第一篇:尾矿库安全监测系统考察总结报告
尾矿库安全监测系统考察总结报告
摘要
通过此次山西各地尾矿库的实地考察我们了解了现实中尾矿库的具体内容,其中安全监测(又称在线监测)设备在尾矿库当中的应用是考察的重点,此次考察我们一共考察了9个尾矿库,其中尖山尾矿库是山西省第一个引进成套安全监测设备的矿业单位,同时据我们了解它也是山西省目前在安全监测方面最具权威的单位,在坝体浸润线、坝体水平(沉降)位移、滩顶高程以及库水位等方面的监测已经相当纯熟,因此以尖山尾矿库安全监测系统为例来简述尾矿库安全监测系统的具体内容。
正文
一、尖山尾矿库概况
尖山铁矿是国家大型黑色冶金矿山企业,是太钢集团重要的铁精粉原料生产基地,年产铁精粉320多万t。其城东沟尾矿库距选矿厂5 km,筑坝方式为上游式,采用水力旋流器筑坝工艺同分散放矿相结合的方法堆筑子坝平台。初期坝设在沟口,初期坝地面标高1 276 m,初期坝坝顶标高1 305 m,坝高29 m。尾矿库按原设计选矿厂年处理原矿400万t,尾矿产率60%,尾矿最终堆积标高1 400 m,最大坝高124 m,总库容9 427万m3。按原处理量尾矿库可使用51 年。目前尾矿堆积标高1 354 m,尾矿坝坝高已达78.0 m,从1 354 m到最终堆积标高1 400 m尚有库容6 427万m3,按年处理原矿1 100万t,最终堆积标高提高到1 410 m,尚可使用15 年,属于三等尾矿库。整体布局见下图。
图1.1 尾矿库远景
图1.2
尾矿库远景2
图1.3
尾矿库主坝
图1.4
尾矿库主坝2
图1.5
施工建设中的后期坝
图1.6
尾矿库干滩
图1.7
尾矿库干滩2
二、尾矿库安全监测概况
尖山铁矿是山西省首家投用尾矿库在线监测系统矿山企业,系统于2009年7月30号全部建设完成并投入使用,由北京矿咨信矿业技术研究有限公司设计和承建,主要监测:坝体浸润线埋深、坝体水平(沉降)位移、滩顶高程、干滩特征点高程、库区水位、降雨量,通过对比分析,得出警告、预警和报警信息,实现尾矿库的安全稳定运行。
下面按照各个测量量的相关方面进行阐述:
1、坝体浸润线埋深————渗压管深埋测量
尖山尾矿库浸润线监测是:浸润线观测点按平行坝轴线间距120 m,垂直坝轴线间距100 m布置,总共有39个浸润线观测点。现状条件下,浸润线观测点:1320 m子坝3个,1340 m子坝7个。并采用进口渗压计检测,浸润线埋深控制:最小埋深6m(埋深普遍在15.5—30米)。浸润线检测:浸润线水位测餐的精度不大于15 mm。
据了解渗压管本身很长,它的前端两米不透水,以此为线以上部分为透水层,通过人工钻孔让坝体内的地下水流过,流过时水面的高度平面便形成了所谓坝体一侧的浸润线,通过实时监测浸润线的位置(高度)数据从而有效保证尾矿库安全。值得一提的是,尖山尾矿库对不同时期的后期坝浸润线测量有所区别,前期主要采取图2.1的坚固模型,而随着后期堆积的不断拔高,浸润线测量则采取了联合水位监测仪的方法,如图2.2所示。
图2.1 前几期尾矿库浸润线监测点
图2.2
后几期尾矿库浸润线监测点
2、库水位以及干滩长度监测————溢洪塔底端带有浮子式水位计
前面提过尖山尾矿库分为主坝和子坝,排洪系统使用塔洞方案,溢洪塔为框架式结构,有4个溢洪塔。l#,2#,3#溢洪洞已经封堵埋没,现在只启用4#溢洪塔。其中库水位的监测主要在4个溢洪塔那边,在溢洪塔底端带有浮子式水位计以及监控设备,如图3.2所示据了解溢洪塔测量干滩长度主要是根据干滩长度可以通过沉积滩顶与库水位高差、尾矿库的实际运行坡度计算获得,通过设置安全长度对坝体安全进行预警。
库水位检测采用防感应雷击能力较强的遥测水位计。该水位计是一种浮子传感器型水位计。
图3.1
4号溢洪塔铭牌
图3.2
溢洪塔底端(带有浮子式水位计)
图3.3
溢洪塔远景
3、坝体水平(沉降)位移————GPS定位监测
尖山尾矿库可以说走在了全省坝体位移监测的最前列,率先安装了全套GPS位移监测系统,由于GPS具有精度高、操作性强和易于管理等优点,通过尾矿库监测管理系统可以轻松的做到实时监测坝体位移将数据反馈到管理者界面上。
尾矿库没置了位移观测设施,位移观测点按平行坝轴线问距120 m、垂直坝轴线间距100 m布置,初期坝和尾矿坝共布置39个位移标点。目前子坝1356 1111标高以下,坝体表面位移标点:初期坝2个,1320 m子坝3个,1340 m子坝7个;坝体表面形变检测采用GPS位移检测的方式。
尖山尾矿库坝体形变监测系统,其包括:监测站,包括监测站GPS天线和监测站GPS接收机以及监测站通讯模块;基准站,包括基准站GPS天线和基准站GPS接收机以及基准站通讯模块;以及数据控制模块,连接于监测站和基准站,用于处理来自于监测站和基准站的数据,并对监测站和基准站进行控制。
如图4.1所示,GPS监测点上面安有4个接收天线,用于接收GPS信号从而得到坝体位移信息。不过美中不足的是购买成套的GPS位移监测系统成本过高,对于项目的研究不是很合适,但是在坝体位移监测方面也为我们提供了一个很好的借鉴。
图4.1
GPS监测点
图4.2
GPS监测点远景
4、滩顶高程测量————干滩设置标杆测量
尖山尾矿库干滩自动化监测系统,是在尾矿库干滩上设置多个剖面,每个剖面设两个监测点,在上述监测点处设置干滩高程监测仪,测量该监测点处的高滩高程数据,通过无线传输方式传送至数据采集设备;上述数据采集设备所汇集的高滩高程数据,传送至控制中心计算机中,计算机内的专用软件根据每一个剖面的滩顶和滩内两处高程数据,结合库区水位数据,解算库区的安全高差和调洪高差是否处于尾矿安全生产规范所要求的安全标准内,并根据解算结果自动发出相关预警信息。本实用新型实现了尾矿库干滩数据在各种恶劣条件下的自动化采集,真正实现了尾矿库干滩数据、安全高差、调洪高差在各种条件下的实时监测,具有产业上的利用价值。
如图5.1所示,干滩中等间距设置了10个测量标杆,仔细观察会发现在标杆顶端有一个类似于突起的装置,据了解是小型太阳能装置,能够为标杆的传感器进行供电,从而合理的利用资源,而且这种滩顶高程的测量方法还能够达到很高的标准,能够满足尾矿库的精度要求。
图5.1
滩顶高程测量标杆
图5.2
测量标杆远景
5、太阳能供电装置
尖山尾矿库在环保节能方面也走在了前面,在坝体的一侧设置了专门的太阳能供电模块,称为“采集室”,如图所示,房顶安装有一块太阳能板,据了解在阳光充足的情况下可以对整个系统进行持续供电,不但节省成本,也能避免造成过多的资源浪费和环境污染。
图6.1 太阳能供电模块
图6.2
太阳能采集室
6、视频监控设施
尖山尾矿库在主要6个地点设置了视频监控点,通过安全监测系统对如干滩、尾矿坝大院、初期坝等尾矿坝关键地段进行实时的视频监控,实时的掌握大坝基本情况,对于任何可能的突发状况做出快速有效地处理,更好的提高大坝监测的安全系数。
图7.1 监控室视频监控界面
7、监控室尾矿库管理系统概况
尖山铁矿尾矿库安装了成套在线安全监测系统,其中也包括工程师在监控室中完成实时监控的管理系统,如图所示是我们拍到的尾矿库管理系统的界面和主要功能以及相关数据,在监测过程中用户可以通过设置一定的数值上限作为报警临界值,若超过此值则报警,管理者可以很轻松的完成对大监测的各方面进行实时管理,同时系统模块化设计更方便人们来管理,及时发现问题并作出相关措施,这是监测过程核心的部分。
图8.1
系统模拟尾矿库画面(红色标记干滩监测点位置)
图8.2
GPS观测点分布
图8.3
浸润线观测点分布
图8.4
实时监测数据界面
图8.5
沉降位移监测界面
结合了解到的尾矿库安全监测系统的信息可以看出了解到现在可行的在线监测系统公认的设计要求,如下所示:
(1)浸润线观测孔和坝体表面位移标点要按照尾矿库设计单位的设计布设,另外还要考虑尾矿库后续27个浸润线观测孔和27个坝体表面位移标点的扩展性和部分数据线的预先铺设。数据传输用光缆从尾矿库传至矿调度中心。
(2)坝体表面形变检测:采用GPS位移检测的方式,检测精度不大子2 mm。
(3)防洪高差检测:防洪高差的检测是通过液位计检测处理得到的,精度为≤±0.1 m。(4)库水位检测:库水位测量的精度不大于15mm。
(5)干滩长度检测:干滩长度的检测是通过数据处理得到的,精度为≤±10 m。由于尖山铁矿在实际运行过程中干滩长度近l km,远远大于设计420 m的干滩长度要求,所以对干滩长度检测精度要求较低。
三、收获与不足
此次考察尾矿库之行可以说收获颇丰,相对于泛泛的在实验室查资料凭空想象,实地的考察则显得更加直观明了,现实中跟自己脑子里面想的有很大区别,也让自己对尾矿坝有了一个全新的认识,更加重要的是通过现场调研我们也真正了解了实际的尾矿库安全监测是什么样子、具体用什么方法、采用何种设备以及实际操作状况等信息,同时在监控室里也亲身体验了在尾矿库安全监测系统操作下各种监测如何协调等方面的解决,通过考察真正对尾矿坝安全监测、对咱们的项目规划有了全新的认识。
不过美中不足的是由于实际安装了安全监测系统的尾矿库是集体采购的一整套在线安全监测系统,因此对于具体到每个器件甚至传感器单元的具体信息以及参数等详细信息生产厂家并没有提供,我们也就无法得到具体到节点的有效信息,只能得知一些合作公司的简单信息,具体细节并不是很详细,但是通过此次考察我们还是学到了很多东西,尤其是了解到很多有用的信息,对后面的项目进程都有很大帮助。
四、安全监测系统的可行性方案
综合所考察的9个尾矿库安全监测系统的实际情况可以看出,在监测对象方面可以大体分为浸润线、库水位、干滩长度、干滩标程,坝体位移,降雨量、视频监控等几个方面来监测,通过客户端与服务器连接从而实时的反映出各个检测量的情况,并通过网络向上级机关进行汇报,大大加强了尾矿库的安全系数。对于安全监测的几个方面,结合我们自己的想法,我想提出自己的可行性方案如下:
1.浸润线监测:所有考察的尾矿库都是采用深埋渗压管来实现,通过中间透水部分流过的水面高度来监测浸润线,一般埋深为15.5到30米,在渗压管中安装类似于浮子式水位计的压力传感器,根据水的压强变化来监测,同时还可监测渗流量,这个方法是现在比较成熟的。传感器方面建议采取振弦式渗压计安装在渗压管中,从而实时监测浸润线和渗流量等参数。
