排序算法的算法思想和使用场景总结(共5篇)

时间:2022-07-22 04:42:29下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《排序算法的算法思想和使用场景总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《排序算法的算法思想和使用场景总结》。

第一篇:排序算法的算法思想和使用场景总结

排序算法的算法思想和使用场景总结

总结就是把一个时间段取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结的书面材料,它可以帮助我们有寻找学习和工作中的规律,快快来写一份总结吧。那么如何把总结写出新花样呢?下面是小编收集整理的排序算法的算法思想和使用场景总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

1.概述

排序算法是计算机技术中最基本的算法,许多复杂算法都会用到排序。尽管各种排序算法都已被封装成库函数供程序员使用,但了解排序算法的思想和原理,对于编写高质量的软件,显得非常重要。

本文介绍了常见的排序算法,从算法思想,复杂度和使用场景等方面做了总结。

2.几个概念

(1)排序稳定:如果两个数相同,对他们进行的排序结果为他们的相对顺序不变。例如A={1,2,1,2,1}这里排序之后是A = {1,1,1,2,2}稳定就是排序后第一个1就是排序前的第一个1,第二个1就是排序前第二个1,第三个1就是排序前的第三个1。同理2也是一样。不稳定就是他们的顺序与开始顺序不一致。

(2)原地排序:指不申请多余的空间进行的排序,就是在原来的排序数据中比较和交换的排序。例如快速排序,堆排序等都是原地排序,合并排序,计数排序等不是原地排序。

总体上说,排序算法有两种设计思路,一种是基于比较,另一种不是基于比较。《算法导论》一书给出了这样一个证明:“基于比较的算法的最优时间复杂度是O(N lg N)”。对于基于比较的算法,有三种设计思路,分别为:插入排序,交换排序和选择排序。非基于比较的`排序算法时间复杂度为O(lg N),之所以复杂度如此低,是因为它们一般对排序数据有特殊要求。如计数排序要求数据范围不会太大,基数排序要求数据可以分解成多个属性等。

3.基于比较的排序算法

正如前一节介绍的,基于比较的排序算法有三种设计思路,分别为插入,交换和选择。对于插入排序,主要有直接插入排序,希尔排序;对于交换排序,主要有冒泡排序,快速排序;对于选择排序,主要有简单选择排序,堆排序;其它排序:归并排序。

3.1插入排序

(1)直接插入排序

特点:稳定排序,原地排序,时间复杂度O(N*N)

思想:将所有待排序数据分成两个序列,一个是有序序列S,另一个是待排序序列U,初始时,S为空,U为所有数据组成的数列,然后依次将U中的数据插到有序序列S中,直到U变为空。

适用场景:当数据已经基本有序时,采用插入排序可以明显减少数据交换和数据移动次数,进而提升排序效率。

(2)希尔排序

特点:非稳定排序,原地排序,时间复杂度O(n^lamda)(1 < lamda < 2), lamda和每次步长选择有关。

思想:增量缩小排序。先将序列按增量划分为元素个数近似的若干组,使用直接插入排序法对每组进行排序,然后不断缩小增量直至为1,最后使用直接插入排序完成排序。

适用场景:因为增量初始值不容易选择,所以该算法不常用。

3.2交换排序

(1)冒泡排序

特点:稳定排序,原地排序,时间复杂度O(N*N)

思想:将整个序列分为无序和有序两个子序列,不断通过交换较大元素至无序子序列首完成排序。

适用场景:同直接插入排序类似

(2)快速排序

特点:不稳定排序,原地排序,时间复杂度O(N*lg N)

思想:不断寻找一个序列的枢轴点,然后分别把小于和大于枢轴点的数据移到枢轴点两边,然后在两边数列中继续这样的操作,直至全部序列排序完成。

适用场景:应用很广泛,差不多各种语言均提供了快排API

3.3选择排序

(1)简单选择排序

特点:不稳定排序(比如对3 3 2三个数进行排序,第一个3会与2交换),原地排序,时间复杂度O(N*N)

思想:将序列划分为无序和有序两个子序列,寻找无序序列中的最小(大)值和无序序列的首元素交换,有序区扩大一个,循环下去,最终完成全部排序。

适用场景:交换少

(2)堆排序

特点:非稳定排序,原地排序,时间复杂度O(N*lg N)

思想:小顶堆或者大顶堆

适用场景:不如快排广泛

3.4其它排序

(1)归并排序

特点:稳定排序,非原地排序,时间复杂度O(N*N)

思想:首先,将整个序列(共N个元素)看成N个有序子序列,然后依次合并相邻的两个子序列,这样一直下去,直至变成一个整体有序的序列。

适用场景:外部排序

4.非基于比较的排序算法

非基于比较的排序算法主要有三种,分别为:基数排序,桶排序和计数排序。这些算法均是针对特殊数据的,不如要求数据分布均匀,数据偏差不会太大。采用的思想均是内存换时间,因而全是非原地排序。

4.1基数排序

特点:稳定排序,非原地排序,时间复杂度O(N)

思想:把每个数据看成d个属性组成,依次按照d个属性对数据排序(每轮排序可采用计数排序),复杂度为O(d*N)

适用场景:数据明显有几个关键字或者几个属性组成4.2桶排序

特点:稳定排序,非原地排序,时间复杂度O(N)

思想:将数据按大小分到若干个桶(比如链表)里面,每个桶内部采用简单排序算法进行排序。

适用场景:0

4.3计数排序

特点:稳定排序,非原地排序,时间复杂度O(N)

思想:对每个数据出现次数进行技术(用hash方法计数,最简单的hash是数组!),然后从大到小或者从小到大输出每个数据。

使用场景:比基数排序和桶排序广泛得多。

5.总结

对于基于比较的排序算法,大部分简单排序(直接插入排序,选择排序和冒泡排序)都是稳定排序,选择排序除外;大部分高级排序(除简单排序以外的)都是不稳定排序,归并排序除外,但归并排序需要额外的存储空间。对于非基于比较的排序算法,它们都对数据规律有特殊要求,且采用了内存换时间的思想。排序算法如此之多,往往需要根据实际应用选择最适合的排序算法。

