中学到知识。
2、观察发现,类比猜想
让学生仔细观察毕达哥拉斯朋友家的瓷砖(图1), 从而得到特殊的等腰直角三角形三边关系,紧接着由特殊到一般,让学生合理猜测:是否任意直角三角形都符合这个“三边关系”的结论?同学们很轻易的得到了结 论。最后对此结论通过在网格中数格子进行验证,让学生经历了“观察——合理猜测——归纳——验证”的这一数学思想。在数格子的验证过程中,发现任意直角三 角形(图2)斜边上长出的正方形中网格不规则,没法数出。通过同学们的讨论,发现数不出来的原因是格子不规则,从而想到了用补或割的方法进行计算,其原则就是由不规则经过割补变为规则。
3、实验探究,证明结论
因为勾股定理的出现,使数学从单一的纯计算进入了几何图形的证明,所以为了让学生感受数形结合这一数学思想,让学生亲自动手,互相协作,拿一块由a2和b2组成的不规则的平面图形经割补,变为规则的c2,又因两块割补前后面积相等,从而得到勾股定理:a2+b2= c2,也因此引入了“等积法”证明勾股定理。
4、练兵之际
这是“总统证法”,此时让学生自己探索,然后讨论。选用“总统证法”,第一是为了让同学们熟悉“等积法”,第二让学生感受数学的地位之高,第三在没有讲解的情况下,学生自己得出了“总统证法”,大大增强了学生的自信心和自豪感。
5、自己动手,拼出弦图
让同学们拿出了提前准备好的四个全等的边长为a、b、c的 直角三角形进行拼图,小组活动,拼出自己喜爱的图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了学生,让他们 在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,学生们拼得很好,并且都给出了正确的 证明,在黑板上尽情地展示了一番。
6、总结反思
通 过这一堂课,我认为数学教学的核心不是知识本身,而是数学的思维方式,而培养这种数学思维方式需要丰富的数学活动。在活动中学生可以用自己创造与体验的方 法来学习数学,这样才能真正的掌握数学,真正拥有数学的思维方式,这一课的学习就是通过让学生自主探索知识,从而将其转化为自己的,真正做到了先激发兴 趣,再合作交流,最后展示成果的自主学习,教学模式也从教师讲授为主转为了学生动脑、动手、自主研究,小组学习讨论交流为主,把数学课堂转化为“数学实验 室”,学生通过自己活动得出结论,使创新精神与实践能力得到了发展。
七、设计说明
1、根据学生的知识结构,我采用的数学流程是:创设情境引入新课——观察发现类比猜想——实验探究证明结论——自己动手拼出弦图——总结反思这五部分。这一流程体现了知识的发生、形成和发展的过程,让学生经历了观察——猜想——归纳——验证的思想和数形结合的思想。
2、探索定理采用了面积法,引导学生利用实验由特殊到一般的数学思想对直角三角形三边关系进行了研究,并得出了结论。这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好的思维品质的形成有重要作用,对学生终身发展也有很大作用。
《勾股定理》说课稿7
本节课设计力求让学生参与知识的发现过程,体现以学生为主体,以促进学生发展为本的教学理念,变知识的传授者为学生自主探求知识的引导者、指导者、合作者。并利用多媒体,直观教具演示,营造一个声像同步,能动能静的教学情境,给学生提供一个探索的空间,促使学生主动参与,亲身体验勾股定理的探索证明过程,从而锻炼思维、激发创造,优化课堂教学。努力做到有传统的教学课堂像实验课堂转变,使学生真正成为学习的主人,培养了学生的素质能力,达到了良好的教学效果。
(一)创设情境,引入新课
课前首先让学生阅读赵爽的弦图相关知识让他们体会中国古代科学的发达。在课堂上紧密结合前面已学的知识进行导入。如提出问题:你见过这个图案吗?你听说过勾股定理吗?你还记得三角形的三边遵循什么规律吗?等等一系列的问题激起学生学生的热情和求知欲,然后顺利进入探究。本节我们就来学习一下直角三角形的三条边除具备前面的性质外还有什么新的特征。
(二)引导学生,探究新知
①初步感知定理:这一环节我选择了教材的图片,讲述毕达哥拉斯到朋友家做客时发现用砖铺成的地面,其中含有直角三角形三边的数量关系,创设感知情境,提出问题,现在请同学观察,看看有什么发现?(学案出示)使问题更形象、具体。
②提出猜想:在活动1的基础上,学生已发现一些规律,进一步通过活动2进行看一看、填一填、想一想、议一议、做一做,让学生感受不只是等腰直角三角形才具有这样的性质,学生再由浅到深,由特殊到一般的提出问题,启发学生得出猜想,直角三角形的两直角边的平分和等于斜边的平方。
③证明猜想:是不是所有的直角三角形都有这样的特点呢?这就需要我们对一个一般的直角三角形进行证明:通过活动3我充分引导学生利用直观教具,进行拼图实验,在动手操中放手让学生思考、讨论、合作、交流、探究问题的多种方法。,并对学生的做法给予表扬,使学生在学习过程中,感受到自我创造的快乐,从而分散了教学难点,发现了利用面积相等去证明勾股定理的方法。
④总结定理:让学生自己总结,不完善之处由教师补充,在前面探究活动的基础上,学生容易得出直角三角形的三边数量关系即勾股定理。
(三)反馈训练,巩固新知
学生对所学的知识是否掌握了,达到了什么程度?为了检测学生对本课的达成情况和加强对学生能力的培养,我设计了一组坡有难度的练习题。
(四)归纳总结,深化新知
本节课你有哪些收获?你最感兴趣的地方是什么?你想进一步研究的问题是什么?……
通过小结,使学生进一步明确掌握教学目标,使知识成为体系。
(五)布置作业。拓展新知
让学生收集有关勾股定理的证明方法,下节课展示、交流。使本节知识得到拓展、延伸,培养了学生能力和思维的深刻性,让学生感受数学深厚的文化底蕴。
(六)板书设计,明确新知
《勾股定理》说课稿8
说教材
本课时是北师大版八年级(上)数学第14章第二节内容,是在掌握勾股定理的基础上对勾股定理的应用之一。 勾股定理是我国古数学的一项伟大成就。勾股定理为我们提供了直角三角形的三边间的数量关系,它的逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法,这些成果被广泛应用于数学和实际生活的各个方面。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析,使学生获得较为直观的印象,通过联系和比较,了解勾股定理在实际生活中的广泛应用。 据此,制定教学目标如下:
1。知识和方法目标:通过对一些典型题目的思考,练习,能正确熟练地进行勾股定理有关计算,深入对勾股定理的理解。
2。过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的。 3。情感与态度目标:感受数学在生活中的应用,感受数学定理的美。 教学重点:勾股定理的应用。 教学难点:勾股定理的正确使用。 教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理。
说教法和学法
1。以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。 2。切实体现学生的主体地位,让学生通过观察,分析,讨论,操作,归纳理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。 3。通过演示实物,引导学生观察,操作,分析,证明,使学生获得新知的成功感受,从而激发学生钻研新知的欲望。
教学程序
本节内容的教学主要体现在学生的动手,动脑方面,根据学生的认知规律和学习心理,教学程序设置如下: 一。回顾问:勾股定理的内容是什么? 勾股定理揭示了直角三角形三边之间的关系,今天我们来学习这个定理在实际生活中的应用。 二。新授课例1。如图所示,有一个圆柱,它的高AB等于4厘米,底面周长等于20厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的C点处的食物,沿圆柱侧面爬行的最短路线是多少?(课本P57图14。2。1)
①学生取出自制圆柱,,尝试从A点到C点沿圆柱侧面画出几条路线。思考:那条路线最短? ②如图,将圆柱侧面剪开展成一个长方形,从A点到C点的最短路线是什么?你画得对吗? ③蚂蚁从A点出发,想吃到C点处的食物,它沿圆柱侧面爬行的最短路线是什么?
思路点拨:引导学生在自制的圆柱侧面上寻找最短路线;提醒学生将圆柱侧面展开成长方形,引导学生观察分析发现“两点之间的所有线中,线段最短”。 学生在自主探索的基础上兴趣高涨,气氛异常的活跃,他们发现蚂蚁从A点往上爬到B点后顺着直径爬向C点爬行的路线是最短的!我也意外的发现了这种爬法是正确的,但是课本上是顺着侧面往上爬的,我就告诉学生:“课本中的圆柱体是没有上盖的”。只有这样课本上的解答才算是完全正确的。例2。(课本P58图14。2。3) 思路点拨:厂门的宽度是足够的,这个问题的关键是观察当卡车位于厂门正中间时其高度是否小于CH,点D在离厂门中线0。8米处,且CD⊥AB, 与地面交于H,寻找出Rt△OCD,运用勾股定理求出CD= = =0。6,CH=0。6+2。3=2。9>2。5可见卡车能顺利通过 。详细解题过程看课本 引导学生完成P58做一做。 三。课堂小练 1。课本P58练习第1,2题。 2。探究: 一门框的尺寸如图所示,一块长3米,宽2。2米的薄木板是否能从门框内通过?为什么?