2.坝体位移监测:同样的所有尾矿库都是采用GPS监测位移,包括水平位移和沉降位移,这也是一个核心的部分,一套完整的在线监测系统最重要也是最昂贵的就是GPS位移监测模块,只是价格上来说比较昂贵,我曾经考虑过用激光原理来监测位移,但是由于激光的直线性传输使得它很难对位移的细微变化准确监测,而且激光本身也需要耗费大量时间且技术并不成熟,因此这个方法行不通。综合考虑还是应该选用GPS监测系统来实现位移监测,不过我们想所拍到的只是GPS的接收装置,另外在监控室旁边设有GPS基站,以此为基准进行测量,因此我们可以做的应该是接收装置以及后期的无线组网这些工作,具体用到的高精度传感器需要另行购买。3.干滩长度、库水位:前面已经提到干滩长度和库水位都是通过安装在溢洪塔上面的水位计来实现的,区别在于库水位是直接测量得到,而干滩长度则是通过库水位和干滩长度成反比的关系,同时结合具体的几何关系相似三角形计算得出的因此二者可以合二为一,库水位监测有多种选择,常见的是浮子式,另外还有超声波等,值得一提的是干滩高程的监测就是在标杆上端安装超声波传感器,通过两点间干滩的高度差经计算便可得出干滩长度,因此才会划分成干滩长度和干滩高程两个测量参数。4.视频监控:我想这个应该是最简单的,现在的视频监控技术越来越成熟,应用也很广泛,只需要选好几个监测点,一般为6到9个点,然后安装摄像头最后组网即可,而且我们的现实条件也允许我们自行制作视频监控设备,十分方便。另外在龙华尾矿库我们还发现除了摄像头他们还加装了夜视仪,也算是一个创新了。
5.系统界面:需要作为补充的是,我们所考察的9个尾矿库中监控室里面除了实时传送的视频监控图像外,还有为了方便监控的管理员系统,正如上面举例的尖山尾矿库安全监测系统界面一样,不同公司做的系统有所不同,但基本功能都差不多,我想到后期我们也需要做出这样的一个系统软件,方便用户对实时了解尾矿库现状并进行管理,使用起来能够方便快捷。
第二篇:尾矿库在线自动监测系统解决方案
尾矿库在线自动监测系统解决方案
一.需求分析:.......................................................2
二、方案设计........................................................4
(一)监测指标选择.............................................................................................4
(二)监测系统设计.............................................................................................6 1.浸润线监测................................................................................................6 2.库水位监测................................................................................................7 4.坝体位移监测............................................................................................7
5、视频监测....................................................................................................7
(三)某尾矿库安全监测系统设计方案.............................................................8
三、运营/管理......................................................10
(一)设备安装...................................................................................................10
(二)运营管理...................................................................................................11
四、产品映射.......................................................13
五、标准支持.......................................................14
六、标准化程度.....................................................16
七、效果分析.......................................................16
一.需求分析:
安全生产事关广大人民群众的根本利益,事关改革发展和稳定的大局。我国在确立了“安全第一,预防为主,综合治理”的安全生产基本方针和“安全发展”的指导原则后,从安全法制、安全责任、安全投入、安全科技和安全文化等方面入手,强化安全监管工作。但受我国现阶段生产力发展水平较低、企业安全生产基础薄弱、从业人员安全意识不强、安全法制不健全等因素的影响,我国安全生产形势依然严峻,工矿商贸领域安全生产重特大事故时有发生,特别是近年来尾矿库事故多发,已引起了国家的高度重视。
金属与非金属矿山是工业生产的高危行业,其事故发生起数和死亡人数在全国工业安全生产领域占较大的比重。尾矿库是金属与非金属矿山安全生产的重要环节,也是该领域的重大危险源之一,作为具有高势能的人造泥石流危险源,其一旦发生事故,将会给下游人民生命财产安全造成巨大损失,给当地环境造成严重污染,给当地的经济发展和社会稳定也带来严重的负面影响。
经过50多年发展,我国已成为世界矿业大国,目前全国有金属非金属矿山92071座,其中金属矿山8239座,非金属矿山83832座,冶金、有色、化工、核工业、建材和轻工业等行业的矿山都有尾矿设施。经初步统计,全国有尾矿库7610座,总库容约5×109m3,堆存尾矿约5.5×109t。其中正常运行的约有4800座,占63%,危库、险库和危险性较大的病库约有2810座,占37%。
我国作为发展中国家,经济比较落后,从安全上看,尾矿库还存在以下不利因素:一是筑坝尾矿粒度细。由于筑坝的尾矿粒度细,细尾矿的力学强度低、透水性差、不易固结,造成坝体稳定性较差;二是上游法筑坝多。我国目前85%的尾矿库采用上游法筑坝,较下游法和中线法筑坝的坝体稳定性差;三是尾矿库安全设计标准较低。我国作为发展中国家,尾矿库防洪、抗震及坝体稳定等建设标准与发达国家相比相对偏低;四是小型库多。我国矿山规模小,四等库及四等库以下的小型尾矿库占90%以上;五是受地震威胁大。我国是多地震国家,尾矿库防震抗震是重要问题;六是失事后果严重。我国人口众多,尾矿库难以避开居民区和重要工业、交通设施,一旦失事,损失巨大。
美国克拉克大学公害评定小组的研究表明,尾矿库事故的危害,在世界93种 事故、公害的隐患中,名列第18位。它仅次于核武器爆炸、DDT、神经毒气、核辐射以及其它13种灾害,而比航空失事、火灾等其它60种灾害严重,直接造成百人以上死亡的尾矿库事故已不鲜见。如1972年2月26日,美国布法罗尼河矿尾矿坝溃坝,造成125人死亡,4000人无家可归;1985年7月中旬,意大利东北部的普瑞皮尔尾矿库溃坝,造成250人死亡。
我国尾矿库历史上曾发生过多起重特大事故,给人民生命财产安全造成了重大损失。如:1962年9月25日,云锡公司火古都尾矿库溃坝,造成171人死亡、92人受伤,受灾人口13970人;1994年7月13日,湖北大冶有色金属公司龙角山尾矿库溃坝,造成30死亡;2000年10月18日,广西南丹宏图选厂尾矿库垮塌,造成28人死亡、56人受伤。
近年来,尾矿库垮坝造成人员伤亡和有毒污染物下泄的事故屡有发生,给人民群众生命财产安全造成重大损失,对环境安全构成重要威胁。据初步统计,自2005年以来,全国发生尾矿库溃坝等重特大事故17起、死亡41人,重伤1人,轻伤28人,给人民群众生命财产和环境安全带来严重损失。其中:2006年4月30日陕西镇安尾矿库溃坝,造成17人死亡、5人受伤。
尾矿库的安全监测对于加强尾矿库的安全监管,把握尾矿库的安全现状,减少尾矿库的事故发生等具有重要意义。当前,我国尾矿库安全运行的主要技术参数如坝体形变位移、库水位、浸润线埋深等,均由人工定期用传统仪器到现场进行测量,安全监测工作量大、受天气、人工、现场条件等许多因素的影响,存在一定的系统误差和人工误差。同时,人工监测还存在不能及时监测尾矿库的各项技术参数,难以及时掌握尾矿库各项安全技术指标等缺点,这些都将影响尾矿库的安全生产和安全管理水平。我国安全生产市场急需尾矿库溃坝灾害的实时、连续监测的技术和产品。
尾矿库自动化安全监测系统的实施,便于企业和安全监管部门快速掌握与尾矿库安全密切相关的技术指标的最新动态,有利于及时掌握尾矿库的运行状况和安全现状,可以提高尾矿库的安全性,保障库区下游企业正常运转及库区人民群众的生命财产安全,避免因尾矿库事故而造成的环境污染,保护生态环境。
水利工程和高边坡工程的监测技术发展较快。从20世纪50年代开始,在我国大坝、高边坡变形监测领域开始研究和使用人工变形监测系统,其中应用经纬仪、3 水准仪等监测仪器监测坝体变形的监测方法有视准线法、引张线法、前方交会法、坝面水准测量法以及连通管法等。20世纪70年代末,以传感器为基础的大坝自动化变形监测系统开始应用于葛洲坝水利枢纽、新丰江水利工程等坝体位移的监测中。20世纪90年代开始了大坝及高边坡的GPS自动化变形监测系统的研究,GPS技术已经应用于三峡工程、黄河小浪底水利枢纽工程、浙江天荒坪抽水蓄能电站、湖北清江隔河岩水利工程、龙羊峡水库近岸等大坝或高边坡的变形监测。目前,多传感器数据融合的大坝变形自动监测技术、监测系统的自动化、网络化和信息化技术是大坝和高边坡工程监测领域的研究发展趋势。