第二篇:排序算法总结

排序算法总结

所谓排序,就是要整理文件中的记录,使之按关键字递增(或递减)次序排列起来。当待排序记录的关键字都不相同时,排序结果是惟一的,否则排序结果不惟一。

在待排序的文件中,若存在多个关键字相同的记录,经过排序后这些具有相同关键字的记录之间的相对次序保持不变,该排序方法是稳定的;若具有相同关键字的记录之间的相对次序发生改变,则称这种排序方法是不稳定的。

要注意的是,排序算法的稳定性是针对所有输入实例而言的。即在所有可能的输入实例中,只要有一个实例使得算法不满足稳定性要求,则该排序算法就是不稳定的。

一.插入排序

插入排序的基本思想是每步将一个待排序的记录按其排序码值的大小,插到前面已经排好的文件中的适当位置,直到全部插入完为止。插入排序方法主要有直接插入排序和希尔排序。

①.直接插入排序(稳定)接插入排序的过程为:在插入第i个记录时,R1,R2,..Ri-1已经排好序,将第i个记录的排序码Ki依次和R1,R2,..,Ri-1的排序码逐个进行比较,找到适当的位置。使用直接插入排序,对于具有n个记录的文件,要进行n-1趟排序。

代码如下:

void Dir_Insert(int A[],int N)//直接插入排序 { int j,t;for(int i=1;it){ A[j+1]=A[j];j--;} A[j+1]=t;} } ②.希尔排序(不稳定):

希尔(Shell)排序的基本思想是:先取一个小于n的整数d1作为第一个增量把文件的全部记录分成d1个组。所有距离为d1的倍数的记录放在同一个组中。先在各组内进行直接插入排序;然后,取得第二个增量d2

一般取d1=n/2,di+1=di/2。如果结果为偶数,则加1,保证di为奇数。

希尔排序是不稳定的,希尔排序的执行时间依赖于增量序列,其平均时间复杂度为O(n^1.3).代码如下:

void Shell(int A[],int n)//Shell排序 { int i,j,k,t;(n/2)%2 == 0 ? k = n/2+1 : k = n/2;//保证增量为奇数

while(k > 0){ for(j=k;j=0 && A[i]>t){ A[i+k]=A[i];i=i-k;} A[i+k]=t;} if(k == 1)break;(k/2)%2 ==0 ? k=k/2+1 : k=k/2;} }

二.选择排序

选择排序的基本思想是每步从待排序的记录中选出排序码最小的记录,顺序存放在已排序的记录序列的后面,直到全部排完。选择排序中主要使用直接选择排序和堆排 序。

①.直接选择排序(不稳定)

直接选择排序的过程是:首先在所有记录中选出序码最小的记录,把它与第1个记录交换,然后在其余的记录内选出排序码最小的记录,与第2个记录交换......依次类推,直到所有记录排完为止。

无论文件初始状态如何,在第i趟排序中选出最小关键字的记录,需要做n-i次比较,因此,总的比较次数为n(n-1)/2=O(n^2)。当初始文件为正序时,移动次数为0;文件初态为反序时,每趟排序均要执行交换操作,总的移动次数取最大值3(n-1)。直接选择排序的平均时间复杂度为O(n^2)。直接选择排序是不稳定的。

代码如下:

void Dir_Choose(int A[],int n)//直接选择排序 { int k,t;for(int i=0;i

②.堆排序(不稳定)

堆排序是一种树形选择排序,是对直接选择排序的有效改进。n个关键字序列 K1,K2,...,Kn称为堆,当且仅当该序列满足(Ki<=K2i且Ki<=K2i+1)或(Ki>=K2i且Ki>=K2i+1),(1<=i<=n/2)。根结点(堆顶)的关键字是堆里所有结点关键字中最小者,称为小根堆;根结点的关键字是堆里所有结点关键字中最大者,称为大根堆。若将此序列所存储的向量R[1..n]看作是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。

堆排序的关键步骤有两个:一是如何建立初始堆;二是当堆的根结点与堆的最后一个结点交换后,如何对少了一个结点后的结点序列做调整,使之重新成为堆。堆排序的最坏时间复杂度为O(nlog2n),堆排序的平均性能较接近于最坏性能。由于建初始堆所需的比较 次数较多,所以堆排序不适宜于记录较少的文件。堆排序是就地排序,辅助空间为O(1),它是不稳定的排序方法。

代码略..三.交换排序

交换排序的基本思想是:两两比较待排序记录的排序码,并交换不满足顺序要求的那写偶对,直到满足条件为止。交换排序的主要方法有冒泡排序和快速排序.①.冒泡排序(稳定的)

冒泡排序将被排序的记录数组R[1..n]垂直排列,每个记录R[i]看作是重量为ki的气泡。根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R;凡扫描到违反本原则的轻气泡,就使其向上“漂浮”。如此反复进行,直到最后任何两个气泡都是轻者在上,重者在下为止。

冒泡排序的具体过程如下:

第一步,先比较k1和k2,若k1>k2,则交换k1和k2所在的记录,否则不交换。继续对k2和k3重复上述过程,直到处理完kn-1和kn。这时最大的排序码记录转到了最后位置,称第1次起泡,共执行n-1次比较。