四。小结直角三角形在实际生活中有更为广泛的应用希望同学们能紧紧抓住直角三角形的性质,学透勾股定理的具体应用,那样就能很轻松的解决现实生活中的许多问题,达到事倍功半的效果。
《勾股定理》说课稿9
尊敬的各位评委、老师,您们好,我是临沂市苍山县实验中学的宋宁。今天我说课的内容是人教版《数学》八年级下册第十八章第一节《勾股定理》第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。
一、教材分析:
(一) 教材的地位与作用
从知识结构上看百度一下,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;
勾股定理又是对学生进行爱国主义教育的良好素材,因此具备相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点
为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引领学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析
教学方法 叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引领学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导 为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程
我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
首先,情境导入 古韵今风
给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
第二步 追溯历史 解密真相
勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具备局限性。因此教师应引领学生利用“割”和“补”的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。
突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。教师给出边长单位长度分别为3、4、5的直角三角形,避免了学生因作图不准确而产生的错误,也为下面 “勾三股四弦五”的提出埋下伏笔。有了上一环节的铺垫,有效地分散了难点。在求正方形C的面积时,学生将展示“割”的方法, “补”的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。
使用几何画板动态演示,使几何与代数之间的关系可视化。当为直角三角形时,改变三边长度三边关系不变,当∠α为锐角或钝角时,三边关系就改变了,进而强调了命题成立的前提条件必须是直角三角形。加深学生对勾股定理理解的同时也拓展了学生的视野。
以上三个环节层层深入步步引领,学生归纳得到命题1,从而培养学生的合情推理能力以及语言表达能力。
感性认识未必是正确的,推理验证证实我们的猜想。
第三步 推陈出新 借古鼎新
教材中直接给出“赵爽弦图”的证法对学生的思维是一种禁锢,教师创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,教师应给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。教师深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出“学生是学习的主体,教师是组织者、引领者与合作者”这一教学理念。学生会发现两种证明方案。
方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比“古”、“今”两种证法,让学生体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的自豪感。板书勾股定理,进而给出字母表示,培养学生的符号意识。
教师对“勾、股、弦”的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。利用勾股树动态演示,让学生欣赏数学的精巧、优美。
第四步 取其精华 古为今用
我按照“理解—掌握—运用”的梯度设计了如下三组习题。
(1)对应难点,巩固所学;(2)考查重点,深化新知;(3)解决问题,感受应用
第五步 温故反思 任务后延
在课堂接近尾声时,我鼓励学生从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。
然后布置作业,分层作业体现了教育面向全体学生的理念。
四、教学评价
在探究活动中,教师评价、学生自评与互评相结合,从而体现评价主体多元化和评价方式的多样化。
五、设计说明
本节课探究体验贯穿始终,展示交流贯穿始终,习惯养成贯穿始终,情感教育贯穿始终,文化育人贯穿始终。
采用 “七巧板”代替教材中“毕达哥拉斯地板砖”利用我国传统文化引入课题,赵爽弦图证明定理,符合本节课以我国数学文化为主线这一设计理念,展现了我国古代数学璀璨的历史,激发学生再创数学辉煌的愿望。
以上就是我对《勾股定理》这一课的设计说明,有不足之处请评委老师们指正,谢谢大家。
《勾股定理》说课稿10
课题:勾股定理
内容:教材分析、教法学法分析、教学过程设计、设计说明
一、教材分析
(一)教材所处的地位
这节课是华师大九年制义务教育课程标准实验教科书八年级总第19章第2节探索勾股定理,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)根据课程标准,本课的教学目标是:
1、能说出勾股定理的内容。
2、会初步运用勾股定理进行简单的计算和实际运用。
3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。
4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
(三)本课的教学重点:探索勾股定理
本课的教学难点:以直角三角形为边的正方形面积的计算。
二、教法与学法分析
教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
三、教学过程设计
(一)数学史导入
以毕达哥拉斯发现勾股定理引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。
(二)实验操作
1、投影课本图的有关直角三角形问题,让学生计算正方形A,B,C的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将C划分为4个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形A,B,C的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。
2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图1—3,图1—4,同样让学生计算正方形的面积,但正方形C的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助。
3、给出一个边长单位为5,12,13,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。
(三)归纳验证
1、归纳通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。
2、验证为了让学生确信结论的正确性,引导学生在纸上任意作一个直角三角形,通过动手操作拼图来验证结论的正确性和广泛性。这一过程有利于培养学生严谨、科学的学习态度。然后引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍“勾,股,弦”的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育和数学文化熏陶。
(四)问题解决
让学生解决生活中的实际问题,学生从中能体会到成功的喜悦。完成课本“想一想”进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。
(五)课堂小结
主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。
(六)布置作业
习题19.2(1-5)
有兴趣的同学可以查找另外的证明方法,写出1-2种出来
四、设计说明
1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
2、探索定理采用了面积法,引导学生利用实验由特殊到一般再到更一般的对直角三角形三边关系的探索和研究,得出结论。这种一般化的思想方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用。
3、关于练习的设计,除两个实际问题和课本习题以外,还让有兴趣的同学可以查找另外的证明方法,写出1-2种出来
4、本课小结从内容,应用,数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学数学、用数学的意识是有很大的裨益的。
《勾股定理》说课稿11
一、教材分析
勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大,我们的教材在编写时注意培养大家的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
据此,制定教学目标如下:
1、理解并且掌握勾股定理及其证明。
2、能够灵活地运用勾股定理及其计算。
3、主要就是培养学生观察、比较、分析、推理的能力。
4、通过介绍我们中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
教学重点:
勾股定理的证明和应用。
教学难点:
勾股定理的证明。
二、教法和学法
教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:
1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。
三、教学程序
本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:
(一)创设情境 以古引新
1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5,小学数学教案《数学 - 勾股定理说课稿》。这样引起学生学习兴趣,激发学生求知欲。
2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。
3、板书课题,出示学习目标。
(二)初步感知 理解教材
教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。
(三)质疑解难 讨论归纳
1、教师设疑或学生提疑。如:
怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。
2、教师引导学生按照要求进行拼图,观察并分析;
(1)这两个图形有什么特点?
(2)你能写出这两个图形的面积吗?
(3)如何运用勾股定理?是否还有其他形式?
这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。
(四)巩固练习强化提高
1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。
2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。
(五)归纳总结 练习反馈
引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。
本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。
《勾股定理》说课稿12
尊敬的各位评委、老师,您们好。
我是临沂市苍山县实验中学的**。今天我说课的内容是人教版《数学》八年级下册第十八章第一节《勾股定理》第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。
一、教材分析:
(一) 教材的地位与作用
从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生们认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;
勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生们热爱祖国悠久文化的情感。
(二)重点与难点
为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析
教学方法 叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此老师们利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导 为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程
我国的数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
第一步 情境导入 古韵今风
给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
第二步 追溯历史 解密真相
勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此教师应引导学生利用“割”和“补”的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。
突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。教师给出边长单位长度分别为3、4、5的直角三角形,避免了学生因作图不准确而产生的错误,也为下面 “勾三股四弦五”的提出埋下伏笔。有了上一环节的铺垫,有效地分散了难点。在求正方形C的面积时,学生将展示“割”的方法, “补”的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。
使用几何画板动态演示,使几何与代数之间的关系可视化。当为直角三角形时,改变三边长度三边关系不变,当∠α为锐角或钝角时,三边关系就改变了,进而强调了命题成立的前提条件必须是直角三角形。加深学生对勾股定理理解的同时也拓展了学生的视野。
以上三个环节层层深入步步引导,学生归纳得到命题1,从而培养学生的合情推理能力以及语言表达能力。
感性认识未必是正确的,推理验证证实我们的猜想。
第三步 推陈出新 借古鼎新
教材中直接给出“赵爽弦图”的证法对学生的思维是一种禁锢,教师创新使用教材,利用拼图活动解放学生的'大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,教师应给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。教师深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出“学生是学习的主体,教师是组织者、引导者与合作者”这一教学理念。学生会发现两种证明方案。
方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比“古”、“今”两种证法,让学生体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的自豪感。板书勾股定理,进而给出字母表示,培养学生的符号意识。
教师对“勾、股、弦”的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。利用勾股树动态演示,让学生欣赏数学的精巧、优美。
第四步 取其精华 古为今用
我按照“理解—掌握—运用”的梯度设计了如下三组习题。
(1)对应难点,巩固所学;(2)考查重点,深化新知;(3)解决问题,感受应用
第五步 温故反思 任务后延
在课堂接近尾声时,我鼓励学生从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。
然后布置作业,分层作业体现了教育面向全体学生的理念。
四、教学评价
在探究活动中,教师评价、学生自评与互评相结合,从而体现评价主体多元化和评价方式的多样化。
五、设计说明
本节课探究体验贯穿始终,展示交流贯穿始终,习惯养成贯穿始终,情感教育贯穿始终,文化育人贯穿始终。
采用 “七巧板”代替教材中“毕达哥拉斯地板砖”利用我国传统文化引入课题,赵爽弦图证明定理,符合本节课以我国数学文化为主线这一设计理念,展现了我国古代数学璀璨的历史,激发学生再创数学辉煌的愿望。
以上就是我对《勾股定理》这一课的设计说明,有不足之处请评委老师们指正,谢谢大家。
《勾股定理》说课稿13
一、教材分析
(一)、本节课在教材中的地位作用
“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课标要求学生必须掌握。
(二)、教学目标
1、知识技能:1理解并会证明勾股定理的逆定理;
2会应用勾股定理的逆定理判定一个三角形是否为直角三角形; 3知道什么叫勾股数,记住一些觉见的勾股数.