当前尾矿库较为落后的安全监测技术和监测手段,不能满足包括企业自身在内的全社会对于提高尾矿库管理水平和安全状况的迫切需要。目前,我国尾矿库的监测技术还处于起步阶段。尾矿库的管涌流土、地震液化等坝体内部致灾因素引起坝坡失稳的预警技术基本属于空白,其监测、预警技术的研究成果较少。特别指出的是,我国尾矿库数量多、分布广,因此尾矿库自动化安全监测系统的设施实施是面向我国尾矿库安全的重大需求,具有良好的应用前景。
二、方案设计
(一)监测指标选择
尾矿库内存有大量尾矿浆沉淀水,水位相对比较稳定;同时,从尾矿坝坝顶排放尾矿时,矿浆向库内流淌的过程中,矿浆水不断向下渗透;此外,汛期大量降雨。这些因素在尾矿坝体内形成一个庞大渗流场。再者,尾矿沉积体属非均值体,排矿部位又需要经常调换;坝体又在不断增高;况且在尾矿库整个服务期间内,矿源及选矿流程有可能改变,尾矿性能自然也会变化。这就是尾矿坝渗流场异常复杂的原因。浸润线即渗流流网的自由水面线,是尾矿坝安全的生命线,浸润线的高度直接关系到坝体稳定及安全性状,因此,对于浸润线位置的监测是尾矿库安全监测的重要内容之一。如图1所示,图中孔隙水压力为0的线即为尾矿坝的浸润线。
图1 某尾矿坝孔隙水压力分布图(单位:kPa)
尾矿库内存有大量尾矿浆沉淀水,库水位监测的目的是根据其水位的高低可判断该库防洪能力是否满足安全要求。具体地说:一个完善的设计在设计文本中会给出防洪所需的调洪水深,并要求在设计洪水位(即最高洪水位)时,要同时满足设计规定的最小安全超高和最小安全干滩长度的要求。因此,对于库水位位置的把握可以直接防止尾矿库在汛期避免洪水漫顶溃坝事故的发生,有利于安全监管部门和企业在汛期来临之前,直观地了解和掌握库水位是否达到了设计要求的汛前限制水位。由此可见,库水位的连续动态监测也是尾矿库安全监测的重要内容之一。图2给出了安全滩长监测法的示意图。
图2 安全滩长检测法
如图2所示,设现状库水位为Hs,先在沉积滩上用皮尺量出[Lg],并插上标杆a,用仪器测出a点地面标高Ha,当Ht = Ha – Hs≥ [Ht] 时,即认为安全滩长满足设计要求。否则,不满足。同理,也有安全超高检测法。
尾矿库发生溃坝灾害,坝体位移是灾害演化过程的直观反应指标,因此对于坝体下游坡变形的掌握,可以及时发现尾矿坝变形率和发展速度,有利于安全监管部门和企业进行科学的应急决策,并及时采取应急对策措施,从而避免灾害的发生或者减少灾害发生造成的危害。图3给出了尾矿库尾矿坝的典型变形矢量图,从图中可知坝体下游坡发生向下和偏向下游的变形。
图3 尾矿坝典型变形矢量图
在定量评价尾矿库的防洪能力时,需要测定滩顶标高和设计最高洪水位下允许达到的干滩标高,当前的检测方法较难准确并快速测定这两个指标,问题在于水边线的界线很不明显,该处又无法进人,通常只能目测。据此推算出来的总干滩长度和调洪干滩长度自然也是极不可信的。因此,在尾矿库安全自动化监测系统中,应增加快速并简捷的标高测定方法。因此,滩顶标高和设计最高洪水位下允许达到的干滩标高,是尾矿库安全监测需要测定的指标。
此外,在尾矿库安全监测系统中,为了实时掌握尾矿库库区的情况和运行状况,通常在溢水塔、滩顶放矿处、坝体下游坡等重要部位设置视频监测设置,以满足准确清晰把握尾矿库运行状况的需要。综上所述,金属非金属矿山尾矿库安全监测系统监测指标包括:浸润线;库水位;滩面标高;坝体位移;视频图像。
(二)监测系统设计 1.浸润线监测
一般选择尾矿库坝上最大断面或者一旦发生事故将对下游造成重大危害的断面为监测剖面。大型尾矿库在一些薄坝段也应设有监测剖面。每个监测剖面应至少设置5个监测点,并应根据设计资料中坝体下游坡处的孔隙水压力变化梯度灵活选择监测点。尾矿坝坝坡浸润线监测仪器分两类。一类埋设测压管,人工现场实测;另一类是埋设特制传感器,进行半自动或自动观测。
浸润线监测仪器埋设位置的选择,应根据《尾矿库安全技术规程》(AQ2006-2005)中规定的计算工况所得到的坝体浸润线位置来埋设。在作坝体抗滑稳定分析时,设计规范规定浸润线须按正常运行和洪水运行两种工况分别给出。设计 6 时所给出的浸润线位置应是监测仪器埋设深度的最重要的依据。
2.库水位监测
一般在库内排水构筑物上设置自动监测仪,将所测信号传给室内接收机处理得到库水位。既准确,又适时。需要指出的是,库内排水构筑物一般位于尾矿库内,排水构筑物周边为尾矿澄清水,因此需要在监测系统布置前,针对特定尾矿库的实际情况,灵活选择施工方案。
3.干滩标高监测
干滩标高的测量不同于其它点标高的测量,这是由尾矿坝自身的运行特点决定的,随着尾矿坝的不断填筑加高,滩顶标高和设计最高洪水位下允许达到的干滩标高是两个动态变化的指标,因此,不能在某一位置架设坚固的不能移动的标高监测设备。采用移动GPS,定期监测尾矿坝滩顶标高和设计最高洪水位下允许达到的干滩标高。该方法灵活简便、具有较高精度、利于位置变化。
4.坝体位移监测
正是由于过去对尾矿坝坝体位移监测认识不足,尾矿坝位移监测手段不多。坝体变形计算至今尚未纳入设计规范。对于较大的尾矿坝,设计仅在坝体表面设置位移观测桩。具体监测手段主要有人工用经纬仪监测和GPS自动监测两种。根据坝的长短至少选择2~3个监测剖面。一般在最大坝高处、地基地形地质变化较大处均应布置监测剖面。
每个剖面上根据坝的高矮,在坝坡表面从上到下均匀设置4~6个监测点。最下面一个点应设置在坝脚外5~10m范围内的地面上,以用于监测尾矿坝发生整体滑动的可能性。
5、视频监测
在尾矿库安全监测系统中,为了实时掌握尾矿库库区的情况和运行状况,通 7 常在溢水塔、滩顶放矿处、坝体下游坡等重要部位设置视频监测设置,以满足准确清晰把握尾矿库运行状况的需要。
(三)某尾矿库安全监测系统设计方案
某尾矿库初期坝坝顶标高为163.5m(东坝坝高为20m,西坝坝高为24.2m)。后期坝坝顶标高为220m。后期坝采用上游式尾矿筑坝。最终总库容为1350万m3。2008年1月子坝坝顶标高为201m,沉积滩顶标高约为198m。目前总坝高为58.7m,总库容不到1000万m3,暂属四等尾矿库。当沉积滩顶标高达到199.3m时,就升为三等尾矿库。该尾矿库安全监测系统监测设计方案为:
1、库水位监测
1)监测部位:尾矿库溢水塔上。
2)监测仪器:电子水位传感器(无线传输)。3)仪器数量:1个。
2、滩顶和滩面标高监测
1)监测部位:在东坝和西坝的沉积滩面上各选三条垂直于子坝的直线,直线间距为100 m。在每条线的滩顶和距滩顶70 m处各设一个滩面标高两个点均为监测点。
2)监测仪器:小旗和移动GPS,定期检查小旗标高,并输入软件。3)仪器数量:移动GPS一台,小旗12杆。
3、浸润线监测
1)监测部位:选择了(位于钻孔ZK13以东3~5m处)、Q2(位于钻孔ZK01以东3~5m处)、Q3(位于钻孔ZK23以东3~5m处)、Q4(位于钻孔ZK31以东3~5m处)。
在Q1、Q3剖面的第一、三、五期子坝顶各布设两个浸润线观测点(两点间距0.5m),每个点埋设1个传感器。第一期子坝顶两个传感器的埋深分别为6m和10m(自孔口地面算起);第三期子坝顶两个传感器的埋深分别为8m和13m;第五期子坝顶两个传感器的埋深分别为8m和15m。
在Q2、Q4剖面的第三、五期子坝顶各布设1个浸润线观测点,每个点埋设1个传感器。第三期子坝顶两个传感器的埋深分别为13m;第五期子坝顶两个传感 器的埋深分别为15m。
2)监测仪器:振弦式孔压传感器、光纤渗压传感器。
3)仪器数量:振弦式孔压传感器(10个),光纤渗压传感器(6个)。
4、位移GPS监测
1)监测部位:在东坝最大坝高剖面G1和西坝最大坝高剖面G2的坝坡上各布设4个监测点。4个监测点的位置分别设在坝脚、第一、三、五期子坝顶上。
2)监测仪器:GPS 3)仪器数量:一个基站、八个测点。
5、坝内位移监测
1)监测部位:ZK53、ZK15、ZK24、ZK32以东3~5m,每个断面3个位移监测点。
2)监测仪器:测斜仪+测斜管。
3)仪器数量:SINCO测斜仪一台,测斜管若干长度。
7、可视化监测
在溢水塔、滩顶放矿处、坝体下游坡等重要部位设置视频监测设置,通过现场摄像头实时拍摄并快速传输至控制室的显示屏幕上,能够直观地显现尾矿库生产放矿及筑坝运行等情况。
图4 某尾矿库安全监测系统结构图
图5 某尾矿库安全监测系统安装图
三、运营/管理
(一)设备安装
在尾矿库安全监测系统安装时,应注意以下问题:
1.安装的仪器设备的安全问题。尾矿库一般处在高山峡谷等人员稀少的场地,且尾矿库占地面积较大,因此,仪器设备的防盗问题是面临的安全问题之一。因此,传感器、摄像头及GPS等设备应安装稳固,均应在安全过程中考虑防盗问题,GPS接收机应放置在水泥墩内,避免因为设备主机被盗,导致系统无法正常工作。
2.购买的GPS等设备应该有避雷装置。GPS设备靠接收星历信号来准确测定坝体变形状况,GPS天线应尽量选择轭流圈天线,尽可能保证雷雨天气的设备安全。
3.安装位置应考虑尾矿坝填筑过程高程变化。尾矿库的运行期为尾矿坝不断升高、储存尾砂库容不断增大的过程,与水利工程不同,其坝顶高程随着生产运行期的发展不断变化。此外,对于上游式尾矿坝来说,其坝轴线还要不断向库内前移(如图6所示)。因此,GPS、孔压传感器等设备的埋设位置应能够满足尾矿库整个运行期安全监测和安全管理的需要,应针对整个运行期综合考虑。
图6 上游式尾矿坝筑坝方式图
4.应注意浸润线监测仪器埋设位置。尾矿坝总在不断加高,尾矿坝浸润线还受降雨和放矿水的影响,其深度在一定范围内经常变动。现有的观测设施只能测出进水孔处的水头或孔隙压力。从流网图可知:只有当某个深度的水头与该深度的高程相等时,或者说当某个深度的孔隙压力接近于零时,该深度才是浸润线的位置。监测仪器埋深了,测得的浸润线比实际浸润线低;仪器埋浅了,测不到浸润线。浸润线的位置应根据设计资料综合考虑。
(二)运营管理