与第一步类似,从k1和k2开始比较,到kn-2和kn-1为止,共执行n-2次比较。

依次类推,共做n-1次起泡,完成整个排序过程。

若文件的初始状态是正序的,一趟扫描即可完成排序。所需关键字比较次数为n-1次,记录移动次数为0。因此,冒泡排序最好的时间复杂度为O(n)。

若初始文件是反序的,需要进行n-1趟排序。每趟排序要进行n-i次关键字的比较(1<=i<=n-1),且每次比较都必须移动记录三次来达到交换记录位置。在这种情况下,比较次数达到最大值n(n-1)/2=O(n^2),移动次数也达到最大值3n(n-1)/2=O(n^2)。因此,冒泡排序的最坏时间复杂度为O(n^2)。

虽然冒泡排序不一定要进行n-1趟,但由于它的记录移动次数较多,故平均性能比直接插入排序要差得多。冒泡排序是就地排序,且它是稳定的。

代码如下: void QP(int A[],int n)//优化的冒泡排序

{ int count=0,t,flag;for(int i=0;i

②.快速排序:(不稳定的)

快速排序采用了一种分治的策略,通常称其为分治法,其基本思想是:将原问题分解为若干个规模更小但结构与原问题相似的子问题。递归地解这些子问题,然后将这些子问题的解组合为原问题的解。

快速排序的具体过程如下:

第一步,在待排序的n个记录中任取一个记录,以该记录的排序码为准,将所有记录分成两组,第1组各记录的排序码都小于等于该排序码,第2组各记录的排序码都大于该排序码,并把该记录排在这两组中间。

第二步,采用同样的方法,对左边的组和右边的组进行排序,直到所有记录都排到相应的位置为止。

代码如下:

void Quick_Sort(int A[],int low,int high)//low和high是数组的下标 { if(low=t)h--;if(h>l){ temp=A[l];A[l]=A[h];A[h]=temp;} } Quick_Sort(A,low,l-1);Quick_Sort(A,l+1,high);} }

四.归并排序

归并排序是将两个或两个以上的有序子表合并成一个新的有序表。初始时,把含有n个结点的待排序序列看作由n个长度都为1的有序子表组成,将它们依次两两归并得到长度为2的若干有序子表,再对它们两两合并。直到得到长度为n的有序表,排序结束。

归并排序是一种稳定的排序,可用顺序存储结构,也易于在链表上实现,对长度为n的文件,需进行log2n趟二路归并,每趟归并的时间为O(n),故其时间复杂度无论是在最好情况下还是在最坏情况下均是O(nlog2n)。归并排序需要一个辅助向量来暂存两个有序子文件归并的结果,故其辅助空间复杂度为O(n),显然它不是就地排序。

代码略...五.基数排序

设单关键字的每个分量的取值范围均是C0<=Kj<=Crd-1(0<=j<=rd),可能的取值个数rd称为基数.基数的选择和关键字的分解因关键字的类型而异.

(1).若关键字是十进制整数,则按个、十等位进行分解,基数rd=10,C0=0,C9=9,d为最长整数的位数.

(2).若关键字是小写的英文字符串,则rd=26,C0='a',C25='z',d为最长字符串的长度.

基数排序的基本思想是:从低位到高位依次对待排序的关键码进行分配和收集,经过d趟分配和收集,就可以得到一个有序序列.

按平均时间将排序分为四类:

(1)平方阶(O(n2))排序

一般称为简单排序,例如直接插入、直接选择和冒泡排序;

(2)线性对数阶(O(nlgn))排序

如快速、堆和归并排序;

(3)O(n1+£)阶排序

£是介于0和1之间的常数,即0<£<1,如希尔排序;

(4)线性阶(O(n))排序

如基数排序。

各种排序方法比较

简单排序中直接插入最好,快速排序最快,当文件为正序时,直接插入和冒泡均最佳。

影响排序效果的因素

因为不同的排序方法适应不同的应用环境和要求,所以选择合适的排序方法应综合考虑下列因素:

①待排序的记录数目n;

②记录的大小(规模);

③关键字的结构及其初始状态;

④对稳定性的要求;

⑤语言工具的条件;

⑥存储结构;

⑦时间和辅助空间复杂度等。

不同条件下,排序方法的选择

(1)若n较小(如n≤50),可采用直接插入或直接选择排序。

当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。

(2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜;(3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或 归并排序。

快速排序是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短;

堆排序所需的辅助空间少于快速排序,并且不会出现快速排序可能出现的最坏情况。这两种排序都是不稳定的。

若要求排序稳定,则可选用归并排序。但从单个记录起进行两两归并的 排序算法并不值得提倡,通常可以将它和直接插入排序结合在一起使用。先利用直接插入排序求得较长的有序子文件,然后再两两归并之。因为直接插入排序是稳定的,所以改进后的归并排序仍是稳定的。

第三篇:51CTO下载-排序和算法总结

事先声明,此文档来自某技术论坛,内容归原作者所有。

1.基本思想:

每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。2.排序过程: 【示例】:

初始关键字 [49 38 65 97 76 13 27 49] 第一趟排序后 13 [38 65 97 76 49 27 49] 第二趟排序后 13 27 [65 97 76 49 38 49] 第三趟排序后 13 27 38 [97 76 49 65 49] 第四趟排序后 13 27 38 49 [49 97 65 76] 第五趟排序后 13 27 38 49 49 [97 97 76] 第六趟排序后 13 27 38 49 49 76 [76 97] 第七趟排序后 13 27 38 49 49 76 76 [ 97] 最后排序结果 13 27 38 49 49 76 76 97 3.void selectionSort(Type* arr,long len){ long i=0,j=0;/*iterator value*/ long maxPos;assertF(arr!=NULL,“In InsertSort sort,arr is NULLn”);for(i=len-1;i>=1;i--){ maxPos=i;for(j=0;j

插入排序(Insertion Sort)的基本思想是:每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子文件中的适当位置,直到全部记录插入完成为止。直接插入排序