2、过程与方法:通过对勾股定理的逆定理的探索和证明,经历知识的发生,发展与形成的过程,体验“数形结合”方法的应用。
3、情感、态度价值观 培养数学思维以及合情推理意识,感悟勾股定理和逆定理的应用价值。渗透与他人交流、合作的意识和探究精神,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系。
(三)、学情分析:
尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样就确定了本节课的重点、难点。 教学重点:勾股定理逆定理的应用
教学难点:勾股定理逆定理的证明
二、教学过程
本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。
(一)复习回顾
复习回顾与直角三角形、勾股定理有关的内容,建立新旧知识之间的联系。
(二)创设问题情境
一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课的探究宗旨。(演示)古代埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样的三角形,便得到一个直角三角形。这是为什么?。这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创
造了我要学的气氛,同时也说明了几何知识来源于实践,不失时机地让学生感到数学就在身边。
(三)学生在教师的指导下尝试解决问题,总结规律(包括难点突破)
因为几何来源于现实生活,对初二学生来说选择适当的时机,让他们从个体实践经验中开始学习,可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手画图在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。
这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手画出了一个两直角边与所给三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。
接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。
在同学们完成证明之后,同时让学生总结互逆命题、互逆定理的关系,并举例指出哪些为互逆定理。然后让他们对照课本把证明过程严格的阅读一遍,充分发挥教课书的作用,养成学生看书的习惯,这也是在培养学生的自学能力。
(四)组织变式训练
本着由浅入深的原则,安排了两个例题。(演示)第一题比较简单,让学生口答,让所有的学生都能完成。第二题则进了一层,不仅判断是否为直接三角形,还绕了一个弯,指出哪一个角是直角。这样既可以检查本课知识,又可以提高灵活运用以往知识的能力。例题讲解后安排了三个练习,循序渐进,由浅入深。培养了学生灵活转换、举一反三的能力,发展了学生的思维,提高了课堂教学的效果和利用率。让学生知道勾股逆定理的用途,激发学生的学习兴趣。我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈,调节教法,同时注意加强有针对性的个别指导,把发展学生的思维和随时把握学生的学习效果结合起来。
(五)归纳小结,纳入知识体系
本节课小结先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法,培养能力方面,比如辅助线的添法,数形结合的思想,并
告诉同学今天的勾股定理逆定理是同学们通过自己亲手实践发现并证明的,这种讨论问题的方法是培养我们发现问题认识问题的好方法,希望同学在课外练习时注意用这种方法,这都是教给学习方法。
(六)作业布置
由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两题作业。第一题是基本的思维训练项目,全体都要做,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。第二题适当加大难度,拓宽知识,供有能力又有兴趣的学生做,日积月累,对训练和培养他们的思维素质,发展学生的个性有积极作用。
三、说教法学法与教学手段
为贯彻实施素质教育提出的面向全体学生,使学生全面发展主动发展的精神和培养创新活动的要求,根据本节课的教学内容、教学要求以及初二学生的年龄和心理特征以及学生的认知规律和认知水平,本节课我主要采用了以学生为主体,引导发现、操作探究的教学方法,即不违反科学性又符合可接受性原则,这样有利于培养学生的学习兴趣,调动学生的学习积极性,发展学生的思维;有利于培养学生动手、观察、分析、猜想、验证、推理能力和创新能力;有利于学生从感性认识上升到理性认识,加深对所学知识的理解和掌握;有利于突破难点和突出重点。
此外,本节课我还采用了理论联系实际的教学原则,以教师为主导、学生为主体的教学原则,通过联系学生现有的经验和感性认识,由最邻近的知识去向本节课迁移,通过动手操作让学生独立探讨、主动获取知识。
总之,本节课遵循从生动直观到抽象思维的认识规律,力争最大限度地调动学生学习的积极性;力争把教师教的过程转化为学生亲自探索、发现知识的过程;力争使学生在获得知识的过程中得到能力的培养。
《勾股定理》说课稿14
各位老师、评委:大家好﹗
今天我说课的题目是选自人教版八年级数学第十八章第一节的内容:勾股定理。
我将从以下这几个方面进行本节课的阐述:教材分析、学情分析、教法、学法指导、教学过程设计以及教学反思。
下面请大家和我共同走进教材。
(一)教材分析
⒈教材的地位和作用
《勾股定理》是人教版新课标八年级数学第十八章第一节第一课时内容,勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,是中学数学几个重要定理之一。它揭示了一个直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,在实际生活中用途很大。勾股定理的发现、验证和应用蕴含着丰富的文化价值,它在理论上占有重要地位,学好本节至关重要。
⒉教学目标
根据新课程标准对学生知识、能力的要求,结合八年级学生实际水平、认知特点制定以下教学目标。
知识与技能:了解勾股定理的文化背景,体验勾股定理的探索过程,能够灵活地运用勾股定理及其计算。
过程与方法:让学生经历“观察-猜想-归纳-验证”的数学过程,并从中体会数形结合及从特殊到一般的数学思想。培养学生观察、比较、分析、推理的能力。
情感态度与价值观:通过介绍我国古代在研究勾股定理方面取得的伟大成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感,在探索问题的过程中,培养学生的合作交流意识和探索精神。
3.重点和难点
勾股定理的学习是建立在掌握一般三角形的性质、直角三角形以及三角形全等的基础上, 是直角三角形性质的拓展。本节课主要是对勾股定理的探索和勾股定理的证明。勾股定理的证明方法很多,本节课介绍的是等积法。通过本节课的教学,引领学生从不同的角度发现问题、用多样化策略解决问题,从而提高学生分析、解决问题的能力。
因此本节课的重点:是勾股定理的发现、验证和应用。
八年级学生已初步具备几何的观察能力和说理能力,也有了一定的空间想象和动手操作能力,但是他们的推理能力较弱、抽象思维能力不足。而本节课采用的是等积法证明。由于学生之前没有接触过等积法证明,他们对这种证明方法感到很陌生,尤其是觉得推理根据不明确,不象证明,没有教师的启发引领,学生不容易独立想到。
因此本节课的难点:是用拼图方法、面积法证明勾股定理。
(二)学情分析
八年级学生已初步具有几何图形的观察,几何证明的理论思维能力。希望老师预设便于他们进行观察的几何环境,给他们发表自己见解和表现自己才华的机会,希望老师满足他们的创造愿望,让他们实际操作,使他们获得施展自己创造才能的机会。
(三)说教学方法
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,要展现获取知识和方法的思维过程, 针对八年级学生的知识结构和心理特征,本节课采取引导探索法,由浅入深,由特殊到一般地提出问题。以导为主,采用设疑的形式,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。使学生得到获得新知的成功感受,从而激发学生钻研新知。并利用教具与多媒体进行教学。
(四)说学习方法
我们常说:“现代的文盲不是不识字的人, 而是没有掌握学习方法的人”, 因而在教学中要特别重视学法的指导, 我采用了如下的学法指导:
在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
(五)说教学过程
根据学生的认知规律和学习心理,本节课分六个活动进行学习,为了扩大课堂容量节省时间提高课堂效率,拟采用多媒体教学。
【活动1】:(多媒体展示)欣赏图片 了解历史
第一幅图片配上文字说明。
设计意图:这样的导入富有科学特色和浓郁的数学气息,激起学生强烈的兴趣和求知欲。
第二幅图片为20xx年在我国北京召开的第24届国际数学家大会的场景,值得一提的是这次大会的会徽,为著名的赵爽弦图。
设计意图:在学生欣赏赵爽弦图的过程中,进行爱国主义教育,可以让他们充分体会到我国古代在数学研究方面取得的伟大成就,从而激发学生的爱国热情和民族自豪感。
第三幅图片为介绍古代勾和股。
设计意图:简单介绍勾股定理的历史,引出勾股定理这一课题。
学生,读一读和观察。
【活动2】:探索勾股定理
首先讲述毕达哥拉斯到朋友家做客的故事。(多媒体展示)
然后提出两个问题,让学生沿着毕达哥拉斯的足迹去探寻勾股定理。
{问题一}:在图中你能发现那些基本图形?
{问题二}:与等腰直角三角形相邻的正方形面积之间有怎样的关系?
(多媒体展示)探究一
{问题三}:如图,每个小方格的面积为1个单位,你能写出正方形A、B、C的面积吗?
{问题四}:由此你可以得出等腰直角三角形三边存在着一种怎样特殊的数量关系吗?
学生在独立探究的基础上观察图片,计算面积,分组交流, 猜想和归纳。
教师参与学生小组活动,指导,倾听学生交流。针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积。在计算C的面积时可能有一定的难度,此时就要用到数学当中常见的割补法。因此需要教师的引导。
设计意图:通过讲传说故事来激发学生学习兴趣,引导学生进入学习状态。学生会很积极的投入到探索这个问题的实践中。让学生并且尝试了从不同角度寻求解决问题的有效方法,并通过对方法的反思,获得解决问题的经验。
“问题是思维的起点”,通过层层设问,引导学生发现新知。
(多媒体展示)探究二
{问题五}:等腰直角三角形三边具有这样的特殊关系,那么一般的直角三角形呢?如图,每个小方格的面积为1个单位,你能写出正方形A、B、C的面积吗?
将一般的直角三角形放入到网格中,并使得直角三角形的两条直角边为正整数,让学生去计算图1和图2中六个正方形的面积。关注学生能否用不同的方法得到大正方形的面积。
学生计算,观察,猜想,语言表达猜想结论。
教师参与学生小组活动,指导,倾听学生交流。针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积。在计算C的面积时可能有一定的难度,此时又用到数学当中常见的割补法。因此需要教师的引导。
设计意图:学生通过探究A、B、C三个正方形之间的面积关系,进而发现、猜想勾股定理,并用自己的语言表达出来。这样的设计渗透了从特殊到一般的数学思想。发挥学生的主体作用,培养学生类比迁移能力及探索问题的能力,使学生在相互欣赏,争辩,互助中得到提高。
(多媒体展示)猜想:
如果直角三角形两直角边分别为a、b,斜边为c,那么a2 b2=c2。
即直角三角形两直角边的平方和等于斜边的平方。
{问题六}:是不是所有的直角三角形都有这样的特点呢?
【活动3】:证明勾股定理
师:这就需要我们对一个一般的直角三角形进行证明。到目前为止,对这个命题的证明方法已有几百种之多。下面我们就来看一看我国数学家赵爽是怎样证明这个命题的。
{问题七}:请同学们拿出课前准备好的四个全等的直角三角形,记三边分别为a,b,c,然后拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形?
学生独立思考的基础上以小组为单位,用准备好的四个全等直角三角形动手拼接。学生展示分割,拼接的过程。
教师深入小组参与活动,倾听学生的交流,帮助指导学生完成拼图活动。并请小组代表到黑板演示拼图过程,鼓励学生敢于发表自己的见解。
设计意图:通过这些实际操作,调动学生思维积极性,同时使学生对定理的理解更加深刻,学生能够进一步加深对数形结合的理解,拼图也会产生感性认识,也为论证勾股定理做好准备。
{问题八}:它们的面积分别怎样表示?它们有什么关系呢?