基于金属非金属矿山尾矿库安全监测系统,在尾矿库的运行过程中,除了应及时掌握各种监测技术指标的最新数据外,还要有尾矿库安全与否的预警技术和响应方法。本系统认为,应结合尾矿库定量安全评价方法,通过对尾矿库运行期的安全评价和监测指标数据安全度分析后,可以建立尾矿库运营管理的预警技术和响应方法。
1.浸润线指标的预警方法
通过尾矿坝现状的勘察和资料分析,掌握特定尾矿坝的沉积规律、材料分区及概化方法、堆坝材料的物理力学特性指标,通过渗流验算及分析,掌握汛期设计资料允许的最高浸润线高程。该指标即时浸润线监测指标的预警及响应标准。
其中,渗流验算的计算方法如下所示: 渗流分析的基本方程为:
式中,[K]为透水系数矩阵;{H}为总水头向量;[M]为单元储水量矩阵;{Q}为流量向量;t为时间。
对于等别不高的尾矿库,还可以依据国家标准《构筑物抗震设计规范》中有关尾矿坝浸润线高度的预警指标进行预警。
2.防洪能力的预警方法
防洪能力的预警是避免汛期发生尾矿库漫顶溃坝事故的最有效方法。通过调洪验算得到当前库水位下,设计最高洪水位下尾矿库需要的调洪水深,即可以掌握当前干滩长度是否满足调洪水深的要求。
3.坝体位移的预警方法
通过尾矿坝当前运行现状的有限元强度折减法坝坡稳定性分析,可以近似得到发生极限滑动情况时,坝体一定深度及表面的变形情况,并结合尾矿坝位移监测趋势及变形率的定性判断,可以准确把握尾矿库因受力情况发生位移趋势及变化速率,从而及时预警并采取响应措施,疏散下游群众,并采取积极措施加固坝坡,避免因坝坡失稳发生溃坝的严重危害。
其中,强度折减法计算坝体位移量的计算方法如下所示:
图7 坝坡有限元网格示意图
图7为一坝坡的有限元网格示意图,假定A点为某一单元的一个高斯点,以下关于点的应力分析均以A点为例。设尾矿的抗剪强度指标为c和?,则土的抗剪强度为:
假设尾矿的抗剪强度以某一折减系数F按下式进行折减:
当折减系数较小时,尾矿的抗剪强度较高,整个坝坡基本处于弹性状态。然后逐渐增加折减系数,则尾矿的抗剪强度逐渐降低,坝坡中处于弹性的范围会相应减少。如对于A点,当折减系数增加到某一较大的值时,会不再处于弹性状态,其摩尔-库仑强度包线会下移至与应力摩尔圆相交。
当折减系数继续增加,尾矿的抗剪强度进一步减小,坝坡的塑性区会进一步增大;当折减系数增加到某一数值时,塑性区形成连通的区域,尾矿沿该剪切面发生不收敛的塑性剪切变形。此时认为坝坡发生破坏,强度折减系数即认为是坝坡的整体安全系数;滑裂面的位置可根据位移增量等值线或最大剪应变增量等值线的疏密来确定,也可根据破坏区域的范围来判断。
基于刚体极限平衡理论的坝坡稳定分析方法已相当成熟且广泛应用于尾矿坝在内的边坡稳定分析中。然而,该法在处理荷载条件和边界条件复杂的边坡时常遇到困难。基于强度折减的有限元法,能够处理复杂荷载和边界条件,算法先进,可以更为准确地分析尾矿坝的坝坡稳定性,为尾矿库安全监测位移指标的预警提供依据。
4.注重与日常巡检工作结合
尾矿库安全监测系统的实施,可以使管理者在主控制室内能够及时把握尾矿库的最新动态和监测指标信息,但是,尾矿库安全监测系统不能完全代替尾矿库日常巡检工作,应与日常巡检结合,通过监测指标和日常巡检结合的比对,能够更为科学的掌握尾矿库的安全状况和运行特点。
四、产品映射
1.孔压传感器的技术要求
1)准确度高,灵敏度高,稳定性好,体积小,重量轻,直接频率输出,激励电路封装在水密壳体内。2)测量范围:0.1、0.2、0.3、0.6、1.0、3.0、6.0、10.0、MPa(对应于10-1000m水深)。
3)准确度:±0.5%FS。
4)可直接用于江河、湖泊、海水的深度和液体压力的测量,也可用作剖面系统的深度传感器。
2.GPS设备的技术要求
1)GPS接收机及其配套设备,要求包括从数据采集、集中传输、解算处理、显示和记录及避雷和防盗等安全保护设施的全部设备。
2)精度要求,水平:3mm+0.5ppm ,垂直:5mm+0.5ppm;上述精度指标要求有国家光电检测中心等权威机构的检测结果,并具有权威机构颁发的证书。
3)解算软件上有各个GPS接收机的独立监控模块,通过解算软件,可以在计算机中实时显示具有上述精度的各个GPS接收机的坐标和位移量,并能够实时记录在文本文件中。
4)GPS接收机天线为轭流圈天线。5)具有避雷设施及其它安全保护措施。
五、标准支持
在尾矿库安全领域,技术标准主要参照《尾矿库安全技术规程》(AQ2006-2005)。该标准有关尾矿库安全监测系统的规定包括以下内容:
1.4级以上尾矿坝应设置坝体位移和坝体浸润线观测设施。必要时还宜设置孔隙水压力、渗透水量及其浑浊度的观测设施。
2.做好日常巡检和定期观测,并进行及时、全面的记录。发现安全隐患时,应及时处理并向企业主管领导报告。
3.尾矿库运行期间应加强浸润线观测,注意坝体浸润线埋深及其出逸点的变化情况和分布状态,严格按设计要求控制。
4.尾矿库滩顶高程的检测,应沿坝(摊)顶方向布置测点进行实测,其测量误差应小于20mm。当滩顶一端高一端低时,应在低标高段选较低处检测1~3个点;当滩顶高低相同时,应选较低处不少于3个点;其他情况,每100m坝长选 较低处检测1~2点,但总数不少于3个点。
5.根据尾矿库防洪能力和尾矿坝坝体稳定性确定,分为危库、险库、病库、正常库四个等级。除正常库外,前三类从文字上看,只是程度有所不同。尾矿库安全度定义紧紧依靠尾矿库安全监测系统中设定的监测指标来评判。
例如,危库是指安全没有保障,随时可能发生垮坝事故的尾矿库,危库必须停止生产并采取应急措施,危库定义见图8。
图8 尾矿库安全度中危库的定义 尾矿库安全度中同时满足图9四个工况的尾矿库为正常库。
图9 尾矿库安全度中正常库的定义
综上所述,尾矿库安全监测系统能够紧扣我国现行尾矿库安全技术标准,具有较大的实用意义和价值。
六、标准化程度
尾矿库安全监测系统监测的浸润线、库水位、滩面标高、坝体位移、视频图像,均能够为尾矿库日常安全管理及尾矿库安全运行服务。我国尾矿库中85%以上为上游式尾矿坝筑坝,该系统对于上游式筑坝的尾矿库具有良好的应用前景,今后监测系统若能与不同等别尾矿库相结合,上升到安全技术标准,可以全面提高我国尾矿库安全管理水平,减少我国尾矿库事故发生的数量,保障尾矿库库区人民生命财产、环境安全及社会稳定,为构建和谐社会服务。
七、效果分析
当前,我国安全生产形势依然严峻,工矿商贸领域安全生产重特大事故时有发生,特别是近年来尾矿库事故多发,已引起全社会的高度重视。在《国务院关 于实施国家突发公共事件总体应急预案的决定》(国发〔2005〕11号)中明确要求 “科技部、教育部、中科院、社科院、工程院、中国科协等有关部门和科研教学单位,要积极开展公共安全领域的科学研究;加大公共安全检测、预测、预警、预防和应急处置技术研发的投入,不断改进技术装备,建立健全应急平台,提高我国公共安全科技水平”。在《国家中长期科学和技术发展规划纲要(2006-2020)》中把“公共安全”问题列入了国家科技发展的“重点领域”,要重点研究开发地震、台风、暴雨、洪水、地质灾害等监测、预警和应急处置关键技术,森林火灾、溃坝、决堤险情等重大灾害的监测预警技术以及重大自然灾害综合风险分析评估技术。同时,2007年国家安全生产监督管理总局、国家发展改革委、国土资源部、国家环保总局联合组织了全国范围的尾矿库专项整治行动,使得尾矿库的安全运行和管理已引起全社会的广泛关注。
近年来,我国国民经济快速发展,每年以10%左右的速度递增,在经济高速发展的带动下,钢铁、有色金属和水泥等主要原材料工业扩张迅速,随着金属非金属矿山采选业的迅速发展,尾矿库的安全生产和环境安全等问题日益显现,特别需要指出的是,我国尾矿库下游大都为人口密集区、城镇或大型工厂企业,因此,尾矿库的安全备受关注。如何针对我国尾矿库分布特点和现状,提高尾矿库安全管理水平,是摆在全社会的一个重要问题。金属非金属矿山尾矿库安全监测系统的逐步实施和推广,可以大幅度提高我国对于尾矿库溃坝灾害机理的认识水平,全面提升尾矿库安全监管和日常管理水平,增强企业、社会、政府对于尾矿库灾害的预警响应能力,建立更便于尾矿库运行期安全管理和风险控制的溃坝风险综合评判方法。特别需要指出的是,我国尾矿库数量多、分布广,金属非金属矿山尾矿库安全监测系统将具有广泛的市场前景和重要的应用价值。
第三篇:尾矿库监测资料(本站推荐)
尾矿库监测市场分析
一、需求分析
安全生产事关广大人民群众的根本利益,事关改革发展和稳定的大局。我国在确立了“安全第一,预防为主,综合治理”的安全生产基本方针和“安全发展”的指导原则后,从安全法制、安全责任、安
全投入、安全科技和安全文化等方面入手,强化安全监管工作。但受我国现阶段生产力发展水平较低、企业安全生产基础薄弱、从业人员安全意识不强、安全法制不健全等因素的影响,我国安全生产形势依然严峻,工矿商贸领域安全生产重特大事故时有发生,特别是近年来尾矿库事故多发,已引起了国家的高度重视。
金属与非金属矿山是工业生产的高危行业,其事故发生起数和死亡人数在全国工业安全生产领域占较大的比重。尾矿库是金属与非金属矿山安全生产的重要环节,也是该领域的重大危险源之一,作为具有高势能的人造泥石流危险源,其一旦发生事故,将会给下游人民生命财产安全造成巨大损失,给当地环境造成严重污染,给当地的经济发展和社会稳定也带来严重的负面影响。
经过50多年发展,我国已成为世界矿业大国,目前全国有金属非金属矿山92071座,其中金属矿山8239座,非金属矿山83832座,冶金、有色、化工、核工业、建材和轻工业等行业的矿山都有尾矿设施。经初步统计,全国有尾矿库7610座,总库容约5×109m3,堆存尾矿约5.5×109t。其中正常运行的约有4800座,占63%,危库、险库和危险性较大的病库约有2810座,占37%。
我国作为发展中国家,经济比较落后,从安全上看,尾矿库还存在以下不利因素:一是筑坝尾矿粒度细。由于筑坝的尾矿粒度细,细尾矿的力学强度低、透水性差、不易固结,造成坝体稳定性较差;二是上游法筑坝多。我国目前85%的尾矿库采用上游法筑坝,较下游法和中线法筑坝的坝体稳定性差;三是尾矿库安全设计标准较低。我国作为发展中国家,尾矿库防洪、抗震及坝体稳定等建设标准与发达国家相比相对偏低;四是小型库多。我国矿山规模小,四等库及四等库以下的小型尾矿库占90%以上;五是受地震威胁大。我国是多地震国家,尾矿库防震抗震是重要问题;六是失事后果严重。我国人口众多,尾矿库难以避开居民区和重要工业、交通设施,一旦失事,损失巨大。