直接插入排序(Straight Insertion Sort):将一个记录插入到排好序的有序表中,从而得到一个新的、记录数增1的有序表。直接插入排序算法

哨兵(监视哨)有两个作用:一是作为临变量存放R[i](当前要进行比较的关键字)的副本;二是在查找循环中用来监视下标变量j是否越界。

当文件的初始状态不同时,直接插入排序所耗费的时间是有很大差异的。最好情况是文件初态为正序,此时算法的时间复杂度为O(n),最坏情况是文件初态为反序,相应的时间复杂度为O(n2),算法的平均时间复杂度是O(n2)。算法的辅助空间复杂度是O(1),是一个就地排序。

直接插入排序是稳定的排序方法。三.冒泡排序

[算法思想]:将被排序的记录数组R[1..n]垂直排列,每个记录R[i]看作是重量为R[i].key的气泡。根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R:凡扫描到违反本原则的轻气泡,就使其向上“飘浮”。如此反

复进行,直到最后任何两个气泡都是轻者在上,重者在下为止。

[算法]:

void BubbleSort(SeqList R){ //R(l..n)是待排序的文件,采用自下向上扫描,对R做冒泡排序 int i,j;

Boolean exchange; //交换标志

for(i=1;i

exchange=FALSE; //本趟排序开始前,交换标志应为假

for(j=n-1;j>=i;j--)//对当前无序区R[i..n]自下向上扫描 if(R[j+1].key

R[0]=R[j+1]; //R[0]不是哨兵,仅做暂存单元 R[j+1]=R[j]; R[j]=R[0];

exchange=TRUE; //发生了交换,故将交换标志置为真 } if(!exchange)return;//本趟排序未发生交换,提前终止算法 } //endfor(外循环)} //BubbleSort [分析]:起泡排序的结束条件为:最后一趟没有进行“交换”。从起泡排序的过程可见,起泡排序是一个增加有序序列长度的过程,也是一个缩小无序序列长度的过程,每经过一趟起泡,无序序列的长度只缩小1。[算法思想]:将被排序的记录数组R[1..n]垂直排列,每个记录R[i]看作是重量为R[i].key的气泡。根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R:凡扫描到违反本原则的轻气泡,就使其向上“飘浮”。如此反复进行,直到最后任何两个气泡都是轻者在上,重者在下为止。

[算法]:

void BubbleSort(SeqList R){ //R(l..n)是待排序的文件,采用自下向上扫描,对R做冒泡排序 int i,j;

Boolean exchange; //交换标志

for(i=1;i

exchange=FALSE; //本趟排序开始前,交换标志应为假

for(j=n-1;j>=i;j--)//对当前无序区R[i..n]自下向上扫描 if(R[j+1].key

R[0]=R[j+1]; //R[0]不是哨兵,仅做暂存单元 R[j+1]=R[j]; R[j]=R[0];

exchange=TRUE; //发生了交换,故将交换标志置为真 } if(!exchange)return;//本趟排序未发生交换,提前终止算法 } //endfor(外循环)} //BubbleSort [分析]:起泡排序的结束条件为:最后一趟没有进行“交换”。从起泡排序的过程可见,起泡排序是一个增加有序序列长度的过程,也是一个缩小无序序列长度的过程,每经过一趟起泡,无序序列的长度只缩小1。四.希尔排序 基本思想:

先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组。所有距离为d

l的倍数的记录放在同一个组中。先在各组内进行直接插人排序;然后,取第二个增量d2

该方法实质上是一种分组插入方法。给定实例的shell排序的排序过程

假设待排序文件有10个记录,其关键字分别是: 49,38,65,97,76,13,27,49,55,04。

增量序列的取值依次为: 5,3,1 Shell排序的算法实现

1. 不设监视哨的算法描述

void ShellPass(SeqList R,int d){//希尔排序中的一趟排序,d为当前增量 for(i=d+1;i<=n;i++)//将R[d+1..n]分别插入各组当前的有序区 if(R[i].key

R[j+d];=R[j]; //后移记录 j=j-d; //查找前一记录

}while(j>0&&R[0].key

R[j+d]=R[0]; //插入R[i]到正确的位置上 } //endif } //ShellPass void ShellSort(SeqList R){ int increment=n; //增量初值,不妨设n>0 do { increment=increment/3+1; //求下一增量

ShellPass(R,increment); //一趟增量为increment的Shell插入排序 }while(increment>1)} //ShellSort 注意:

当增量d=1时,ShellPass和InsertSort基本一致,只是由于没有哨兵而在内循环中增加了一个循环判定条件“j>0”,以防下标越界。2.设监视哨的shell排序算法 算法分析

1.增量序列的选择

Shell排序的执行时间依赖于增量序列。

好的增量序列的共同特征:

① 最后一个增量必须为1;

② 应该尽量避免序列中的值(尤其是相邻的值)互为倍数的情况。

有人通过大量的实验,给出了目前较好的结果:当n较大时,比较和移动的次数约在nl.25到1.6n1.25之间。

2.Shell排序的时间性能优于直接插入排序

希尔排序的时间性能优于直接插入排序的原因:

①当文件初态基本有序时直接插入排序所需的比较和移动次数均较少。

②当n值较小时,n和n2的差别也较小,即直接插入排序的最好时间复杂度O(n)和最坏时间复杂度0(n2)差别不大。

③在希尔排序开始时增量较大,分组较多,每组的记录数目少,故各组内直接插入较快,后来增量di逐渐缩小,分组数逐渐减少,而各组的记录数目逐渐增多,但由于已经按di-1作为距离排过序,使文件较接近于有序状态,所以新的一趟排序过程也较快。

因此,希尔排序在效率上较直接插人排序有较大的改进。3.稳定性 希尔

排序是不稳定的。参见上述实例,该例中两个相同关键字49在排序前后的相对次序发生了变化。五.堆排序

1、堆排序定义

n个关键字序列Kl,K2,„,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质):

(1)ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤)

若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。

【例】关键字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分别满足堆性质(1)和(2),故它们均是堆,其对应的完全二叉树分别如小根堆示例和大根堆示例所示。