(多媒体展示)拼接图,面积计算
学生观察,计算,小组讨论。
在计算过程中,我重点在于引导学生分析图中面积之间的关系,得出结论:大正方形的面积= 4个全等的直角三角形的面积 小正方形的面积,从而运用等积法证明勾股定理。(这样,既突破了难点,让学生感受到用等积法证明勾股定理的奥妙。)
设计意图:给学生充分的时间和空间参与到数学活动中来,并发挥他们的主观能动性,可以进一步提高学生的学习兴趣。利用分组讨论,加强学生的合作意识。
师:我们现在通过推理证实了我们的猜想的正确性,经过证明被确认正确的命题叫做定理。猜想与直角三角形的边有关,我国把它称为勾股定理。“赵爽弦图”表现了我国古人对数学的钻研精神和聪明才智,它是我古代数学的骄傲。正因如此,这个图案被选为20xx年在北京召开的国际数学大会的会徽。
【活动4】:应用勾股定理(多媒体展示)
(小组选择,采用竞答方式)
填空
P的面积= ,
AB= X=
BC=
BC=
2、求下列图中表示边的未知数x、y、z的值。
3求下列直角三角形中未知边的长:
设计意图:首先是几道填空题和勾股定理的直接应用,这几道题既有类似又有不同,通过变式训练,强调应用勾股定理时应注意的问题。一是勾股定理要应用于直角三角形当中,二是要注意哪一条边为斜边。
4、求出下列直角三角形中未知边的长度。
设计意图:规范解题过程。
5、小明的妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你能解释这是为什么吗?(我们通过所说的29英寸或74厘米的电视机,是指其屏幕对角线的长度。)
设计意图:这是一道和学生生活密切相关的应用题,让学生充分体会到数学是来源于生活,应用于生活。
【活动5】:总结勾股定理(多媒体展示)
1.这节课你的收获是什么?
2.理解“勾股定理”应该注意什么问题?
3.你觉得“勾股定理”有用吗?
学生谈谈这节课的收获是什么,让学生畅所欲言。
教师进行补充,总结,为下节课做好铺垫。
设计意图:通过小结为学生创造交流的空间,调动学生的积极性,即引导学生培养学生从面积的角度理解勾股定理,又从能力,情感,态度等方面关注学生的整体感受。
【活动6】:布置作业(多媒体展示)
1.阅读教材第71页的阅读与思考-----《勾股定理的证明》。
2.收集有关勾股定理的证明方法,下节展示交流。
3.做一棵奇妙的勾股树(选做)
设计的意图:给学生留有继续学习的空间和兴趣。
(六)说教学反思
本课意在创设愉悦和谐的乐学气氛,始终面向全体学生“以学生的发展为本” 的教育理念,课堂教学充分体现学生的主体性,给学生留下最大化的思维空间。注重数学思想方法的渗透,整个勾股定理的探索、发现、证明都着意渗透数形结合,又从一般到特殊,从特殊回归到一般的数学思想方法。重视数学史教育,激发学生的爱国情感。数学问题生活化,用数学知识解决生活中的实际问题,关键在于把生活问题转化为数学问题,让生活问题数学化,然后才能得以解决。在这个过程中,很多时候需要老师帮助学生去理解、转化,而更多时候需要学生自己去探索、尝试,并在失败中寻找成功的途径。教学中,如果能让学生自己反思答案与方法的合理性,那么效果会更好了。
板书设计:
18.1 勾股定理
勾股定理:
如果直角三角形两直角边分别为a,b,
斜边为c,那么a2 b2=c2
《勾股定理》说课稿15
今天我说课的课题是《勾股定理》。本课选自九年义务教育人教版八年级数学下册第十八章第一节的第一课时。
一、教学背景分析
1、教材分析
本节课是学生在已经掌握了直角三角形有关性质的基础上进行学习的,通过20xx年国际数学家大会的会徽图案,引入勾股定理,进而探索直角三角形三边的数量关系,并应用它解决问题。学好本节不仅为下节勾股定理的逆定理打下良好基础,而且为今后学习解直角三角形奠定基础,在实际生活中用途很大。勾股定理是直角三角形的一条非常重要的性质,是几何中一个非常重要的定理,它揭示了直角三角形三边之间的数量关系,将数与形密切地联系起来,它有着丰富的历史背景,在理论上占有重要的地位。
2、学情分析
通过前面的学习,学生已具备一些平面几何的知识,能够进行一般的推理和论证,但如何通过拼图来证明勾股定理,学生对这种解决问题的途径还比较陌生,存在一定的难度,因此,我采用直观教具、多媒体等手段,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。
3、教学目标:
根据八年级学生的认知水平,依据新课程标准和教学大纲的要求,我制定了如下的教学目标:
知识与能力目标:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理;培养在实际生活中发现问题总结规律的意识和能力.
过程与方法目标:通过创设情境,导入新课,引导学生探索勾股定理,并应用它解决问题,运用了观察、演示、实验、操作等方法学习新知。
情感态度价值观目标:感受数学文化,激发学生学习的热情,体验合作学习成功的喜悦,渗透数形结合的思想。
4、教学重点、难点
通过分析可见,勾股定理是平面几何的重要定理,有着承上启下的作用,在今后的生活实践中有着广泛应用。因此我确定本课的教学
重难点为探索和证明勾股定理.
二、教材处理
根据学生情况,为有效培养学生能力,在教学过程中,以创设问题情境为先导,运用直观教具、多媒体等手段,激发学生学习兴趣,调动学生学习积极性,并开展以探究活动为主的教学模式,边设疑,边讲解,边操作,边讨论,启发学生提出问题,分析问题,进而解决问题,以达到突出重点,攻破难点的目的。
三、教学策略
1、教法
“教必有法,而教无定法”,只有方法恰当,才会有效。根据本课内容特点和八年级学生思维活动特点,我采用了引导发现教学法,合作探究教学法,逐步渗透教学法和师生共研相结合的方法。
2、学法
“授人以鱼,不如授人以渔”,通过设计问题序列,引导学生主动探究新知,合作交流,体现学习的自主性,从不同层次发掘不同学生的不同能力,从而达到发展学生思维能力的目的,发掘学生的创新精神。
3、教学模式
根据新课标要求,要积极倡导自主、合作、探究的学习方式,我采用了创设情境——探究新知——反馈训练的教学模式,使学生获取知识,提高素质能力。
四、教学过程
(一)创设情境,引入新课
利用多媒体课件,给学生出示20xx年国际数学家大会的场面,通过观察会徽图案,提出问题:你见过这个图案吗?你听说过勾股定理吗?从现实生活中提出赵爽弦图,激发学生学习的热情和求知欲,同时为探索勾股定理提供背景材料,进而引出课题。
(二)引导学生,探究新知
1、初步感知定理:这一环节选择教材的图片,讲述毕达哥拉斯到朋友家做客时发现用砖铺成的地面,其中含有直角三角形三边的数量关系,创设感知情境,提出问题:现在也请你观察,看看有什么发现?教师配合演示,使问题更形象、具体。适当补充等腰直角三角形边长为1、2时,所形成的规律,使学生再次感知发现的规律。
2、提出猜想:在活动1的基础上,学生已发现一些规律,进一步通过活动2进行看一看,想一想,做一做,让学生感受不只是等腰直角三角形才具有这样的性质,使学生由浅到深,由特殊到一般的提出问题,启发学生得出猜想,直角三角形的两直角边的平方和等于斜边的平方。
3、证明猜想:是不是所有的直角三角形都有这样的特点呢?这就需要我们对一个一般的直角三角形进行证明.通过活动3,充分引导学生利用直观教具,进行拼图实验,在动手操作中放手让学生思考、讨论、合作、交流,探究解决问题的多种方法,鼓励创新,小组竞赛,引入竞争,教师参与讨论,与学生交流,获取信息,从而有针对性地引导学生进行证法的探究,使学生创造性地得出拼图的多种方法,并使学生在学习的过程中,感受到自我创造的快乐,从而分散了教学难点,发现了利用面积相等去证明勾股定理的方法。培养了学生的发散思维、一题多解和探究数学问题的能力。
4、总结定理:让学生自己总结定理,不完善之处由教师补充。在前面探究活动的基础上,学生很容易得出直角三角形的三边数量关系即勾股定理,培养了学生的语言表达能力和归纳概括能力。
(三)反馈训练,巩固新知
学生对所学的知识是否掌握了,达到了什么程度?为了检测学生对本课目标的达成情况和加强对学生能力的培养,设计一组有坡度的练习题:A组动脑筋,想一想,是本节基础知识的理解和直接应用;B组求阴影部分的面积,建立了新旧知识的联系,培养学生综合运用知识的能力。C组议一议,是一道实际应用题型,给学生施展才智的机会,让学生独立思考后,讨论交流得出解决问题的方法,增强了数学来源于实践,反过来又作用于实践的应用意识,达到了学以致用的目的。
(四)归纳小结,深化新知
本节课你有哪些收获?你最感兴趣的地方是什么?你想进一步研究的的问题是什么?通过小结,使学生进一步明确掌握教学目标,使知识成为体系。
(五)布置作业,拓展新知
让学生收集有关勾股定理的证明方法,下节课展示、交流.使本节知识得到拓展、延伸,培养了学生能力和思维的深刻性,让学生感受数学深厚的文化底蕴。
(六)板书设计,明确新知
本节课的板书设计分为三块:一块是拼图方法,一块是勾股定理;一块是例题解析。它突出了重点,层次清楚,便于学生掌握,为获得知识服务。
第四篇:勾股定理说课稿
勾股定理说课稿通用15篇
勾股定理说课稿1
一、教材分析
勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大,我们的教材在编写时注意培养大家的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
据此,制定教学目标如下:
1、理解并且掌握勾股定理及其证明。
2、能够灵活地运用勾股定理及其计算。
3、主要就是培养学生观察、比较、分析、推理的能力。
4、通过介绍我们中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
教学重点:
勾股定理的证明和应用。
教学难点:
勾股定理的证明。
二、教法和学法
教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:
1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。
三、教学程序
本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:
(一)创设情境 以古引新
1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5,小学数学教案《数学 - 勾股定理说课稿》。这样引起学生学习兴趣,激发学生求知欲。
2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。
3、板书课题,出示学习目标。
(二)初步感知 理解教材
教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。
(三)质疑解难 讨论归纳
1、教师设疑或学生提疑。如:
怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。
2、教师引导学生按照要求进行拼图,观察并分析;
(1)这两个图形有什么特点?
(2)你能写出这两个图形的面积吗?
(3)如何运用勾股定理?是否还有其他形式?
这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。
(四)巩固练习强化提高
1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。
2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。
(五)归纳总结 练习反馈
引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。
本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。
勾股定理说课稿2
一、教材分析
(一)教材地位
这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标
1、知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。
2、过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。
3、情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。
(三)教学重点
经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。
二、教法与学法分析
学情分析:
七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。
另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.