美国克拉克大学公害评定小组的研究表明,尾矿库事故的危害,在世界93种事故、公害的隐患中,名列第18位。它仅次于核武器爆炸、DDT、神经毒气、核辐射以及其它13种灾害,而比航空失事、火灾等其它60种灾害严重,直接造成百人以上死亡的尾矿库事故已不鲜见。如1972年2月26日,美国布法罗尼河矿尾矿坝溃坝,造成125人死亡,4000人无家可归;1985年7月中旬,意大利东北部的普瑞皮尔尾矿库溃坝,造成250人死亡。
我国尾矿库历史上曾发生过多起重特大事故,给人民生命财产安全造成了重大损失。如:1962年9月25日,云锡公司火古都尾矿库溃坝,造成171人死亡、92人受伤,受灾人口13970人;1994年7月13日,湖北大冶有色金属公司龙角山尾矿库溃坝,造成30死亡;2000年10月18日,广西南丹宏图选厂尾矿库垮塌,造成28人死亡、56人受伤。
近年来,尾矿库垮坝造成人员伤亡和有毒污染物下泄的事故屡有发生,给人民群众生命财产安全造成重大损失,对环境安全构成重要威胁。据初步统计,自2005年以来,全国发生尾矿库溃坝等重特大事故17起、死亡41人,重伤1人,轻伤28人,给人民群众生命财产和环境安全带来严重损失。其中:2006年4月30日陕西镇安尾矿库溃坝,造成17人死亡、5人受伤。
尾矿库的安全监测对于加强尾矿库的安全监管,把握尾矿库的安全现状,减少尾矿库的事故发生等具有重要意义。当前,我国尾矿库安全运行的主要技术参数如坝体形变位移、库水位、浸润线埋深等,均由人工定期用传统仪器到现场进行测量,安全监测工作量大、受天气、人工、现场条件等许多因素的影响,存在一定的系统误差和人工误差。同时,人工监测还存在不能及时监测尾矿库的各项技术参数,难以及时掌握尾矿库各项安全技术指标等缺点,这些都将影响尾矿库的安全生产和安全管理水平。我国安全生产市场急需尾矿库溃坝灾害的实时、连续监测的技术和产品。
尾矿库自动化安全监测系统的实施,便于企业和安全监管部门快速掌握与尾矿库安全密切相关的技术指标的最新动态,有利于及时掌握尾矿库的运行状况和安全现状,可以提高尾矿库的安全性,保障库区下游企业正常运转及库区人民群众的生命财产安全,避免因尾矿库事故而造成的环境污染,保护生态环境。
水利工程和高边坡工程的监测技术发展较快。从20世纪50年代开始,在我国大坝、高边坡变形监测领域开始研究和使用人工变形监测系统,其中应用经纬仪、水准仪等监测仪器监测坝体变形的监测方法有视准线法、引张线法、前方交会法、坝面水准测量法以及连通管法等。20世纪70年代末,以传感器为基础的大坝自动化变形监测系统开始应用于葛洲坝水利枢纽、新丰江水利工程等坝体位移的监测中。20世纪90年代开始了大坝及高边坡的GPS自动化变形监测系统的研究,GPS技术已经应用于三峡工程、黄河小浪底水利枢纽工程、浙江天荒坪抽水蓄能电站、湖北清江隔河岩水利工程、龙羊峡水库近岸等大坝或高边坡的变形监测。目前,多传感器数据融合的大坝变形自动监测技术、监测系统的自动化、网络化和信息化技术是大坝和高边坡工程监测领域的研究发展趋势。
当前尾矿库较为落后的安全监测技术和监测手段,不能满足包括企业自身在内的全社会对于提高尾矿库管理水平和安全状况的迫切需要。目前,我国尾矿库的监测技术还处于起步阶段。尾矿库的管涌流土、地震液化等坝体内部致灾因素引起坝坡失稳的预警技术基本属于空白,其监测、预警技术的研究成果较少。特别指出的是,我国尾矿库数量多、分布广,因此尾矿库自动化安全监测系统的设施实施是面向我国尾矿库安全的重大需求,具有良好的应用前景。
二、方案设计
(一)监测指标选择
尾矿库内存有大量尾矿浆沉淀水,水位相对比较稳定;同时,从尾矿坝坝顶排放尾矿时,矿浆向库内流淌的过程中,矿浆水不断向下渗透;此外,汛期大量降雨。这些因素在尾矿坝体内形成一个庞大渗流场。再者,尾矿沉积体属非均值体,排矿部位又需要经常调换;坝体又在不断增高;况且在尾矿库整个服务期间内,矿源及选矿流程有可能改变,尾矿性能自然也会变化。这就是尾矿坝渗流场异常复杂的原因。浸润线即渗流流网的自由水面线,是尾矿坝安全的生命线,浸润线的高度直接关系到坝体稳定及安全性状,因此,对于浸润线位置的监测是尾矿库安全监测的重要内容之一。
尾矿库内存有大量尾矿浆沉淀水,库水位监测的目的是根据其水位的高低可判断该库防洪能力是否满足安全要求。具体地说:一个完善的设计在设计文本中会给出防洪所需的调洪水深,并要求在设计洪水位(即最高洪水位)时,要同时满足设计规定的最小安全超高和最小安全干滩长度的要求。因此,对于库水位位置的把握可以直接防止尾矿库在汛期避免洪水漫顶溃坝事故的发生,有利于安全监管部门和企业在汛期来临之前,直观地了解和掌握库水位是否达到了设计要求的汛前限制水位。由此可见,库水位的连续动态监测也是尾矿库安全监测的重要内容之一。
尾矿库发生溃坝灾害,坝体位移是灾害演化过程的直观反应指标,因此对于坝体下游坡变形的掌握,可以及时发现尾矿坝变形率和发展速度,有利于安全监管部门和企业进行科学的应急决策,并及时采取应急对策措施,从而避免灾害的发生或者减少灾害发生造成的危害。
在定量评价尾矿库的防洪能力时,需要测定滩顶标高和设计最高洪水位下允许达到的干滩标高,当前的检测方法较难准确并快速测定这两个指标,问题在于水边线的界线很不明显,该处又无法进人,通常只能目测。据此推算出来的总干滩长度和调洪干滩长度自然也是极不可信的。因此,在尾矿库安全自动化监测系统中,应增加快速并简捷的标高测定方法。因此,滩顶标高和设计最高洪水位下允许达到的干滩标高,是尾矿库安全监测需要测定的指标。
此外,在尾矿库安全监测系统中,为了实时掌握尾矿库库区的情况和运行状况,通常在溢水塔、滩顶放矿处、坝体下游坡等重要部位设置视频监测设置,以满足准确清晰把握尾矿库运行状况的需要。综上所述,金属非金属矿山尾矿库安全监测系统监测指标包括:浸润线;库水位;滩面标高;坝体位移;视频图像。
(二)监测系统设计 1.浸润线监测
一般选择尾矿库坝上最大断面或者一旦发生事故将对下游造成重大危害的断面为监测剖面。大型尾矿库在一些薄坝段也应设有监测剖面。每个监测剖面应至少设置5个监测点,并应根据设计资料中坝体下游坡处的孔隙水压力变化梯度灵活选择监测点。尾矿坝坝坡浸润线监测仪器分两类。一类埋设测压管,人工现场实测;另一类是埋设特制传感器,进行半自动或自动观测。
浸润线监测仪器埋设位置的选择,应根据《尾矿库安全技术规程》(AQ2006-2005)中规定的计算工况所得到的坝体浸润线位置来埋设。在作坝体抗滑稳定分析时,设计规范规定浸润线须按正常运行和洪水运行两种工况分别给出。设计时所给出的浸润线位置应是监测仪器埋设深度的最重要的依据。2.库水位监测
一般在库内排水构筑物上设置自动监测仪,将所测信号传给室内接收机处理得到库水位。既准确,又适时。需要指出的是,库内排水构筑物一般位于尾矿库内,排水构筑物周边为尾矿澄清水,因此需要在监测系统布置前,针对特定尾矿库的实际情况,灵活选择施工方案。3.干滩标高监测
干滩标高的测量不同于其它点标高的测量,这是由尾矿坝自身的运行特点决定的,随着尾矿坝的不断填筑加高,滩顶标高和设计最高洪水位下允许达到的干滩标高是两个动态变化的指标,因此,不能在某一位置架设坚固的不能移动的标高监测设备。采用移动GPS,定期监测尾矿坝滩顶标高和设计最高洪水位下允许达到的干滩标高。该方法灵活简便、具有较高精度、利于位置变化。4.坝体位移监测
正是由于过去对尾矿坝坝体位移监测认识不足,尾矿坝位移监测手段不多。坝体变形计算至今尚未纳入设计规范。对于较大的尾矿坝,设计仅在坝体表面设置位移观测桩。具体监测手段主要有人工用经纬仪监测和GPS自动监测两种。根据坝的长短至少选择2~3个监测剖面。一般在最大坝高处、地基地形地质变化较大处均应布置监测剖面。
每个剖面上根据坝的高矮,在坝坡表面从上到下均匀设置4~6个监测点。最下面一个点应设置在坝脚外5~10m范围内的地面上,以用于监测尾矿坝发生整体滑动的可能性。
5、视频监测 在尾矿库安全监测系统中,为了实时掌握尾矿库库区的情况和运行状况,通常在溢水塔、滩顶放矿处、坝体下游坡等重要部位设置视频监测设置,以满足准确清晰把握尾矿库运行状况的需要。
(三)某尾矿库安全监测系统设计方案
某尾矿库初期坝坝顶标高为163.5m(东坝坝高为20m,西坝坝高为24.2m)。后期坝坝顶标高为220m。后期坝采用上游式尾矿筑坝。最终总库容为1350万m3。2008年1月子坝坝顶标高为201m,沉积滩顶标高约为198m。目前总坝高为58.7m,总库容不到1000万m3,暂属四等尾矿库。当沉积滩顶标高达到199.3m时,就升为三等尾矿库。该尾矿库安全监测系统监测设计方案为:
1、库水位监测
1)监测部位:尾矿库溢水塔上。
2)监测仪器:电子水位传感器(无线传输)。
3)仪器数量:1个。
2、滩顶和滩面标高监测
1)监测部位:在东坝和西坝的沉积滩面上各选三条垂直于子坝的直线,直线间距为100 m。在每条线的滩顶和距滩顶70 m处各设一个滩面标高两个点均为监测点。
2)监测仪器:小旗和移动GPS,定期检查小旗标高,并输入软件。
3)仪器数量:移动GPS一台,小旗12杆。
3、浸润线监测
1)监测部位:选择了(位于钻孔ZK13以东3~5m处)、Q2(位于钻孔ZK01以东3~5m处)、Q3(位于钻孔ZK23以东3~5m处)、Q4(位于钻孔ZK31以东3~5m处)。
在Q1、Q3剖面的第一、三、五期子坝顶各布设两个浸润线观测点(两点间距0.5m),每个点埋设1个传感器。第一期子坝顶两个传感器的埋深分别为6m和10m(自孔口地面算起);第三期子坝顶两个传感器的埋深分别为8m和13m;第五期子坝顶两个传感器的埋深分别为8m和15m。
在Q2、Q4剖面的第三、五期子坝顶各布设1个浸润线观测点,每个点埋设1个传感器。第三期子坝顶两个传感器的埋深分别为13m;第五期子坝顶两个传感器的埋深分别为15m。
2)监测仪器:振弦式孔压传感器、光纤渗压传感器。
