专题:导数解决不等式问题
-
导数证明不等式
导数证明不等式一、当x>1时,证明不等式x>ln(x+1)f(x)=x-ln(x+1)f'(x)=1-1/(x+1)=x/(x+1)x>1,所以f'(x)>0,增函数所以x>1,f(x)>f(1)=1-ln2>0f(x)>0所以x>0时,x>ln(x+1)二、导
-
利用导数处理与不等式有关的问题
利用导数处理与不等式有关的问题关键词:导数,不等式,单调性,最值。导数是研究函数性质的一种重要工具。例如求函数的单调区间、求最大(小)值、求函数的值域等等。而在处理与不等式
-
应用导数证明不等式
应用导数证明不等式常泽武指导教师:任天胜(河西学院数学与统计学院 甘肃张掖 734000)摘要: 不等式在初等数学和高等代数中有广泛的应用,证明方法很多,本文以函数的观点来认识不等
-
利用导数证明不等式
利用导数证明不等式 例1.已知x>0,求证:x>ln(1+x) 分析:设f(x)=x-lnx。x[0,+。考虑到f(0)=0, 要证不等式变为:x>0时,f(x)>f(0), 这只要证明: f(x)在区间[0,)是增函数。 证明:令:f(x)=x
-
利用导数证明不等式
利用导数证明不等式没分都没人答埃。。觉得可以就给个好评!最基本的方法就是将不等式的的一边移到另一边,然后将这个式子令为一个函数f(x).对这个函数求导,判断这个函数这各个
-
高中数学构造函数解决导数问题专题复习
高中数学构造函数解决导数问题专题复习【知识框架】【考点分类】考点一、直接作差构造函数证明;两个函数,一个变量,直接构造函数求最值;【例1-1】(14顺义一模理18)已知函数(Ⅰ)当时,
-
导数与数列不等式的综合证明问题
导数与数列不等式的综合证明问题 典例:(2017全国卷3,21)已知函数fxx1alnx 。 (1)若fx0 ,求a的值; (2)设m为整数,且对于任意正整数n1111 11m ,求m的最小值。2n222分析:(1)由原函数与导函
-
一题多解专题三:利用导数证明不等式问题
一题多解专题三:利用导数证明不等式问题1.构造函数证明不等式的方法(1)对于(或可化为)左右两边结构相同的不等式,构造函数f(x),使原不等式成为形如f(a)>f(b)的形式.(2)对形如
-
函数导数不等式测试题五篇
昌乐二中 高三 数学自主检测题函数、导数、不等式综合检测题2009.03.20注意事项:1.本试题满分150分,考试时间为120分钟.2.使用答题卡时,必须使用0.5毫米的黑色墨水签字笔书写,作图
-
谈利用导数证明不等式.
谈利用导数证明不等式 数学组邹黎华 在高考试题中,不等式的证明往往与函数、导数、数列的内容综合,属于在知识网络的交汇处设计的试题,有一定的综合性和难度,突出体现对理性思维
-
导数证明不等式的几个方法
导数证明不等式的几个方法 1、直接利用题目所给函数证明(高考大题一般没有这么直接) 已知函数f(x)ln(x1)x,求证:当x1时,恒有 11ln(x1)x x1 如果f(a)是函数f(x)在区间上的最大(小)值
-
2014-2-30导数证明不等式答案
1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。2、解题技巧是构造辅助函数,把不等式的证明转化
-
利用导数证明不等式(全文5篇)
克维教育(82974566)中考、高考培训专家铸就孩子辉煌的未来函数与导数(三)核心考点五、利用导数证明不等式一、函数类不等式证明函数类不等式证明的通法可概括为:证明不等式f(x)g(
-
一题多解之利用导数证明不等式问题[大全五篇]
一题多解之利用导数证明不等式问题 构造函数证明不等式的方法: 对于(或可化为)左右两边结构相同的不等式,构造函数f(x),使原不等式成为形如 f(a)>f(b)的形式. 对形如f
-
利用导数解决生活中的优化问题
利用导数解决生活中的优化问题
本节是用导数的知识解决实际生活中的一些问题,这些问题运用导数的知识解决非常方便.例如,在生活、生产和科研中经常遇到的成本最低、用料最省、 -
导数在不等式中的应用范文合集
指导教师:杨晓静
摘要:本文探讨了利用拉格朗日中值定理,函数的单调性,极值,幂级数展开式,凹凸性等进行不等式证明的具体方法,给出了各种方法的适用范围和证明步骤,总结了应用各种方 -
构造函数,结合导数证明不等式
构造函数,结合导数证明不等式 摘 要:运用导数法证明不等式首先要构建函数,以函数作为载体可以用移项作差,直接构造;合理变形,等价构造;分析(条件)结论,特征构造;定主略从,减元构造;挖掘
-
第五讲 利用导数证明不等式
利用导数证明不等式的两种通法 利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。下面就有关的两种通法