2、大根堆和小根堆

根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为小根堆。

根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,称为大根堆。注意:

①堆中任一子树亦是堆。

②以上讨论的堆实际上是二叉堆(Binary Heap),类似地可定义k叉堆。

3、堆排序特点

堆排序(HeapSort)是一树形选择排序。

堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系【参见二叉树的顺序存储结构】,在当前无序区中选择关键字最大(或最小)的记录。

4、堆排序与直接插入排序的区别

直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。

堆排序可通过树形结构保存部分比较结果,可减少比较次数。

5、堆排序

堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。(1)用大根堆排序的基本思想

① 先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区

② 再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key ③ 由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。然后再次将R[1..n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有

序区R[n-1..n],且仍满足关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。

„„

直到无序区只有一个元素为止。(2)大根堆排序算法的基本操作: ① 初始化操作:将R[1..n]构造为初始堆;

② 每一趟排序的基本操作:将当前无序区的堆顶记录R[1]和该区间的最后一个记录交换,然后将新的无序区调整为堆(亦称重建堆)。注意:

①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。

②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。堆排序和直接选择排序相反:在任何时刻,堆排序中无序区总是在有序区之前,且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止。(3)堆排序的算法:

void HeapSort(SeqIAst R){ //对R[1..n]进行堆排序,不妨用R[0]做暂存单元 int i;

BuildHeap(R); //将R[1-n]建成初始堆

for(i=n;i>1;i--){ //对当前无序区R[1..i]进行堆排序,共做n-1趟。R[0]=R[1];R[1]=R[i];R[i]=R[0]; //将堆顶和堆中最后一个记录交换

Heapify(R,1,i-1); //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质 } //endfor } //HeapSort(4)BuildHeap和Heapify函数的实现

因为构造初始堆必须使用到调整堆的操作,先讨论Heapify的实现。① Heapify函数思想方法

每趟排序开始前R[l..i]是以R[1]为根的堆,在R[1]与R[i]交换后,新的无序区R[1..i-1]中只有R[1]的值发生了变化,故除R[1]可能违反堆性质外,其余任何结点为根的子树均是堆。因此,当被调整区间是R[low..high]时,只须调整以R[low]为根的树即可。“筛选法”调整堆

R[low]的左、右子树(若存在)均已是堆,这两棵子树的根R[2low]和R[2low+1]分别是各自子树中关键字最大的结点。若R[low].key不小于这两个孩子结点的关键字,则R[low]未违反堆性质,以R[low]为根的树已是堆,无须调整;否则必须将R[low]和它的两个孩子结点中关键字较大者进行交换,即R[low]与R[large](R[large].key=max(R[2low].key,R[2low+1].key))交换。交换后又可能使结点R[large]违反堆性质,同样由于该结点的两棵子树(若存在)仍然是堆,故可重复上述的调整过程,对以R[large]为根的树进行调整。此过程直至当前被调整的结点已满足堆性质,或者该结点已是叶子为止。上述过程就象过筛子一样,把较小的关键字逐层筛下去,而将较大的关键字逐层选上来。因此,有人将此方法称为“筛选法”。

②BuildHeap的实现

要将初始文件R[l..n]调整为一个大根堆,就必须将它所对应的完全二叉树中以每一结点为根的子树都调整为堆。

显然只有一个结点的 树是堆,而在完全二叉树中,所有序号 的结点都是叶子,因此以这些结点为根的子树均已是堆。这样,我们只需依次将以序号为,-1,„,1的结点作为根的子树都调整为堆即可。

具体算法【参见教材】。

5、大根堆排序实例

对于关键字序列(42,13,24,91,23,16,05,88),在建堆过程中完全二叉树及其存储结构的变化情况参见。

6、算法分析

堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。

堆排序的最坏时间复杂度为O(nlgn)。堆排序的平均性能较接近于最坏性能。

由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。

堆排序是就地排序,辅助空间为O(1),它是不稳定的排序方法。六.快速排序

快速排序的基本思路是:首先我们选择一个中间值middle(程序中我们可使用数组中间值),把比中间值小的放在其左边,比中间值大的放在其右边。由于这个排序算法较复杂,我们先给出其进行一次排序的程序框架(从各类数据结构教材中可得): void QuickSort(int *pData, int left, int right){ int i, j;int middle, iTemp;i = left;j = right;middle = pData[(left + right)/ 2];//求中间值

do {

while((pData[i] < middle)&&(i < right))//从左扫描大于中值的数

i++;

while((pData[j] > middle)&&(j > left))//从右扫描小于中值的数

j--;

if(i <= j)//找到了一对值

{

//交换

iTemp = pData[i];

pData[i] = pData[j];

pData[j] = iTemp;

i++;

j--;

} } while(i <= j);//如果两边扫描的下标交错,就停止(完成一次)

//当左边部分有值(left

if(left

QuickSort(pData,left,j);

//当右边部分有值(right>i),递归右半边

if(right>i)

QuickSort(pData,i,right);} 对于n个成员,快速排序法的比较次数大约为n*logn 次,交换次数大约为(n*logn)/6次。如果n为100,冒泡法需要进行4950 次比较,而快速排序法仅需要200 次,快速排序法的效率的确很高。快速排序法的性能与中间值的选定关系密切,如果每一次选择的中间值都是最大值(或最小值),该算法的速度就会大大下降。快速排序算法最坏情况下的时间复杂度为O(n2),而平均时间复杂度为O(n*logn)。七.合并排序 說明

之前所介紹的排序法都是在同一個陣列中的排序,考慮今日有兩筆或兩筆以上的資料,它可能是不同陣列中的資料,或是不同檔案中的資料,如何為它們進行排序? 解法

可以使用合併排序法,合併排序法基本是將兩筆已排序的資料合併並進行排序,如果所讀入的資料尚未排序,可以先利用其它的排序方式來處理這兩筆資料,然後再將排序好的這兩筆資料合併。