教法分析:
结合七年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式, 选择引导探索法。
把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。
三、教学过程设计
(一)创设情境,提出问题
(1)图片欣赏勾股定理数形图
1955年希腊发行美丽的勾股树
20xx年国际数学的一枚纪念邮票
大会会标
设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。
(2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6。5米长的云梯,如果梯子的底部离墙基的距离是2。5米,请问消防队员能否进入三楼灭火?
设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。
(二)实验操作模型构建
1、等腰直角三角形(数格子)
2、一般直角三角形(割补)
问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?
设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。
问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)
设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。
通过以上实验归纳总结勾股定理。
设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律。
(三)回归生活应用新知
让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。
(四)知识拓展巩固深化
基础题,情境题,探索题。
设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。
基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?
设计意图:这道题立足于双基.通过学生自己创设情境 ,锻炼了发散思维。
情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?
设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。
探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。
设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。
(五)感悟收获布置作业
这节课你的收获是什么?
作业:
1、课本习题2.1
2、搜集有关勾股定理证明的资料。
四、板书设计
探索勾股定理
如果直角三角形两直角边分别为a,b,斜边为c,那么
设计说明:
1、探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法。
2、让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平。
图文搜集自网络,如有侵权,请联系删除。
铁树老师面试辅导,喜马拉雅app—主播—教师面试大杂烩
勾股定理说课稿3
一、教材分析
勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
据此,制定教学目标如下:
1、理解并掌握勾股定理及其证明。
2、能够灵活地运用勾股定理及其计算。
3、培养学生观察、比较、分析、推理的能力。
4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
教学重点:勾股定理的证明和应用。
教学难点:勾股定理的证明。
二、教法和学法
教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:
1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。
三、教学程序
本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:
(一)创设情境 以古引新
1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形。如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。
2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。
3、板书课题,出示学习目标。
(二)初步感知 理解教材
教师指导学生自学教材,通过自学感悟理解新知。体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。
(三)质疑解难 讨论归纳
1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。
2、教师引导学生按照要求进行拼图,观察并分析;
(1)这两个图形有什么特点?
(2)你能写出这两个图形的面积吗?
(3)如何运用勾股定理?是否还有其他形式?
这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流;先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨。最后,师生共同归纳,形成一致意见,最终解决疑难。
(四)巩固练习强化提高
1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。
2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。
(五)归纳总结 练习反馈
引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。
本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。
勾股定理说课稿4
尊敬的各位考官:
大家好,我是X号考生,今天我说课的题目是《勾股定理的逆定理》。
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材
首先来谈一谈我对教材的理解。
本节课选自人教版初中数学八年级下册第十七章第二节《勾股定理的逆定理》,它是在学生掌握勾股定理及一般三角形性质的基础上进行教学的。应用前面学习的勾股定理及三角形全等证明逆定理是本节课的关键步骤,同时本节课又丰富了三角形的性质,是后面几何问题的基础理论性知识。
二、说学情
接下来谈谈学生的实际情况。本阶段的学生已经掌握了一定的基础知识,处于由几何内容的初级向高级行进的过程。他们的几何思维正在逐步形成和发展,对几何题目具有一定的分析、想象、概括能力,具有对未知事物的新鲜感和探求欲。同时也要注意到学生能力的不成熟,教学中鼓励与引导并重。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下教学目标:
(一)知识与技能
理解并掌握勾股定理的逆定理,会应用定理判定直角三角形;理解勾股定理与勾股定理逆定理的区别与联系;理解原命题和逆命题的概念,知道二者的关系及二者真假性的关系。
(二)过程与方法
经历得出猜想、推理证明的过程,提升自主探究、分析问题、解决问题的能力。
(三)情感、态度与价值观
体会事物之间的联系,感受几何的魅力。
四、说教学重难点
在教学目标的实现过程中,教学重点是勾股定理的逆定理及其证明,教学难点是勾股定理的逆定理的证明。
五、说教法学法
为了突破重点,解决难点,顺利达成教学目标,教学中我将主要采用小组讨论、自主探究的教学方法,辅以适量的教师讲解和引导,把课堂还给学生。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)导入新课
课堂伊始,我采用复习旧知与创设情境相结合的导入方式。首先我会带领学生复习勾股定理并明确其题设和结论,为后面提出逆命题、逆定理做铺垫。接着提问学生如何画直角三角形,学生很容易想到用三角尺或量角器。此时我会要求学生不能用绳子以外的工具,借助学生的困惑,给出古埃及人利用等长的3、4、5个绳结间距画直角三角形的情境。以古埃及人所用方法中蕴含何道理为切入点引出课题。
通过这样的导入方式,能够带领学生回顾上节课的内容,为本节课奠定好基础,同时用情境激发学生的好奇心和求知欲,更好地展开教学。
(二)讲解新知
接下来是最重要的新授环节。
请学生思考3,4,5之间的关系,结合勾股定理的学习经验明确
出示数据2.5cm,6cm,6.5cm,请学生计算验证数据满足上述平方和关系,并画出相应边长的三角形检验是否为直角三角形。
学生活动:同桌两人一组,将三边换成其他满足上述平方和关系的数据,如4cm,7.5cm,8.5cm,画出相应边长的三角形检验是否为直角三角形。
在得到肯定结论后,引导学生基于以上例子大胆猜想得出命题。
勾股定理说课稿5
一、说教材
本课时是华师大版八年级(上)数学第14章第二节内容,是在掌握勾股定理的基础上对勾股定理的应用之一。 勾股定理是我国古数学的一项伟大成就。勾股定理为我们提供了直角三角形的三边间的数量关系,它的逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法,这些成果被广泛应用于数学和实际生活的各个方面。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析,使学生获得较为直观的印象,通过联系和比较,了解勾股定理在实际生活中的广泛应用。 据此,制定教学目标如下:
1、知识和方法目标:通过对一些典型题目的思考,练习,能正确熟练地进行勾股定理有关计算,深入对勾股定理的理解。
2、过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的。
3、情感与态度目标:感受数学在生活中的应用,感受数学定理的美。
教学重点:勾股定理的应用。
教学难点:勾股定理的正确使用。
教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理。
二、说教法和学法
1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
2、切实体现学生的主体地位,让学生通过观察,分析,讨论,操作,归纳理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
3、通过演示实物,引导学生观察,操作,分析,证明,使学生获得新知的成功感受,从而激发学生钻研新知的欲望。
三、教学程序
本节内容的教学主要体现在学生的动手,动脑方面,根据学生的认知规律和学习心理,教学程序设置如下:
一、回顾问:
勾股定理的内容是什么? 勾股定理揭示了直角三角形三边之间的关系,今天我们来学习这个定理在实际生活中的应用。
二、新授课例
1、如图所示,有一个圆柱,它的高AB等于4厘米,底面周长等于20厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的C点处的食物,沿圆柱侧面爬行的最短路线是多少?(课本P57图14.2.1)
①学生取出自制圆柱,,尝试从A点到C点沿圆柱侧面画出几条路线。思考:那条路线最短?
②如图,将圆柱侧面剪开展成一个长方形,从A点到C点的最短路线是什么?你画得对吗?
③蚂蚁从A点出发,想吃到C点处的食物,它沿圆柱侧面爬行的最短路线是什么?
思路点拨:引导学生在自制的圆柱侧面上寻找最短路线;提醒学生将圆柱侧面展开成长方形,引导学生观察分析发现“两点之间的所有线中,线段最短”。 学生在自主探索的基础上兴趣高涨,气氛异常的活跃,他们发现蚂蚁从A点往上爬到B点后顺着直径爬向C点爬行的路线是最短的!我也意外的发现了这种爬法是正确的,但是课本上是顺着侧面往上爬的,我就告诉学生:“课本中的圆柱体是没有上盖的”。只有这样课本上的解答才算是完全正确的。例2.(课本P58图14.2.3)
思路点拨:厂门的宽度是足够的,这个问题的关键是观察当卡车位于厂门正中间时其高度是否小于CH,点D在离厂门中线0.8米处,且CD⊥AB, 与地面交于H,寻找出Rt△OCD,运用勾股定理求出2.3m,CD= = =0.6,CH=0.6+2.3=2.9>2.5可见卡车能顺利通过 。详细解题过程看课本 引导学生完成P58做一做。
三、课堂小练
1、课本P58练习第1,2题。
2、探究: 一门框的尺寸如图所示,一块长3米,宽2.2米的薄木板是否能从门框内通过?为什么?
四、小结
直角三角形在实际生活中有更为广泛的应用希望同学们能紧紧抓住直角三角形的性质,学透勾股定理的具体应用,那样就能很轻松的解决现实生活中的许多问题,达到事倍功半的效果。
五、布置作业
课本P60习题14.2第1,2,3题。
勾股定理说课稿6
一、教材分析
(一)教材所处的地位
这节课是九年制义务教育课程标准实验教科书八年级第十八章第一节勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)根据课程标准,本课的教学目标是:
1、知识技能:了解勾股定理的文化背景,体验勾股定理的探索过程。
2、数学思考:在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。
3、解决问题:①通过拼图活动,体验数学思维的严谨性,发展形象思维。
②在探究过程中,学会与人合作并能与他人交流思维的过程和探究的结果。
4、情感态度:①通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激发学生发奋学习。
②在探究过程中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。
(三)本课的教学重点:探索和证明勾股定理
本课的教学难点:用拼图的方法证明勾股定理
二、教法与学法分析:
教法分析:针对八年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题实验操作归纳验证问题解决巩固练习课堂小结 布置作业七部分。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
三、教学过程设计
(一)提出问题:
首先提出问题1:你知道下图所表示的意义吗?创设问题情境,在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的奥运会,这就是本届大会会徽的图案,你听说过勾股定理吗?通过提出问题,从而激发学生的求知欲。
其次提出问题2:你知道勾三、股四、弦五的意义吗?此问题由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生的学习兴趣,激发学生的求知欲。
勾股定理说课稿7
各位专家领导:
上午好!今天我说课的课题是《勾股定理》。
一、教材分析:
(一)本节内容在全书和章节的地位。
这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。
(二)三维教学目标:
1、知识与能力目标。
(1)理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;
(2)通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
2、过程与方法目标。
在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。
3、情感态度与价值观。
通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
(三)教学重点、难点:
1、教学重点:勾股定理的证明与运用
2、教学难点:用面积法等方法证明勾股定理
3、难点成因:
对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。
4、突破措施:
(1)创设情景,激发思维:
创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;
(2)自主探索,敢于猜想:
充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;
(3)张扬个性,展示风采:
实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。
二、教法与学法分析:
1、教法分析:
数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业”六个方面。
2、学法分析:
新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。
三、教学过程设计:
(一)创设情景:
多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?