3)仪器数量:振弦式孔压传感器(10个),光纤渗压传感器(6个)。
4、位移GPS监测
1)监测部位:在东坝最大坝高剖面G1和西坝最大坝高剖面G2的坝坡上各布设4个监测点。4个监测点的位置分别设在坝脚、第一、三、五期子坝顶上。
2)监测仪器:GPS
3)仪器数量:一个基站、八个测点。
5、坝内位移监测
1)监测部位:ZK53、ZK15、ZK24、ZK32以东3~5m,每个断面3个位移监测点。
2)监测仪器:测斜仪+测斜管。
3)仪器数量:SINCO测斜仪一台,测斜管若干长度。
7、可视化监测
在溢水塔、滩顶放矿处、坝体下游坡等重要部位设置视频监测设置,通过现场摄像头实时拍摄并快速传输至控制室的显示屏幕上,能够直观地显现尾矿库生产放矿及筑坝运行等情况。
三、运营/管理
(一)设备安装
在尾矿库安全监测系统安装时,应注意以下问题:
1.安装的仪器设备的安全问题。尾矿库一般处在高山峡谷等人员稀少的场地,且尾矿库占地面积较大,因此,仪器设备的防盗问题是面临的安全问题之一。因此,传感器、摄像头及GPS等设备应安装稳固,均应在安全过程中考虑防盗问题,GPS接收机应放置在水泥墩内,避免因为设备主机被盗,导致系统无法正常工作。
2.购买的GPS等设备应该有避雷装置。GPS设备靠接收星历信号来准确测定坝体变形状况,GPS天线应尽量选择轭流圈天线,尽可能保证雷雨天气的设备安全。
3.安装位置应考虑尾矿坝填筑过程高程变化。尾矿库的运行期为尾矿坝不断升高、储存尾砂库容不断增大的过程,与水利工程不同,其坝顶高程随着生产运行期的发展不断变化。此外,对于上游式尾矿坝来说,其坝轴线还要不断向库内前移。因此,GPS、孔压传感器等设备的埋设位置应能够满足尾矿库整个运行期安全监测和安全管理的需要,应针对整个运行期综合考虑。
4.应注意浸润线监测仪器埋设位置。尾矿坝总在不断加高,尾矿坝浸润线还受降雨和放矿水的影响,其深度在一定范围内经常变动。现有的观测设施只能测出进水孔处的水头或孔隙压力。从流网图可知:只有当某个深度的水头与该深度的高程相等时,或者说当某个深度的孔隙压力接近于零时,该深度才是浸润线的位置。监测仪器埋深了,测得的浸润线比实际浸润线低;仪器埋浅了,测不到浸润线。浸润线的位置应根据设计资料综合考虑。
(二)运营管理
基于金属非金属矿山尾矿库安全监测系统,在尾矿库的运行过程中,除了应及时掌握各种监测技术指标的最新数据外,还要有尾矿库安全与否的预警技术和响应方法。本系统认为,应结合尾矿库定量安全评价方法,通过对尾矿库运行期的安全评价和监测指标数据安全度分析后,可以建立尾矿库运营管理的预警技术和响应方法。
1.浸润线指标的预警方法
通过尾矿坝现状的勘察和资料分析,掌握特定尾矿坝的沉积规律、材料分区及概化方法、堆坝材料的物理力学特性指标,通过渗流验算及分析,掌握汛期设计资料允许的最高浸润线高程。该指标即时浸润线监测指标的预警及响应标准。
其中,渗流验算的计算方法如下所示:
渗流分析的基本方程为:
式中,[K]为透水系数矩阵;{H}为总水头向量;[M]为单元储水量矩阵;{Q}为流量向量;t为时间。
对于等别不高的尾矿库,还可以依据国家标准《构筑物抗震设计规范》中有关尾矿坝浸润线高度的预警指标进行预警。
2.防洪能力的预警方法
防洪能力的预警是避免汛期发生尾矿库漫顶溃坝事故的最有效方法。通过调洪验算得到当前库水位下,设计最高洪水位下尾矿库需要的调洪水深,即可以掌握当前干滩长度是否满足调洪水深的要求。
3.坝体位移的预警方法
通过尾矿坝当前运行现状的有限元强度折减法坝坡稳定性分析,可以近似得到发生极限滑动情况时,坝体一定深度及表面的变形情况,并结合尾矿坝位移监测趋势及变形率的定性判断,可以准确把握尾矿库因受力情况发生位移趋势及变化速率,从而及时预警并采取响应措施,疏散下游群众,并采取积极措施加固坝坡,避免因坝坡失稳发生溃坝的严重危害。
当折减系数继续增加,尾矿的抗剪强度进一步减小,坝坡的塑性区会进一步增大;当折减系数增加到某一数值时,塑性区形成连通的区域,尾矿沿该剪切面发生不收敛的塑性剪切变形。此时认为坝坡发生破坏,强度折减系数即认为是坝坡的整体安全系数;滑裂面的位置可根据位移增量等值线或最大剪应变增量等值线的疏密来确定,也可根据破坏区域的范围来判断。
基于刚体极限平衡理论的坝坡稳定分析方法已相当成熟且广泛应用于尾矿坝在内的边坡稳定分析中。然而,该法在处理荷载条件和边界条件复杂的边坡时常遇到困难。基于强度折减的有限元法,能够处理复杂荷载和边界条件,算法先进,可以更为准确地分析尾矿坝的坝坡稳定性,为尾矿库安全监测位移指标的预警提供依据。
4.注重与日常巡检工作结合尾矿库安全监测系统的实施,可以使管理者在主控制室内能够及时把握尾矿库的最新动态和监测指标信息,但是,尾矿库安全监测系统不能完全代替尾矿库日常巡检工作,应与日常巡检结合,通过监测指标和日常巡检结合的比对,能够更为科学的掌握尾矿库的安全状况和运行特点。
四、产品映射
1.孔压传感器的技术要求
1)准确度高,灵敏度高,稳定性好,体积小,重量轻,直接频率输出,激励电路封装在水密壳体内。
2)测量范围:0.1、0.2、0.3、0.6、1.0、3.0、6.0、10.0、MPa(对应于10-1000m水深)。
3)准确度:±0.5%FS。
4)可直接用于江河、湖泊、海水的深度和液体压力的测量,也可用作剖面系统的深度传感器。
2.GPS设备的技术要求
1)GPS接收机及其配套设备,要求包括从数据采集、集中传输、解算处理、显示和记录及避雷和防盗等安全保护设施的全部设备。
2)精度要求,水平:3mm+0.5ppm ,垂直:5mm+0.5ppm;上述精度指标要求有国家光电检测中心等权威机构的检测结果,并具有权威机构颁发的证书。
3)解算软件上有各个GPS接收机的独立监控模块,通过解算软件,可以在计算机中实时显示具有上述精度的各个GPS接收机的坐标和位移量,并能够实时记录在文本文件中。
4)GPS接收机天线为轭流圈天线。
5)具有避雷设施及其它安全保护措施。
五、标准支持
在尾矿库安全领域,技术标准主要参照《尾矿库安全技术规程》(AQ2006-2005)。该标准有关尾矿库安全监测系统的规定包括以下内容:
1.4级以上尾矿坝应设置坝体位移和坝体浸润线观测设施。必要时还宜设置孔隙水压力、渗透水量及其浑浊度的观测设施。
2.做好日常巡检和定期观测,并进行及时、全面的记录。发现安全隐患时,应及时处理并向企业主管领导报告。
3.尾矿库运行期间应加强浸润线观测,注意坝体浸润线埋深及其出逸点的变化情况和分布状态,严格按设计要求控制。
4.尾矿库滩顶高程的检测,应沿坝(摊)顶方向布置测点进行实测,其测量误差应小于20mm。当滩顶一端高一端低时,应在低标高段选较低处检测1~3个点;当滩顶高低相同时,应选较低处不少于3个点;其他情况,每100m坝长选较低处检测1~2点,但总数不少于3个点。
5.根据尾矿库防洪能力和尾矿坝坝体稳定性确定,分为危库、险库、病库、正常库四个等级。除正常库外,前三类从文字上看,只是程度有所不同。尾矿库安全度定义紧紧依靠尾矿库安全监测系统中设定的监测指标来评判。
例如,危库是指安全没有保障,随时可能发生垮坝事故的尾矿库,危库必须停止生产并采取应急措施,综上所述,尾矿库安全监测系统能够紧扣我国现行尾矿库安全技术标准,具有较大的实用意义和价值。
六、标准化程度
尾矿库安全监测系统监测的浸润线、库水位、滩面标高、坝体位移、视频图像,均能够为尾矿库日常安全管理及尾矿库安全运行服务。我国尾矿库中85%以上为上游式尾矿坝筑坝,该系统对于上游式筑坝的尾矿库具有良好的应用前景,今后监测系统若能与不同等别尾矿库相结合,上升到安全技术标准,可以全面提高我国尾矿库安全管理水平,减少我国尾矿库事故发生的数量,保障尾矿库库区人民生命财产、环境安全及社会稳定,为构建和谐社会服务。
七、效果分析
当前,我国安全生产形势依然严峻,工矿商贸领域安全生产重特大事故时有发生,特别是近年来尾矿库事故多发,已引起全社会的高度重视。在《国务院关于实施国家突发公共事件总体应急预案的决定》(国发〔2005〕11号)中明确要求 “科技部、教育部、中科院、社科院、工程院、中国科协等有关部门和科研教学单位,要积极开展公共安全领域的科学研究;加大公共安全检测、预测、预警、预防和应急处置技术研发的投入,不断改进技术装备,建立健全应急平台,提高我国公共安全科技水平”。在《国家中长期科学和技术发展规划纲要(2006-2020)》中把“公共安全”问题列入了国家科技发展的“重点领域”,要重点研究开发地震、台风、暴雨、洪水、地质灾害等监测、预警和应急处置关键技术,森林火灾、溃坝、决堤险情等重大灾害的监测预警技术以及重大自然灾害综合风险分析评估技术。同时,2007年国家安全生产监督管理总局、国家发展改革委、国土资源部、国家环保总局联合组织了全国范围的尾矿库专项整治行动,使得尾矿库的安全运行和管理已引起全社会的广泛关注。
近年来,我国国民经济快速发展,每年以10%左右的速度递增,在经济高速发展的带动下,钢铁、有色金属和水泥等主要原材料工业扩张迅速,随着金属非金属矿山采选业的迅速发展,尾矿库的安全生产和环境安全等问题日益显现,特别需要指出的是,我国尾矿库下游大都为人口密集区、城镇或大型工厂企业,因此,尾矿库的安全备受关注。如何针对我国尾矿库分布特点和现状,提高尾矿库安全管理水平,是摆在全社会的一个重要问题。金属非金属矿山尾矿库安全监测系统的逐步实施和推广,可以大幅度提高我国对于尾矿库溃坝灾害机理的认识水平,全面提升尾矿库安全监管和日常管理水平,增强企业、社会、政府对于尾矿库灾害的预警响应能力,建立更便于尾矿库运行期安全管理和风险控制的溃坝风险综合评判方法。特别需要指出的是,我国尾矿库数量多、分布广,金属非金属矿山尾矿库安全监测系统将具有广泛的市场前景和重要的应用价值。
第四篇:尾矿库实时在线安全监测预警系统方案及说明
尾矿库安全监测概述
1.1安全监测指标选择