有人問道,如果兩筆資料本身就無排序順序,何不將所有的資料讀入,再一次進行排序?排序的精神是儘量利用資料已排序的部份,來加快排序的效率,小筆資料的排序較為快速,如果小筆資料排序完成之後,再合併處理時,因為兩筆資料都有排序了,所有在合併排序時會比單純讀入所有的資料再一次排序來的有效率。那麼可不可以直接使用合併排序法本身來處理整個排序的動作?而不動用到其它的排序方式?答案是肯定的,只要將所有的數字不斷的分為兩個等分,直到最後剩一個數字為止,然後再反過來不斷的合併,就如下圖所示:

不過基本上分割又會花去額外的時間,不如使用其它較好的排序法來排序小筆資料,再使用合併排序來的有效率。

下面這個程式範例,我們使用快速排序法來處理小筆資料排序,然後再使用合併排序法處理合併的動作。例子

C

#include #include #include #define MAX1 10 #define MAX2 10 #define SWAP(x,y){int t;t = x;x = y;y = t;} int partition(int[], int, int);void quicksort(int[], int, int);void mergesort(int[], int, int[], int, int[]);int main(void){ int number1[MAX1] = {0};int number2[MAX1] = {0};int number3[MAX1+MAX2] = {0};int i, num;srand(time(NULL));printf(“排序前:”);printf(“nnumber1[]:”);for(i = 0;i < MAX1;i++){ number1[i] = rand()% 100;printf(“%d ”, number1[i]);} printf(“nnumber2[]:”);for(i = 0;i < MAX2;i++){ number2[i] = rand()% 100;printf(“%d ”, number2[i]);} // 先排序兩筆資料

quicksort(number1, 0, MAX1-1);quicksort(number2, 0, MAX2-1);printf(“n排序後:”);printf(“nnumber1[]:”);for(i = 0;i < MAX1;i++)printf(“%d ”, number1[i]);printf(“nnumber2[]:”);for(i = 0;i < MAX2;i++)printf(“%d ”, number2[i]);// 合併排序

mergesort(number1, MAX1, number2, MAX2, number3);printf(“n合併後:”);for(i = 0;i < MAX1+MAX2;i++)printf(“%d ”, number3[i]);printf(“n”);return 0;} int partition(int number[], int left, int right){ int i, j, s;s = number[right];i = left-1;for(j = left;j < right;j++){ if(number[j] <= s){ i++;SWAP(number[i], number[j]);} } SWAP(number[i+1], number[right]);return i+1;} void quicksort(int number[], int left, int right){ int q;if(left < right){ q = partition(number, left, right);quicksort(number, left, q-1);quicksort(number, q+1, right);} } void mergesort(int number1[], int M, int number2[], int N, int number3[]){ int i

=

0, j = 0, k = 0;while(i < M && j < N){ if(number1[i] <= number2[j])number3[k++] = number1[i++];else number3[k++] = number2[j++];} while(i < M)number3[k++] = number1[i++];while(j < N)number3[k++] = number2[j++];} Java

public class MergeSort { public static int[] sort(int[] number1, int[] number2){ int[] number3 = new int[number1.length + number2.length];int i = 0, j = 0, k = 0;while(i < number1.length && j < number2.length){ if(number1[i] <= number2[j])number3[k++] = number1[i++];else number3[k++] = number2[j++];} while(i < number1.length)number3[k++] = number1[i++];while(j < number2.length)number3[k++] = number2[j++];return number3;} } 八。基数排序

基数排序是根据组成关键字的各位值,用“分配”和“收集”的方法进行排序。例如,把扑克牌的排序看成由花色和面值两个数据项组成的主关键字排序。

花色:梅花<方块<红心<黑桃

面值:2<3<4<...<10

若要将一副扑克牌排成下列次序:

梅花2,...,梅花A,方块2,...,方块A,红心2,...,红心A,黑桃2,...,黑桃A。

有两种排序方法:

一、先按花色分成四堆,把各堆收集起来;然后对每堆按面值由小到大排列,再按花色从小到大按堆收叠起来。----称为“最高位优先”(MSD)法。

二、先按面值由小到大排列成13堆,然后从小到大收集起来;再按花色不同分成四堆,最后顺序收集起来。----称为“最低位优先”(LSD)法。

[例] 设记录键值序列为{88,71,60,31,87,35,56,18},用基数排序(LSD)。如图所示:其中f[i]、e[i]为按位分配面值为i的队列的队头和队尾指针。

#define D 3 typedef struct { int key;float data;int link;} JD

key data link int jspx(JD r[],int n){ /*链式存储表示的基数排序*/ int i,j,k,t,p,rd,rg,f[10],e[10];/*p为r[]的下标,rd,rg为比例因子,f[j],e[j]是代码为j的队的首尾指针*/ for(i=1;i0);j=0;/*按位收集--调整分配后的链接*/ while(f[j]==0)j=j+1;p=f[j];t=e[j];for(k=j+1;k<10;k++)if(f[k]>0){ r[t].link=f[k];t=e[k];}/*调整链接*/ r[t].link=0;/*链尾为0*/ rg=rg*10;rd=rd*10;/*提高一位*/ } return(p);/*返回有序链表的首地址*/ 九 枚举排序

将每个记录项与其他诸项比较计算出小于该项的记录个数,以确定该项的位置。

第四篇:排序算法教学反思

《选择排序》教学心得

教学内容:

选择排序的算法思想 选择排序的实现过程 选择排序的编码实现

总结和思考:大数据背景下的排序

排序(Sort)是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列,重新排列成一个关键字有序的序列。排序方法分为两大类:一类是内排序:冒泡排序、选择排序、插入排序、希尔排序、交换排序、快速排序等;另一类是外排序。