问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。
(二)动手操作:
1、课件出示课本P99图19.2.1:
观察图中用阴影画出的三个正方形,你从中能够得出什么结论?
学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则 AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。
2、紧接着让学生思考:
上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P100图 19.2.2(一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能够发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。
3、再问:
当边长不为整数的直角三角形是否也存在这一结论呢?投影例题:一个边长分别为1.5,3.6,3.9这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。
(三)归纳验证:
1、归纳:
通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,,使学生学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整堂课充分发挥学生的主体作用,真正获取知识,解决问题。
2、验证:
先后三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也有利于培养学生严谨、科学的学习态度。
(四)问题解决:
1、让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的快乐。
2、自学课本P101例1,然后完成P102练习。
(五)课堂小结:
1、小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。
2、教师用多媒体介绍“勾股定理史话”。
(1)《周髀算径》:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。
(2)康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创。
3、目的:对学生进行爱国主义教育,激励学生奋发向上。
(六)布置作业:
课本P104习题19.2中的第1.2.3题。目的一方面是巩固“勾股定理”,另一方面是让学生进一步体会定理与实际生活的联系。
以上内容,我仅从“说教材”,“说学情”、“说教法”、“说学法”、“说教学过程”上来说明这堂课“教什么”和“怎么教”,也阐述了“为什么这样教”,希望各位专家领导对本次说课提出宝贵的意见,谢谢!
勾股定理说课稿8
1教学内容分析
勾股定理是九年制义务教育教科书八年级下册第十七章的内容,是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
2学情分析
针对八年级学生的知识结构、心理特征及学生的实际情况,可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
3教学目标
(一)知识与技能
1、体验勾股定理的探索过程,会运用勾股定理解决简单的问题。
(二)过程与方法
1、让学生经历用面积法探索勾股定理的过程,体会数形结合的思想,渗透观察、归纳、猜想、验证的数学方法,体验从特殊到一般的逻辑推理过程。
(三)情感态度与价值观
1、通过了解勾股定理的历史,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
2、让学生体验自己努力得到结论的成就感,体验数学充满了探索和创造,感受数学之美,探究之趣。
4重点与难点
重点:会用勾股定理求直角三角形的边长
难点:勾股定理的探索过程
5课前准备
多媒体课件
6教学过程
6.1第一学时
教学活动
活动1
【导入】欣赏图片,了解历史
在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会的会徽的图案.
(1)你见过这个图案吗?
(2)你听说过“勾股定理”吗?
学生活动:学生观察图片,发表见解。
资源准备:教师演示多媒体课件
设计意图:从现实生活中提出“赵爽弦图”,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料。
活动2【讲授】探索勾股定理
探究一:探索直角三角形三边的特殊关系:
(1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;
直角三角形1
直角边一a=3
直角边二b=4
斜边c=?
猜想三边关系满足关系:
直角三角形2
直角边一a=5
直角边二b=?
斜边c=13
猜想三边关系满足关系:
(2)猜想:直角三角形的三边关系为
探究二:如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的?
思考:每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。
勾股定理:
直角三角形等于
几何语言表述:
如图,在RtΔABC中,C=90°,则:
若BC=a,AC=b,AB=c,则上面的定理可以表示为:
学生活动:在独立探究的基础上,学生分组交流。
资源准备:教师演示多媒体课件
设计意图:渗透从特殊到一般的数学思想。为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高。
活动3【讲授】证明勾股定理
是不是所有的直角三角形都有这样的特点呢?这就需要我们对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明方法已有几百种之多.下面,我们就来看一看我国数学家赵爽是怎样证明这个命题的。
(1)以直角三角形ABC的两条直角边a、b为边作两个正方形.你能通过剪、拼把它拼成弦图的样子吗?
(2)面积分别怎样表示?它们有什么关系呢?
例1:已知,在△ABC中,∠C=90°,∠A、∠B、∠C的对边
为a、b、c。求证:a2+b2=c2。
分析:
⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,
让学生拼摆不同的形状,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:
4S△+S小正=S大正
2ab+(b-a)2=c2
化简可证
学生活动:学生在独立思考的基础上以小组为单位,动手拼接。
资源准备:教师演示多媒体课件
设计意图:通过拼图活动,调动学生思维的积极性,锻炼学生的动手实践能力,为学生提供从事数学活动的机会,建立初步的空间观念,发展形象思维。通过对定理的证明,让学生确信定理的正确性。
活动4【练习】简单应用勾股定理解题
1、求下图中字母所代表的正方形的面积
2、求出下列各图中x的值。
3、如图所示,强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处。旗杆折断之前有多高?
4、如图,点C是以AB为直径的半圆上一点,∠ACB=90°,AC=3,BC=4,则图中阴影部分的面积是多少?
学生活动:学生独立思考完成
设计意图:教师利用学生已有的知识创设问题情境,有针对性地引导学生进行练习,为学习勾股定理在实际生活中的应用做好铺垫。
活动5【作业】总结反思,布置作业
1、本节课你有哪些收获?
2、还有哪些疑问?
3、作业:略
学生活动:学生归纳、总结谈感受
设计意图:通过小结能为学生从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。
活动6【讲授】板书设计
勾股定理
一、定理:如果直角三角形的两直角边长分别为a,b,
斜边为c,那么
二、证明:略
三、应用:
活动7【作业】教学反思
本节课涉及了大量的有关勾股定理的背景知识,学生可以感受到勾股定理所蕴含的浓郁的数学文化。教学中应聆听学生发言,尊重学生发展。积极引导学生深挖细究,体现过程方法。教学中应着力激发学生学习数学的兴趣,也要注重自主探索与合作交流,同时还要注意数学思想方法的渗透,为学生今后的发展拓展了空间。
17.1勾股定理
课时设计课堂实录
17.1勾股定理
1第一学时教学活动活动1【导入】欣赏图片,了解历史
20在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会的会徽的图案.
(1)你见过这个图案吗?
(2)你听说过“勾股定理”吗?
学生活动:学生观察图片,发表见解。
资源准备:教师演示多媒体课件
设计意图:从现实生活中提出“赵爽弦图”,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料。
活动2【讲授】探索勾股定理
探究一:探索直角三角形三边的特殊关系:
(1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;
直角三角形1
直角边一a=3
直角边二b=4
斜边c=?
猜想三边关系满足关系:
直角三角形2
直角边一a=5
直角边二b=?
斜边c=13
猜想三边关系满足关系:
(2)猜想:直角三角形的三边关系为
探究二:如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的?
思考:每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。
勾股定理:
直角三角形等于
几何语言表述:
如图,在RtΔABC中,C=90°,则:
若BC=a,AC=b,AB=c,则上面的定理可以表示为:
学生活动:在独立探究的基础上,学生分组交流。
资源准备:教师演示多媒体课件
设计意图:渗透从特殊到一般的数学思想。为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高。
活动3【讲授】证明勾股定理
是不是所有的直角三角形都有这样的特点呢?这就需要我们对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明方法已有几百种之多.下面,我们就来看一看我国数学家赵爽是怎样证明这个命题的。
(1)以直角三角形ABC的两条直角边a、b为边作两个正方形.你能通过剪、拼把它拼成弦图的样子吗?
(2)面积分别怎样表示?它们有什么关系呢?
例1:已知,在△ABC中,∠C=90°,∠A、∠B、∠C的对边
为a、b、c。求证:a2+b2=c2。
分析:
⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,
让学生拼摆不同的形状,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:
4S△+S小正=S大正
2ab+(b-a)2=c2
化简可证
学生活动:学生在独立思考的基础上以小组为单位,动手拼接。
资源准备:教师演示多媒体课件
设计意图:通过拼图活动,调动学生思维的积极性,锻炼学生的动手实践能力,为学生提供从事数学活动的机会,建立初步的空间观念,发展形象思维。通过对定理的证明,让学生确信定理的正确性。
活动4【练习】简单应用勾股定理解题
1、求下图中字母所代表的正方形的面积
2、求出下列各图中x的值。
3、如图所示,强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处。旗杆折断之前有多高?
4、如图,点C是以AB为直径的半圆上一点,∠ACB=90°,AC=3,BC=4,则图中阴影部分的面积是多少?
学生活动:学生独立思考完成
设计意图:教师利用学生已有的知识创设问题情境,有针对性地引导学生进行练习,为学习勾股定理在实际生活中的应用做好铺垫。
活动5【作业】总结反思,布置作业
1、本节课你有哪些收获?
2、还有哪些疑问?