尾矿库内存有大量尾矿浆沉淀水,水位相对比较稳定;同时,从尾矿坝坝顶排放尾矿时,矿浆向库内流淌的过程中,矿浆水不断向下渗透;此外,汛期大量降雨。这些因素在尾矿坝体内形成一个庞大渗流场。再者,尾矿沉积体属非均值体,排矿部位又需要经常调换;坝体又在不断增高;况且在尾矿库整个服务期间内,矿源及选矿流程有可能改变,尾矿性能自然也会变化。这就是尾矿坝渗流场异常复杂的原因。浸润线即渗流流网的自由水面线,是尾矿坝安全的生命线,浸润线的高度直接关系到坝体稳定及安全性状,因此,对于浸润线位置的监测是尾矿库安全监测的重要内容之一。
尾矿库内存有大量尾矿浆沉淀水,库水位监测的目的是根据其水位的高低可判断该库防洪能力是否满足安全要求。具体地说:一个完善的设计在设计文本中会给出防洪所需的调洪水深,并要求在设计洪水位(即最高洪水位)时,要同时满足设计规定的最小安全超高和最小安全干滩长度的要求。因此,对于库水位位置的把握可以直接防止尾矿库在汛期避免洪水漫顶溃坝事故的发生,有利于安全监管部门和企业在汛期来临之前,直观地了解和掌握库水位是否达到了设计要求的汛前限制水位。由此可见,库水位的连续动态监测也是尾矿库安全监测的重要内容之一。
尾矿库发生溃坝灾害,坝体位移是灾害演化过程的直观反应指标,因此对于坝体下游坡变形的掌握,可以及时发现尾矿坝变形率和发展速度,有利于安全监管部门和企业进行科学的应急决策,并及时采取应急对策措施,从而避免灾害的发生或者减少灾害发生造成的危害。
在定量评价尾矿库的防洪能力时,需要测定滩顶标高和设计最高洪水位下允许达到的干滩标高,当前的检测方法较难准确并快速测定这两个指标,问题在于水边线的界线很不明显,该处又无法进人,通常只能目测。据此推算出来的总干滩长度和调洪干滩长度自然也是极不可信的。因此,在尾矿库安全自动化监测系统中,应增加快速并简捷的标高测定方法。因此,滩顶标高和设计最高洪水位下允许达到的干滩标高,是尾矿库安全监测需要测定的指标。
此外,在尾矿库安全监测系统中,为了实时掌握尾矿库库区的情况和运行状况,通常在溢水塔、滩顶放矿处、坝体下游坡等重要部位设置视频监测设置,以满足准确清晰把握尾矿库运行状况的需要。综上所述,金属非金属矿山尾矿库安全监测系统监测指标包括:浸润线;库水位;滩面标高;坝体位移;视频图像。
尾矿库安全监测
安全监测系统概述
系统显著特点:
准稳、低功耗、防雷、安装快捷、数据无线传输、太阳能供电
1.1.1 浸润线监测
一般选择尾矿库坝上最大断面或者一旦发生事故将对下游造成重大危害的断面为监测剖面。大型尾矿库在一些薄坝段也应设有监测剖面。每个监测剖面应至少设置5个监测点,并应根据设计资料中坝体下游坡处的孔隙水压力变化梯度灵活选择监测点。尾矿坝坝坡浸润线监测仪器分两类。一类埋设测压管,人工现场实测;另一类是埋设特制传感器,进行半自动或自动观测。
浸润线监测仪器埋设位置的选择,应根据《尾矿库安全技术规程》(AQ2006-2005)中规定的计算工况所得到的坝体浸润线位置来埋设。在作坝体抗滑稳定分析时,设计规范规定浸润线须按正常运行和洪水运行两种工况分别给出。设计时所给出的浸润线位置应是监测仪器埋设深度的最重要的依据。
1.1.2 库水位监测
一般在库内排水构筑物上设置自动监测仪,将所测信号传给室内接收机处理得到库水位。既准确,又适时。需要指出的是,库内排水构筑物一般位于尾矿库内,排水构筑物周边为尾矿澄清水,因此需要在监测系统布置前,针对特定尾矿库的实际情况,灵活选择施工方案。
1.1.3 干滩标高监测
干滩标高的测量不同于其它点标高的测量,这是由尾矿坝自身的运行特点决定的,随着尾矿坝的不断填筑加高,滩顶标高和设计最高洪水位下允许达到的干滩标高是两个动态变化的指标,因此,不能在某一位置架设坚固的不能移动的标高监测设备。
1.1.4 坝体位移监测
正是由于过去对尾矿坝坝体位移监测认识不足,尾矿坝位移监测手段不多。坝体变形计算至今尚未纳入设计规范。对于较大的尾矿坝,设计仅在坝体表面设置位移观测桩。具体监测手段主要有人工用经纬仪监测和GPS自动监测两种。根据坝的长短至少选择2~3个监测剖面。一般在最大坝高处、地基地形地质变化较大处均应布置监测剖面。
每个剖面上根据坝的高矮,在坝坡表面从上到下均匀设置4~6个监测点。最下面一个点应设置在坝脚外5~10m范围内的地面上,以用于监测尾矿坝发生整体滑动的可能性。
1.1.5 视频监测
在尾矿库安全监测系统中,为了实时掌握尾矿库库区的情况和运行状况,通常在溢水塔、滩顶放矿处、坝体下游坡等重要部位设置视频监测设置,以满足准确清晰把握尾矿库运行状况的需要。
我公司自主研发尾矿库在线监测系统,是国内唯一通过国家权威专家认证的成熟产品,诚招全国合作伙伴 *** http://zhonghaida.co.bokee.net
联系人:徐女士,电话***本公司专业从事滑坡地质灾害监测预警系统、矿山边坡变形监测预警系统、尾矿坝安全在线监测预警系统、矿山采空区沉陷监测预警系统、水库大坝安全监测预警系统、堤防渠道变形监测预警系统、深基坑及周边影响区变形监测预警系统、大型桥梁健康监测预警系统、高层建筑及大型场馆健康监测预警系统等设备的生产安装调试。
第五篇:安全监测监控系统管理制度
监控人员岗位责任制度
一、安全监控值班人员坚守24小时不间断值班,不得空岗、脱岗,节假日坚守岗位。
二、严格执行交接班制度。认真填写交接班记录,交接双方签字交接。
三、做好值班记录,值班人员对当日所协调的有关事项,要在值班记录薄详细记录,对当日未处理完毕的事项要提出下班处理建议。
四、密切监控安全信息网络安全专用通讯网络的运行情况,及时、准确掌握煤矿各测点监测数据,对发现网络异常、出现故障做好记录按规定立即处理。
五、严格执行监控系统日报制度,每日上报监控系统记录汇总情况及处理结果,监控日报必须有按程序传阅、审批制度和监管措施的记录。
六、值班期间要不间断浏览、分析监控系统各种数据信息、参数、掌握采掘动态及时更新监控系统客户端软件基础数据及图纸填绘,通过IP电话、电子邮件或传真方式,上报接受各种文件、指令、及时上传汇报煤矿有关情况,重大隐患及时通知有关负责人进行处理,并详细记录存档。
七、系统出现故障、瓦斯超限报警、断电馈电异常情况等监测监控系统异常处理时,要立即按《安全监控系统异常处理程序》的规定及时上报处理。
八、按时修改,督促公司调度室、公司值班领导及相关技术人员的信息反馈工作,及时传达上级的各项指令。
九、值班监控人员必须对当日获得信息进行分析、整理、写出主要情况,存在问题及处理意见的监控运行记录,并由值班领导批示后,报分管技术副总审阅,然后将报告主要内容及处理意见分别下达有关部门。
十、对市、县局调度中心(室)下达的指令,“监管处理决定书”等,要“谁当班、谁负责”,进行跟踪汇报处理。
十一、值班人员不得通过安全信息网络从事危害网络安全和公共安全,损害公众利益或侵害他人正当权益的活动,不得利用网络传播发生与安全生产有关的其它信息。
十二、不得运行与监控系统无关的任何程序,严禁打字,上国际互联网,玩游戏等。十三、一律不准其它非操作人员操作监控主机。
十四、值班期间必须佩戴胸卡,持证上岗。
技术资料管理制度
安全监控机构建立以下帐卡及报表
一、设备、仪表台帐;
二、监控设备故障登记表;
三、检修记录;
四、巡检记录;
五、中心站运行日志;
六、矿井安全监控日报;
七、矿井安全监控设备使用情况月报、季报表;
安全监控机构必须绘制安全监控设备布置图,图上标明传感器、分站等设备的位置、断电范围、传输电缆,该图应按季绘制,按月修改,由监控机构保存。
监测技术资料均需定期保存,对井下事故记录应长期保存。
安全监控设备管理制度
一、安全监控系统设备管理实行监控中心、监控设备所在辖区综合管理制度。
二、监控中心负责监控系统及局域网系统设备的运行管理、巡检、日常保养及维修、维护工作,确保监控系统设备的正常运行。公司矿井生产等管理部门提供相关信息,协助完成防范管理和监督控制。
三、监控中心对监控系统设备使用情况进行检查、指导、监督,对因监控员不负责任造成的监控系统设备损坏进行责任追究。
四、监控设备辖区单位与监控中心签订监控设备管理使用责任书后,对所辖监控设备负有管理维护责任。
五、监控中心对监控设备要进行日常管理,严格按程序操作监控主机,维护监控系统。
六、由于不规范程序操作等人为原因造成监控设备损坏,系统无法正常运行的,追究其管理的责任。
七、未经监控中心同意,监控员等严禁擅自开启工控机接口,严禁将监控主机与U盘等外接输入、输出介质相连,严禁在监控主机或监控系统中安装无关程序,严禁删除系统中的任何程序或改变其存储位置,严禁改动系统预设参数。
八、监控室属监管重地,未经领导批准,非工作人员严禁入内,严禁任何人员以任何理由进入监控室。
九、任何人不得在监控室会客和进行娱乐活动,严禁非监控人员操作监控系统设备。严禁随意改变、调整和移动监控设备。严禁利用监控
设备从事与监控任务无关的活动。对因违反规定,造成设备不能正常工作、系统紊乱的,追究相关责任人的责任。
十、监控员负责监控台及监控室的日常保洁,保持室内清洁,整齐。室内严禁吸烟。不准在监控室内堆放杂物和私人物品。
十一、安全监测监控系统由调度室负责管理,具体井上监测系统的安装、维护、检修、分站的标校、监测、监控设备及线路的管理由井上监控维修工负责,井下安全监测系统的安装、维护、检修、分站的标校、监测监控设备及线路的管理由井下监控维修工负责;调度中心负责值机、打印报表,协助安设各种设备。
1、凡装有安全监测、监控、监视、通信设备及线路的生产队组,负责该区域安全监控系统管理工作,队长是第一责任人,对保护和维护设备完好负有不可推卸的责任。
2、各队组管理区域内,凡敷设有光缆和监控、通讯设备的队组,对设备、线路的保护负有重要责任。
3、生产队检修更换与安全监测监控系统设备相关联的电器设备,或有计划区域性停电检修影响监控系统正常运行的,必须提前一天汇报生产调度中心,经安监部、通风部批准后,配合机电监测工实施,生产队无权中断断电装置的正常运行。
4、各生产队无权甩掉安全监测、监控设备进行生产,一经发现按严重“三违”处理,队长为第一责任人。
5、各级职能部室,各级值班管理人员,在断电装置出现故障,未采取措施,未经安监部、通风部批准,不得指示甩掉断电装置不用。
6、瓦检员负责所检查范围内瓦斯探头的现场监督管理和日常检查
工作,每班与光检仪进行对照,并将记录和检查结果报监控值班人员,当两者读数误差大于允许误差时,先与读数较大者为依据,采取安全措施并必须在8小时内对两种设备调校完成。