从教学理念上看,本节课利用维果斯基的“最近发展区理论”,把学生的现有水平和兴趣点,结合教学的目标,形成最近发展区。教学着眼于学生的最近发展区,提供带有难度的内容,调动学生的积极性,发挥其潜能,超越其最近发展区而达到下一发展阶段的水平,然后在此基础上进行下一个发展区的发展。

从教学方法来看,主要使用案例分析法、讲授法等,从分析当前流行的冒泡排序算法的案例开始,由浅入深的介绍选择排序的基本概念,算法思想以及编码过程。

从教学过程来看,首先从回顾冒泡排序的内容导入,在改进冒泡排序的过程中,提出选择排序的概念和思想。用直观的动画方式展现选择排序思想和过程,总结分析出关键代码,引导学生写出完整代码,最后分析选择排序的关键点,并提出思考,大数据背景下的排序改进方法。

在整个过程中一直都力求让学生在已知的知识结构中推导、归纳出需要掌握的知识点。但是上完课程后感觉案例还不够多,相对于非计算机的学生来说,算法的分析比编码的过程更加重要。所以学生感到有些难,本来已经调动起来的积极性没能保持到整节课。非计算机专业的学生思考计算机问题深度不够,在以后的备课中要更多的挖掘教学案例的广度和深度,给他们更多的思维训练。

第五篇:《算法导论》学习总结——快速排序

《算法导论》学习总结——快速排序

曾经在程序员杂志上看到快速排序的作者,Hoare,曾经的图灵奖获得者啊,牛光闪闪的。不过当时,对快速排序什么的,印象不算深刻,毕竟没好好学。记得当时杂志上说到的是,快速排序,应该是目前最快的内部排序算法(虽然独立到语言上,C++的sort会比调用快速排序快)。现在就进入快速排序的美好复习吧。

与归并排序类似,快排也用分治模式。主要是三个步骤:

1)分解:将数组A[p....r]划分为2个子数组A[p....q-1]和A[q+1....r],使前一个每个元素都小于A[q],后一个数组,每个元素都大于A[q](q在划分过程中计算)

2)解决:递归调用快速排序,对2个子数组进行排序

3)合并:因为2个子数组是就地排序,所以合并不用操作,数组已排序

看到这个合并,就想到啊,和归并比,一个从小到大,一个从大到小,差距就是这么大,快排么得合并开销,一下就省了很多啊,说明,方向很重要啊,如同那句,同样一个B,S与N的差别,大家都懂的。

快速排序的实现代码如下:

        //=================

// Name : Qsort.cpp

// Author : xia

// Copyright : NUAA

// Description : 快速排序的实现

//=================

#include

#include

#include

 #include

 #include



 using namespace std; const int MAX = 1000;

 void WriteToFile(vector v)

 {//将v写入文件,纯看排序结果是否正确,也可以写个test()

 int i; ofstream result(“Qsort.txt”);

if(result.fail()) {

 cout << “ open data error ” << endl; exit(EXIT_FAILURE); }



for(i=0;i

 result << v[i] << “ ”; }

 result.close(); }

 int Partion(vector &A,int p ,int r) {//数组划分



int x=A[r];//x都感觉没用 

int i=p-1;



for(int j=p;j



if(A[j] <= x) {  i++;

 swap(A[i],A[j]); }  }

 swap(A[i+1],A[r]);

return i+1; }

 void Qsort(vector &A, int p ,int r) {//递归快排



if(p < r) {



int q = Partion(A,p,r); Qsort(A,p,q-1); Qsort(A,q+1,r); }  }

 int main(int argc, char **argv) {

 vector v;

int i;



for(i=0;i< MAX;i++) v.push_back(i);

 random_shuffle(v.begin(),v.end());//打乱 

 Qsort(v,0,v.size()-1); WriteToFile(v);



return 0; }

说到代码,很惭愧的,http://)由于以下两个原因:

1)做格式化时,结果常常是扭曲的,所以得不到正确的随机数(如某些数的出现频率要高于其它数)

2)rand()只支持整型数;不能用它来产生随机字符,浮点数,字符串或数据库中的记录

所以采用了STL函数random_shuffle(),先随机生成0到MAX-1的随机数,用random_shuffle()打乱,再进行排序。

另外,其实Hoare老师用的快排并不是如上代码所示,也就是说,最原始的快速排序,是这样滴:

int HoarePartion(vector &A, int p , int r) {



int x=A[p];

int i=p-1;

int j=r+1;

while(1) {



while(A[--j] > x);



while(A[++i] < x);

if(i

 swap(A[i],A[j]);

else

 return j; }  } 

 void Qsort(vector &A, int p ,int r) {//递归快排 

if(p < r) {



int q = HoarePartion(A,p,r); Qsort(A,p,q); Qsort(A,q+1,r); }  }

也可以参考:http://tayoto.blog.hexun.com/25048556_d.html,区别只是我的代码直接while里面用A[--j],可读性不高,因为着实不喜欢do-while结构。

对于最原始的快排,严蔚敏老师的《数据结构》是这样实现的:

int Partion(vector &v ,int low ,int high) {//对vector进行划分,返回枢轴下标 

int pivotkey; pivotkey = v[low];

while(low < high) {



while(low < high && v[high] >= pivotkey) high--; v[low] = v[high];



while(low < high && v[low] <= pivotkey) low ++;

 v[high] = v[low]; }

 v[low] = pivotkey;

return low; }  void quickSort(vector &number ,int left ,int right) {



if(left < right) {



int i = Partion(number , left, right);

 quickSort(number, left, i-1);// 对左边进行递归

 quickSort(number, i+1, right);// 对右边进行递归  }  }

当然,区别都只是在划分的过程,毕竟分治,才是快排的精髓嘛,不过这俩大同小异。

快排的运行时间,显然与划分是否对称有关,要是直接划分出来,是一个最不均衡的二叉树,那就够喝一壶的了,跟插入排序似的。下面网址有说法,是快排隐藏的二叉排序树思想,其实可以参考,虽然只是个人理解http://bbs.chinaunix.net/viewthread.php?tid=1011316。其实说到二叉,堆排序不也是吗?区别只是堆排序显式的建堆,也就构成了一笔不小的开销,如果考虑隐藏排序二叉树的话,倒是可以理解为毛快排快于堆排。