3、作业:略
学生活动:学生归纳、总结谈感受
设计意图:通过小结能为学生从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。
活动6【讲授】板书设计
勾股定理
一、定理:如果直角三角形的两直角边长分别为a,b,斜边为c,那么
二、证明:略
三、应用:
活动7【作业】教学反思
本节课涉及了大量的有关勾股定理的背景知识,学生可以感受到勾股定理所蕴含的浓郁的数学文化。教学中应聆听学生发言,尊重学生发展。积极引导学生深挖细究,体现过程方法。教学中应着力激发学生学习数学的兴趣,也要注重自主探索与合作交流,同时还要注意数学思想方法的渗透,为学生今后的发展拓展了空间。
勾股定理说课稿9
课题:勾股定理
内容:教材分析、教法学法分析、教学过程设计、设计说明
一、教材分析
(一)教材所处的地位
这节课是华师大九年制义务教育课程标准实验教科书八年级总第19章第2节探索勾股定理,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)根据课程标准,本课的教学目标是:
1、能说出勾股定理的内容。
2、会初步运用勾股定理进行简单的计算和实际运用。
3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。
4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
(三)本课的教学重点:探索勾股定理
本课的教学难点:以直角三角形为边的正方形面积的计算。
二、教法与学法分析
教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
三、教学过程设计
(一)数学史导入
以毕达哥拉斯发现勾股定理引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。
(二)实验操作
1、投影课本图的有关直角三角形问题,让学生计算正方形A,B,C的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将C划分为4个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形A,B,C的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。
2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图1—3,图1—4,同样让学生计算正方形的面积,但正方形C的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助。
3、给出一个边长单位为5,12,13,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。
(三)归纳验证
1、归纳通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。
2、验证为了让学生确信结论的正确性,引导学生在纸上任意作一个直角三角形,通过动手操作拼图来验证结论的正确性和广泛性。这一过程有利于培养学生严谨、科学的学习态度。然后引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍“勾,股,弦”的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育和数学文化熏陶。
(四)问题解决
让学生解决生活中的实际问题,学生从中能体会到成功的喜悦。完成课本“想一想”进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。
(五)课堂小结
主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。
(六)布置作业
习题19.2(1-5)
有兴趣的同学可以查找另外的证明方法,写出1-2种出来
四、设计说明
1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
2、探索定理采用了面积法,引导学生利用实验由特殊到一般再到更一般的对直角三角形三边关系的探索和研究,得出结论。这种一般化的思想方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用。
3、关于练习的设计,除两个实际问题和课本习题以外,还让有兴趣的同学可以查找另外的证明方法,写出1-2种出来
4、本课小结从内容,应用,数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学数学、用数学的意识是有很大的裨益的。
勾股定理说课稿10
一、教材分析
勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一。它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一。在实际生活中用途很大,教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,让学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
据此,制定教学目标如下:
1、理解并掌握勾股定理及其证明。
2、能够灵活地运用勾股定理及其计算。
3、培养学生观察、比较、分析、推理的能力。
4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
教学重点:勾股定理的证明和应用。
教学难点:勾股定理的证明。
二、教法和学法
教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:
1、以自学辅导为主,充分发挥教师的主导作用;运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理。提高学生动手操作能力,以及分析问题和解决问题的能力。
3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。
三、教学程序
本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:
(一)创设情境 以古引新
1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。
2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。
3、板书课题,出示学习目标。
(二)初步感知 理解教材
教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。
(三)质疑解难 讨论归纳
1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。
2、教师引导学生按照要求进行拼图,观察并分析;
(1)这两个图形有什么特点?
(2)你能写出这两个图形的面积吗?
(3)如何运用勾股定理?是否还有其他形式?
这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。
(四)巩固练习强化提高
1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。
2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。
(五)归纳总结 练习反馈
引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。
本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。
勾股定理说课稿11
尊敬的各位评委、老师,大家好!
我说课的题目是华师版八年级上册第十四章第一节第一课时《勾股定理》。
教材分析:
如果说数学思想是解决数学问题的一首经典老歌,那么本节课蕴含的由特殊到一般的思想、数学建模的思想、转化的思想就是歌中最为活跃的音符!本节的内容是在学习了二次根式之后的教学,是在学生已经掌握了直角三角形的有关性质的基础上进行的后继学习,是中学数学几个重要定理之一。它揭示了直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,是解决四边形、圆等知识的灵魂,在实际生活中有着极其广泛的应用。
勾股定理的发现、验证和应用蕴含着丰富的文化价值,在理论上占有重要地位,因此本节在教材中起着承前启后的桥梁作用。
新课标下的数学教学不仅是知识的教学,更应注重能力的培养及情感的教育,因此,根据本节在教学中的地位和作用,结合初二学生不爱表现、好静不好动的特点,我确定本节教学目标如下:
1、探索并利用拼图证明勾股定理。
2、利用勾股定理解决简单的数学问题。
3、感受数学文化,体会解决问题方法的多样性和数形结合的思想。
本着课标的要求,在吃透教材的基础上,我确定本节的教学重点、难点、关键如下:
勾股定理的证明和简单应用是本节的重点,用拼图的方法证明勾股定理是难点,而解决难点的关键是充分利用图形面积的各种表示方法构造恒等式。
为了讲清重点、突破难点、抓住关键,使学生达到预定目标,我对教法和学法分析如下:
教法分析:
新课程标准强调要从学生已有的经验出发,最大限度的激发学生学习积极性,新课程下的数学教师更应是学生学习活动的组织者、引导者、合作者,因此,鉴于教材的重点和初二学生的认知水平,我以学生充分预习为前提,以学生的动手操作、讲解为中心,让学生亲历亲为,体会做数学的过程,激发学生的探索兴趣,使课堂活跃起来,提高课堂效率。运用观察法、归纳法、引导发现法、讨论法等多种教学方法相结合的形式,让学生充分展示预习成果,体验成功的快乐,为终身学习和发展打下坚实的基础。为了增大课堂容量、给学生创设高效的数学课堂,给学生提供足够从事数学活动的时间,以导学案的形式、运用多媒体辅助教学。
学法分析:
学法是学生再生知识的法宝,为了把学生学习过程当作认知事物的过程来解决,教学中我首先引导学生先动手操作,再合作交流,培养学生良好的学习品质和与人合作的能力;接下来,我让学生独立思考,点拨学生用特殊到一般的思想大胆偿试,水到渠成的突出勾股定理的探索这一重点,然后通过学生展示成果让学生抓住用不同的方式拼出图形,从而用不同的方式表示图形面积建立恒等式这一关健,以自己拼图操作、讲解展示预习成果突破定理证明这一难点,指导学生严谨、合理的书写格式,培养学生的逻辑思维能力和语言表达能力。
为了充分调动学生的学习积极性,创设优化高效的数学课堂,我以导学案的方式循序见进的设计教学流程。
以学生必读课本48—52页,选读课本55、56页的课前预习为前提,共分四个环节来进行教学
1、勾股定理的探究:让学生历经量一量、算一算、想一想的由特殊到一般的数学思想引导好学生课前预习,再以检查预习成果的形式为新知的探究作好铺垫。
2、勾股定理的证明:以学生拼图展示、讲解预习成果的形式完成对定理的证明。
3、勾股定理的应用:以课堂练习、学生个性补充和老师适当的个性化追加的形式实现对定理的灵活应用。
4、学后反思:以学生小结的形式引导学生从知识、情感两方面实现对本节内容的巩固与升华。
说创新点:
为了给学生营造一个和谐、民主、平等而高效的数学课堂,我以新课程标准的基本理念和总体目标为指导思想,面向全体学生,选择适当的起点和方法,充分发挥学生的主体地位与教师主导作用相统一的原则。教学中注重学生的动手操作能力的培养,化繁为简,化抽象为直观。例如我以展示预习成果为主线,以学生动手操作、讲解等直观方式代替老师画图、剪图、讲评费时费力的方式,既让每个学生都能积极的参与进来,培养学生的语言表达能力、逻辑推理能力,又达到了直观高效的效果。
教学中我注重人文环境的创设,使数学课堂充满亲切、民主的气氛,例如整节课我以学生的操作、展示、讲解、个性补充为主,拉近了数学与学生的距离,激发了学生的学习兴趣;为了使不同的学生得到不同的发展,人人学有价值的数学,在教学中我创造性的使用教材,在不改变例题的本意为前提,创设身边暖房工程为情境,体现数学的生活化;以一题多变、中考题改编等形式进行练习题的层层深入,体现数学的变化美。
以学生个性补充的形式促进课堂新的生成,最大限度的培养学生创新思维,使不同的人在数学上有不同的发展。本节课既做到了课程的开放,为充分发挥学生聪明智慧和创造性的思维提供了空间,又创设了具有独特教学风格的作文式数学课堂。而多媒体教学的引入更为学生提供了广阔的思考空间和时间;同时,我注重对学生进行数学文化的薰陶和数学思想的渗透,注重美育、德育与教育的三统一,如小结时由“勾股树”到“智慧树”的希望寄语。
勾股定理说课稿12
(一)创设问题情境,引入新课:
在这一环节中,我设计了这样一个情境,多媒体动画展示,米老鼠来到了数学王国里的三角形城堡,要求只利用一根绳子,构造一个直角三角形,方可入城,这可难坏了米老鼠,你能帮它想办法吗?预测大多数同学会无从下手,这样引出课题。只有学习了勾股定理的逆定理后,大家都能帮助米老鼠进入城堡,我认为:“大疑而大进”这样做,充分调动学习内容,激发求知欲望,动漫演示,又有了很强的趣味性,做到课之初,趣已生,疑已质。
(二)实践猜想
本环节要围绕以下几个活动展开:
1、算一算:求以线段a,b为直角边的直角三角形的斜边c长。
1a=3b=42a=5b=123a=2.5b=64a=6b=8
2、猜一猜,以下列线段长为三边的三角形形状
13cm4cm5cm25cm12cm13cm
32.5cm6cm6.5cm46cm8cm10cm
3、摆一摆利用方便筷来操作问题2,利用量角器来度量,验证问题2的发现。
4、用恰当的语言叙述你的结论
在算一算中学生复习了勾股定理,猜一猜和摆一摆中学生小组合作动手实践,在问题1的基础上做出合理的推测和猜想,这样分层递进找到了学生思维的最近发展区,面向不同层次的'每一名学生,每一名学生都有参与数学活动的机会,最后运用恰当的语言表述,得到了勾股定理的逆定理。在整个过程的活动中,教师给学生充分的时间和空间,教师以平等的身份参与小组活动中,倾听意见,帮助指导学生的实践活动。学生的摆一摆的过程利用实物投影仪展示,在活动中教师关注;
1)学生的参与意识与动手能力。
2)是否清楚三角形三边长度的平方关系是因,直角三角形是果。既先有数,后有形。
3)数形结合的思想方法及归纳能力。
(三)推理证明
八年级正是学生由实验几何向推理几何过渡的重要时期,多数学生难以由直观到抽象这一思维的飞跃,而勾股定理的逆定理的证明又不同于以往的几何图形的证明,需要构造直角三角形才能完成,而构造直角三角形就成为解决问题的关键,直接抛给学生证明,无疑会石沉大海,所以,我采用分层导进的方法,以求一石激起千层浪。
1.三边长度为3cm,4cm,5cm的三角形与以3cm,4cm为直角边的直角三角形之间有什么关系?你是怎样得到的?请简要说明理由?
2.△ABC三边长a,b,c满足a2+b2=c2与a,b为直角三角形之间有何关系?试说明理由?