7、通风部负责瓦斯探头的定期检验,建立台账,按时校对。
十二、监控设备安装、拆移
1、凡需要安设安全检测、监控设备的工作地点,必须在作业规程或安全技术措施中对传感器数量、安装地点、报警浓度、复电浓度、断电浓度、断电装置安装地点、断电的范围和电源线及控制范围等作出明确规定。
2、应安装断电仪的地点,开工前3天由生产队组与机电部联系,机电监测工准备和调试所需断电装置、连锁开关、连锁线,安装前一天生产队组与机电监测工具体联系,安装期间积极协助、紧密配合。凡因工作失误影响断电仪安装、运行,影响采掘面正常开工者,将追究其责任。
3、机电监测工安装断电装置、联锁开关到断电设备部分、断电线、由机电监测工现场检查测试瓦斯电闭锁情况,符合作业规程要求方可开工,否则不得生产。
4、采取完工或搬家,不再需要断电装置时,生产队组提出申请,经安监部、通风部批准,机电部接通知后2天内必须拆除,凡因不及时组织拆机造成装置丢失损失的将追究责任。
5、工作面掘进或撤回时,生产队组负责正常监控系统设备的移动,由于不及时或不按规定执行造成损失的将追究责任。
6、综放工作面回撤时必须按规定回撤监控线路、设备等,不按规
定造成损坏将追究其责任。
十三、瓦斯电闭锁实验:
采掘工作面瓦斯电闭锁试验,简称断电试验,由瓦检员、机电工共同在现场完成,每10天进行一次测试,并详细填写断电试验记录,列入日常检查范围。
系统设备和传输设备定期检修维护制度
一、安全监测监控系统维修工负责公司的瓦斯监控设备的检修维护工作。在维护过程中,要及时向监控室值机人员汇报检修维护工作的进展情况。
二、监控设备每半个月进行一次巡回检查维护,6个月进行一次全面升井地面检修工作。
三、对井下甲烷传感器、井下分站进行检修维护时,维修工必须带足同等数量的完好备用传感器、分站,及时替换维护;对已损坏的传感器、分站要造表登记,做好检修维护记录。
四、井上下数据电缆出现异常,要迅速查明原因,尽快修复。井下铺设的数据电缆局部断路、破损,必须立即对该段线路进行全部更换。
五、地面监控机房网络设备出现故障,要立即启用备用设备。对可能涉及引起瓦斯监控系统不能与上级正常联网运行时,要及时上报县局调度室,经批准后,方可采取相应措施进行处理。
六、无论任何时候,严禁瓦斯监控系统无理由随意断开、长时间不在线运行。
安全监控系统网络运行管理制度
一、安全信息网络是用于全省煤矿瓦斯进行多级监督的专用设备,必须保证网络畅通,24小时正常可靠运行,未经许可不得变更设置和参数,更不得挪作他用。对网络设备及软件的任何扩充、改变必须提交书面报告,经县局信息调度中心批准方可进行。
二、公司建立安全监控系统,保证网络设备的正常运行,传递真实有效信息数据。
三、公司的安全监控系统要按照《煤矿安全规程》等的要求,安装产品合格,数量充足,位置正确的传感器,并委托有资质的单位进行施工和维修。
四、公司的安全监控系统要责专人负责运行和管理,要设置专门的机构并配备专业的网络技术人员,同时按规定配备系统操作和维护人员,并且相对保持监控系统操作人员的稳定性,操作人员不得兼职。要建立健全网络运行管理制度、值班制度、设备设施定期检修制度、操作规程等管理制度,认真填写运行日志,并定期进行检查。
五、山西省煤矿瓦斯监测监控信息网络系统是封闭专用内部网络,严禁和其它网络(如:国际互联网)相接。
六、操作人员不得通过安全信息网络从事危害网络和相关安全,损害公众得益或侵害他人正当权益的活动,不得利用网络传播和发送与安全生产无关的其它信息。
七、安全监控系统监测专用计算机不得运行与监测系统无关的任何程序,严禁打字,上国际互联网,玩游戏等,上述现象一经发现,必须
严肃处理。
八、公司的安全监控系统必须按规定安装相应的客户端防病毒软件,实时监测网络病毒,及时更新病毒库和客户端防病素软件系统升级。
九、公司的安全监控系统配备的IP电话,是安全信息网络系统的组成部分,专用于安全生产的调度指挥和网络调成,应固定在监控值机室并保证畅通。
十、保证网络机房信息安全,防火、防盗、防静电、防雷,空调系统,UPS电源系统等相关设施的完好及运行正常。
十一、网络出现故障要立即报告,积极组织抢修。如属监控人员因素(操作不当、删除程序、关机等),必须在半小时内恢复正常。如设备故障必须在2小时内恢复,网络线路故障要立即与线路运营商取得联系,在4小时内恢复正常,且每半小时就处理情况上报县局调度。
十二、其它异常情况按照《矿井瓦斯监控系统异常处理程序》规定执行。
安全监测监控故障报告制度
安全监测监控系统是“一通三防”的重要防线,为了在系统发生故障时能够迅速排除故障,采取安全措施,保障矿井安全生产,特制订本措施:
一、故障类型:
1、探头断线;
2、分站通讯中断;
3、分站直流供电;
4、中心站全部无记录或部分无记录;
5、中心站软、硬件故障;
6、网络故障。
二、处理程序:
1、井下部分:探头断线、分站数据中断、分站直流供电、中心站全部无记录或部分无记录时,立即通知井下电工和系统维修人员进行处理。
2、井上部分:探头无数据、分站通讯中断、分站直流供电、中心站全部无记录或部分无记录时,立即通知地面电工和系统维修人员进行处理。
3、中心站软、硬件故障,出现系统损坏、无法采集数据、终端程序损坏、无法正常上传,监控负责人立即进行处理。
4、属于网络故障时,立即通知网络公司进行处理。
5、出现无能力修复的,立即联系厂家,进行处理。
三、安全措施
1、监测监控中心站必须实行24小时值机,值机员要坚守工作岗位,严格执行交接班制度,严禁值机人员脱岗或值班期间未认真履行职责。
2、由调度值班领导负责组织隐患排查,并必须在6分站内将有关情况上报县监控中心(传真方式),报告须具有公司值班领导签字。同时要在处理过程中将处理情况上报县监控中心备案,直至恢复恢复正常。
3、中心站上传程序出现无法上传的,监控值机员打印监测报表上报县监控中心,直至故障排除。
4、中心站软、硬件出现故障、探头断线、分站通信中断、分站直流供电、中心站全部无记录或部分无记录时,立即通知通风部责令井下的瓦检员用光学瓦斯器测量瓦斯,监控值机员记录所测得的瓦斯值上报县监控中心,直至故障排除。
5、建立隐患档案管理制度,跟踪落实直至解决。
安全监控异常情况上报制度
一、安全监测监控系统值机人员负责公司安全监控信息工作,实时监测矿井瓦斯浓度、主扇状态、局扇状态、井上下分站状态、风门开关和设备馈电及网络运行情况。发现异常要及时按照公司制定的汇报程序进行逐级上报,公司总工、机电副总、通风部、安全部和相关值班领导。同时必须将安全异常处理情况按要求上报市、县监控中心。
二、安全监测监控系统值机员时矿井瓦斯实时监测、分站和传感器定义设置、指令调度的第一责任人。
三、安全监测监控系统异常报警信息必须认真核查、处理、备案和上报。矿井安全监控异常信息包括以下12种:
1、瓦斯超限;
2、主要通风机停风;
3、局扇停风;
4、风门常开;
5、矿井监控系统全部无记录或部分无记录;
6、无法向县监控中心上传数据的;
7、探头报警点、断电点定义不当,导致异常断电的;
8、探头位置图纸填绘不当;
9、监控出现异常未进行调度汇报的或弄虚作假的;
10、非法入侵网内其它机器以及危害网络数据安全传输的活动;
11、调度指令不及时上报或上报指令弄虚作假的;
12、监控系统相关设备未按规定检测、校验、维护保养导致数据传
输不正常的。
四、安全监测监控系统值机人员发现瓦斯超限报警、瓦斯曲线不正常、风机停风及设备开停断电报警等异常情况。必须立即执行调度程序,由调度值班领导负责组织隐患排查,并必须在6分钟内将有关情况上报县监控中心,同时要在处理过程中每小时将处理情况上报县监控中心备案,直至恢复正常。
五、安全监测监控系统值机员对收到的上级监控中心的安全指令要及时通知调度值班领导和公司有关领导,并就整改情况上报县监控中心。半小时内消除的安全隐患,只报送处理结果,以备核查。
六、安全监测监控系统的异常信息处理实行安全副总负责制,对异常信息的核查、调度、整改、上报制度负责。
七、安全监测监控系统中心必须建立健全档案管理制度,包括运行记录、设备台账、传感器校验记录、传感器和瓦检仪对照记录、隐患审阅和处理台账、检修记录、交接班记录等。
交接班制度
一、坚持24小时不间断值班,每班不得少于2人。交接班不得迟到、早退、代签、缺签。
二、定时履行交接班手续,交接双方准确填写交接班记录,表明各类已办、待办事项,双方共同审核、签字。
三、交接班要对网络设备及财产进行检查交接,履行财产交接手续,做好相应记录。
四、检查网络,监控主、备机、IP电话,传真机等设备的运行状态,如有异常,交接班双方共同处理。
五、监控室及机房要干净卫生,发现卫生环境差,接班人员可责令交班人员进行清扫,否则可不予接班。
】
监控系统日报表传阅审批制度
一、监控系统每天24小时责成专人操作,每天打印日报表一份。
二、值班人员详细记录矿井工作面瓦斯超限情况,详细记录时间,瓦斯浓度、原因、处理结果及领导签字。
三、监控系统负责人,每天要详细审阅监控记录及瓦斯监控日报表,报通风部长。
四、通风部长审阅签字后,值机员要及时把日报表报送有关领导签字,依次顺序为:分管技术副总、总经理、由监控室档存。
五、值班领导审核,对瓦斯超限问题必须立即安排解决,不准将问题遗留到下一班。
安全检测监控设备调校制度
一、监测监控系统各类传感器设专人维修校验,其它人员严禁乱调,维修时不允许随意更换与安全火花电路相关的元件,以保证仪器使用的可靠性。
二、设备正常使用中,要定期每7天清理防爆网上的煤尘,保证通气性能良好。
三、在调试和校验前,应备好标准气样和校验仪器。
四、采用载体催化元件的甲烷传感器,每10天必须用标准气样和空气调校一次,每10天必须对甲烷超限断电功能进行测试,调校完毕及时填写调校记录。
五、公司必须责成专人每班检查监控系统及数据电缆是否正常,发现问题及时上报进行处理。瓦斯检查员检查瓦斯必须记录甲烷传感器显示数据,并用光学瓦期检定器检查数据与其对照,两者读数误差不得大于1%,当读数误差大于误差时,先以较大读数为依据,并在2小时内对两种设备调校完毕。
六、井下分站,传感器连续运行6-12个月,必须升井进行维修。检修安全监测监控设备、情况要作记录并保存。