由于快排平均情况下效果显然很良好,那么怎么得到平均情况就是个值得思考的问题,所以书上给出了,在划分的时候,随机获取一个数作为枢轴,而不是用我们的A[low]。于是我们得到了快排的随机化版本如下:

int Partion(vector &A,int p ,int r) {//数组划分



int x=A[r];

int i=p-1;



for(int j=p;j



if(A[j] <= x) {  i++;

 swap(A[i],A[j]); }  }

 swap(A[i+1],A[r]);

return i+1; }

 int RandomPartion(vector &A,int p ,int r) {//在A[p]到A[r]中随机划分 

int i= p + rand()%(r-p+1);//i<-RANDOM(p,r)

 swap(A[r],A[i]);

return Partion(A,p,r); }

 void RandomQsort(vector &A, int p ,int r) {//递归快排



if(p < r) {



int q = RandomPartion(A,p,r); RandomQsort(A,p,q-1); RandomQsort(A,q+1,r); }  }

与常规快排的区别,就是在划分的时候,获取一个随机数下标,再用其数组中的值作为枢轴,当然,这样就充分考虑平均性能了。

还有一种改进RANDOM-QUICKSORT的方法,就是根据从子数组更仔细地选择的(而不是随机选择的元素)作为枢轴来划分。常用的做法是三数取中。可以参考:

http://blog.csdn.net/zhanglei8893/article/details/6266915

本章最后还提到个很蛋疼的Stooge排序,实现如下:

void StoogeSort(vector &A, int i ,int j) {//递归快排



if(A[i] > A[j]) swap(A[i],A[j]);

if(i+1 >=j)

return;



int k =(j-i+1)/3;

 StoogeSort(A,i,j-k);//前2/

3 StoogeSort(A,i+k,j);//后2/3

 StoogeSort(A,i,j-k);//又前2/3

 // StoogeSort(A,i,i+k-1);// 如果采用1/3排不出来啊

 }

对于数组A[i...j],STOOGE-SORT算法将这个数组划分成均等的3份,分别用A, B, C表示。第8、9行从宏观上来看它进行了两趟,结果是最大的1/3到了C,最小的1/3到了B,从宏观上来看,整个数组的三个大块就有序了,再进行递归,整个数组就有序了。第8和第9行,可以看做一个冒泡过程。

不过从运行时间的测试来讲,很不给力(具体数据就不列了)。STOOGE-SORT最坏情况下的运行时间的递归式

T(n)= 2T(2n/3)+Θ(1)由主定律可以求得T(n)=n^2.71,相比插入排序、快速排序的Θ(n^2)和 堆排序、合并排序的Θ(nlgn),不给力啊。参考自:http://blog.csdn.net/zhanglei8893/article/details/6235294。

本章最后,练习7-4还提出个尾递归的概念,起因是QuickSort的第二次递归调用不是必须的,可以用迭代控制结构来替代。如:

QUICKSORT'(A, p, r)1 while p < r 2

do ▸ Partition and sort left subarray.3

q ← PARTITION(A, p, r)4

QUICKSORT'(A, p, q-1)5

p ← q + 1

具体 有效性的证明可以参考:http://blog.csdn.net/zhanglei8893/article/details/6236792,需要说明的是,当数组正序时,其递归深度和栈深度都为Θ(n)。

下载排序算法的算法思想和使用场景总结(共5篇)word格式文档
下载排序算法的算法思想和使用场景总结(共5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    10种排序算法总结(最终五篇)

    10种排序算法总结 排序算法有很多,所以在特定情景中使用哪一种算法很重要。为了选择合适的算法,可以按照建议的顺序考虑以下标准: (1)执行时间 (2)存储空间 (3)编程工作 对于数据量......

    算法总结

    算法分块总结 为备战2005年11月4日成都一战,特将已经做过的题目按算法分块做一个全面详细的总结,主要突出算法思路,尽量选取有代表性的题目,尽量做到算法的全面性,不漏任何ACM可......

    算法总结

    算法分析与设计总结报告 71110415 钱玉明 在计算机软件专业中,算法分析与设计是一门非常重要的课程,很多人为它如痴如醉。很多问题的解决,程序的编写都要依赖它,在软件还是面向......

    4.4排序算法设计5篇

    排序算法设计 一、内容分析 【教学目标】 1、理解排序的概念 2、了解常用排序方法 3、理解冒泡排序的基本思路 4、应用冒泡排序法进行排序 【重点难点】 1、冒泡排序法的基......

    各种排序算法的优缺点

    一、冒泡排序 已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。首先比较a[1]与 a[2]的值,若a[1]大于a[2]则交换两者的值,否则不变。再比较a[2]与a[3]的值,若a[2]大于a[......

    C++ 八种排序算法总结及实现

    八种排序算法总结之C++版本 五种简单排序算法 一、 冒泡排序【稳定的】 void BubbleSort( int* a,int Count ) //实现从小到大的最终结果 { int temp; for(int i=1; i=i;......

    算法与程序设计思想

    《算法与程序设计思想》教学案例1 一、教学目标 1.知识与技能: 求一批数据中最大值的算法设计思想,并将算法的设计思想用流程图表示出来。 2.过程与方法: 利用现实生活中比较身......

    web 算法总结

    1.去掉超链接的下画线: 在 a{TEXT-DECORATION:none;} //添加这句就行。 2.格式为:你需要添加下画线的文字 3.获取时间 我们可以通过使用DataTime这个类来获取当前的时......