为了较好完成教师的诱导,教师要给学生独立思考的时间,要给学生在组内交流个别意见的时间,教师要深入小组指导与帮助,并利用实物投影仪展示小组成果,取得阶段性成果再探究问题2.这样由特殊到一般,凸显了构造直角三角形这一解决问题的关键,让他们在不断的探究过程中,亲自体验参与发现创造的愉悦,有效的突破了难点。
勾股定理说课稿13
一、说教材
(一)教材分析
本节内容选自人教版八年级数学下册第17章第二节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判定定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法来证明几何问题的思想,为将来学习解析几何埋下了伏笔。
(二)教学目标
根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。
知识技能:
理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。
掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形。
了解逆命题的概念,以及原命题为真时,它的逆命题不一定为真。
过程方法:
1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程
2、通过用三角形三边的数量关系来判断三角形的形状,体验数形结合方法的应用
3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。
情感态度:
在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神
(三)学情分析
尽管已到初二下学期的学生知识增多,能力增强,但思维的局限性还很大,能力之间也有差距,而利用“构造法”证明勾股定理的逆定理学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,而勾股定理逆定理的应用是本节重点
重点:勾股定理逆定理的应用
难点:勾股定理逆定理的证明
二、说教法学法
数学课程不仅注重知识、技能,以及情感意识和创造力的培养,同样注重社会实践和体验,教学要遵循以教师为主导,学生为主体的原则,因此我采用的教法学法如下:
在教学中以小组合作,自主探索为形式,采用“提问引导法”,通过“提出疑问”来启发诱导学生,让学生自觉主动地去分析问题、解决问题,学生在操作过程中不断“发现问题——解决问题”,变学生“学会”为“会学”.这样不仅使学生学习目标明确,而且能够培养他们的合作精神和自主学习的能力。根据学法指导自主性和差异性原则,本节我主要采用自主探究学习法,通过设计一系列问题,引导学生主动探究新知,体现学习自主性,从不同层面发掘不同学生的不同能力。
三、说教学准备
1、多媒体教学课件
2、纸片、直尺、圆规等
3、对学生事先分组
四、说教学过程
根据本课教学内容以及数学课程学科特点,结合八年级学生的实际认知水平,我设计了如下六个教学环节:
(一)复习提问、引入新课
问题1:前面我们学习了勾股定理,你能说出它的题设和结论吗?
问题2:若一个三角形三边具有a2+b2=c2,能否确定这个三角形是直角三角形?
(二)动手操作、观察猜想
探究一:分组做实验
第一组同学每人画一个边长为3cm、4 cm、5 cm的三角形;
第二组同学每人画一个边长为2.5 cm、6 cm、7.5 cm的三角形;
第三组同学每人画一个边长为4 cm、7.5 cm、8.5 cm的三角形;
第四组同学每人画一个边长为2 cm、5 cm、6 cm的三角形。
问题1:观察这些三角形,它们分别是什么形状呢?并测量验证
问题2:前三个三角形三边具有怎样的关系呢?
问题3:结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?
学生活动:动手、观察、测量、思考、猜想
设计意图:由特殊到一般,归纳猜想得出勾股定理的逆命题,既培养学生动手操作能力和寻求解决数学问题的一般方法,又体验了数与形的内在联系。
(三)实践验证,归纳证明
教师出示问题
问题1:对于一个真命题,它的逆命题是否也为真?学生举例说明。
勾股定理的逆命题是否也正确?怎么证明?
问题2:三边长度分别3cm,4cm,5cm的三角形与以3cm,4cm为直角边的直角三角形之间有什么关系,你是怎样得到的?(出示纸片)
问题3:你能否借鉴问题2的方法来证明勾股定理的逆命题呢?
学生活动:观察思考,动手操作,分组讨论,交流合作(教师引导学生主动探索,在师生互动中完成证明,得到勾股定理的逆定理)
设计意图:把“构造直角三角形”这一方法的获取过程交给学生,让他们在不断的尝试、探究的过程中,亲身体验参与发现的愉悦,有效地突破本节的难点。
勾股定理说课稿14
本节课设计力求让学生参与知识的发现过程,体现以学生为主体,以促进学生发展为本的教学理念,变知识的传授者为学生自主探求知识的引导者、指导者、合作者。并利用多媒体,直观教具演示,营造一个声像同步,能动能静的教学情境,给学生提供一个探索的空间,促使学生主动参与,亲身体验勾股定理的探索证明过程,从而锻炼思维、激发创造,优化课堂教学。努力做到有传统的教学课堂像实验课堂转变,使学生真正成为学习的主人,培养了学生的素质能力,达到了良好的教学效果。
(一)创设情境,引入新课
课前首先让学生阅读赵爽的弦图相关知识让他们体会中国古代科学的发达。在课堂上紧密结合前面已学的知识进行导入。如提出问题:你见过这个图案吗?你听说过勾股定理吗?你还记得三角形的三边遵循什么规律吗?等等一系列的问题激起学生学生的热情和求知欲,然后顺利进入探究。本节我们就来学习一下直角三角形的三条边除具备前面的性质外还有什么新的特征。
(二)引导学生,探究新知
①初步感知定理:这一环节我选择了教材的图片,讲述毕达哥拉斯到朋友家做客时发现用砖铺成的地面,其中含有直角三角形三边的数量关系,创设感知情境,提出问题,现在请同学观察,看看有什么发现?(学案出示)使问题更形象、具体。
②提出猜想:在活动1的基础上,学生已发现一些规律,进一步通过活动2进行看一看、填一填、想一想、议一议、做一做,让学生感受不只是等腰直角三角形才具有这样的性质,学生再由浅到深,由特殊到一般的提出问题,启发学生得出猜想,直角三角形的两直角边的平分和等于斜边的平方。
③证明猜想:是不是所有的直角三角形都有这样的特点呢?这就需要我们对一个一般的直角三角形进行证明:通过活动3我充分引导学生利用直观教具,进行拼图实验,在动手操中放手让学生思考、讨论、合作、交流、探究问题的多种方法。,并对学生的做法给予表扬,使学生在学习过程中,感受到自我创造的快乐,从而分散了教学难点,发现了利用面积相等去证明勾股定理的方法。
④总结定理:让学生自己总结,不完善之处由教师补充,在前面探究活动的基础上,学生容易得出直角三角形的三边数量关系即勾股定理。
(三)反馈训练,巩固新知
学生对所学的知识是否掌握了,达到了什么程度?为了检测学生对本课的达成情况和加强对学生能力的培养,我设计了一组坡有难度的练习题。
(四)归纳总结,深化新知
本节课你有哪些收获?你最感兴趣的地方是什么?你想进一步研究的问题是什么?……
通过小结,使学生进一步明确掌握教学目标,使知识成为体系。
(五)布置作业。拓展新知
让学生收集有关勾股定理的证明方法,下节课展示、交流。使本节知识得到拓展、延伸,培养了学生能力和思维的深刻性,让学生感受数学深厚的文化底蕴。
(六)板书设计,明确新知
勾股定理说课稿15
各位专家领导,上午好:今天我说课的课题是《勾股定理》
一、教材分析:
(一)本节内容在全书和章节的地位
这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。
(二)三维教学目标:
1.【知识与能力目标】
⒈理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;
⒉通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
2. 【过程与方法目标】
在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。
3.【情感态度与价值观】
通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
(三)教学重点、难点:
【教学重点】
勾股定理的证明与运用
【教学难点】
用面积法等方法证明勾股定理
【难点成因】
对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。
【突破措施】
⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;
⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;
⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。
二、教法与学法分析
【教法分析】
数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业”六个方面。
【学法分析】
新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。
三、教学过程设计
(一)创设情景
多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?
问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。
(二)动手操作
⒈课件出示课本P99图19.2.1:
观察图中用阴影画出的三个正方形,你从中能够得出什么结论?
学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。
⒉紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P100图19.2.2(一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能够发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。
⒊再问:当边长不为整数的直角三角形是否也存在这一结论呢?投影例题:一个边长分别为1.5,3.6,3.9这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。
(三)归纳验证
【归纳】通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,,使学生学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整堂课充分发挥学生的主体作用,真正获取知识,解决问题。
【验证】先后三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也有利于培养学生严谨、科学的学习态度。
(四)问题解决
⒈让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的快乐。
⒉自学课本P101例1,然后完成P102练习。
(五)课堂小结
1.小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。
2.教师用多媒体介绍“勾股定理史话”
①《周髀算径》:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。
②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创。
目的是对学生进行爱国主义教育,激励学生奋发向上。
(六)布置作业
课本P104习题19.2中的第1.2.3题。目的一方面是巩固“勾股定理”,另一方面是让学生进一步体会定理与实际生活的联系。
以上内容,我仅从“说教材”,“说学情”、“说教法”、“说学法”、“说教学过程”上来说明这堂课“教什么”和“怎么教”,也阐述了“为什么这样教”,希望各位专家领导对本次说课提出宝贵的意见,谢谢!
第五篇:勾股定理说课稿
探索勾股定理第一课时说课稿
一、教材分析
(一)教材地位与作用
这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标
知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题.过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想.情感态度与价值观: 激发爱国热情,体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学.(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解.二、教法与学法分析:
学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.
教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式, 选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人.三、教学过程设计
1.创设情境,提出问题 2.实验操作,模型构建 3.回归生活,应用新知 4.知识拓展,巩固深化5.感悟收获,布置作业(一)创设情境提出问题
(1)图片欣赏 勾股定理数形图 1955年希腊发行 美丽的勾股树 2002年国际数学的一枚纪念邮票 大会会标
设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值.(2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火? 设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节.二、实验操作模型构建 1.等腰直角三角形(数格子)2.一般直角三角形(割补)问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系? 设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想.问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高.通过以上实验归纳总结勾股定理.设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律.三.回归生活应用新知
让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心.四、知识拓展巩固深化 基础题,情境题,探索题.设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华.基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?
设计意图:这道题立足于双基.通过学生自己创设情境,锻炼了发散思维.
情境题:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗? 设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。
探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。
设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力.五、感悟收获布置作业: 这节课你的收获是什么? 作业:
1、课本习题2.1
2、搜集有关勾股定理证明的资料.板书设计 探索勾股定理 如果直角三角形两直角边分别为a,b,斜边为c,那么 a2+b2=c2
设计说明::1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法.
2.让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平.