第一篇:统计分析方法学习总结
统计分析方法学习总结
S201505158 陈丹妮
一、统计的描述
一般采用以下几种图形描述数据:
直方图:表示几个变量的数据,使人们能够看出这些数目的大体分布或“形状”; 盒形图:比直方图简单一些的是盒形图(boxplot,又称箱图、箱线图、盒子图);
茎叶图:既展示了数据的分布形状又有原始数据。它象一片带有茎的叶子。茎为较大位数的数字,叶为较小位数的数字;
散点图:描述的数据有两对连续变量; 定型变量的图:定性变量(或属性变量,分类变量)不能点出直方图、散点图或茎叶图,但可以描绘出它们各类的比例,如:饼图、条形图。
二、汇总统计量
表示位置的汇总统计量:均值(mean):样本值的算术平均值;中位数(median):中间大小的数(一半样本点小于中位数);(第一或第三)(下、上)四分位数(点)(first quantile, third quantile)(分别有1/4或3/4的数目小于它们);k-百分位数(k-percentile);a分位数(a centile): k-百分位数=k%分位数:有k%的数目小于它;众数(mode):样本中出现最多的数。
表示尺度的汇总统计量:极差(range):极端值之差;四分位间距(四分位极差)(interquantile range)四分位数之差;标准差(standard deviation)方差平方根;方差(variance)各点到均值距离平方的平均。
三、相关的分布
相关的分布包括:离散分布、连续分布、抽样分布:我们能够利用样本统计量中的(描述样本的)信息, 比如样本均值和样本标准差中的信息,来对(描述总体的)总体参数(比如总体均值和总体标准差)进行推断(估计、检验等)。
大数定律:阐述大量随机变量的平均结果具有稳定性的一系列定律的总称。其中又分为独立同分布大数定律(提供了用样本平均数估计总体平均数的理论依据)和贝努力大数定律(提供了频率代替概率的理论依据)。
中心极限定理:阐述大量随机变量之和的极限分布是正态分布的一系列定理的总称。独立同分布中心极限定理(不论总体服从何种分布,只要它的数学期望和方差存在,从中抽取容量为n的样本,当n充分大时,则这个样本的总和或平均数是服从正态分布的随机变量)和德莫佛-拉普拉斯中心极限定理(提供了用正态分布近似计算二项分布概率的方法)。均值的假设检验包括对于正态总体均值的检验、对于比例的检验
四、各种分析方法
1.列联表分析
列联表变量中每个都有两个或更多的可能取值,称为水平,比如收入有三个水平,观点有两个水平,性别有两个水平等。列联表的中间各个变量不同水平的交汇处,就是这种水平组合出现的频数或计数(count)。二维的列联表又称为交叉表(cross table)。列联表可以有
很多维。维数多的叫做高维列联表。注意前面这个列联表的变量都是定性变量;但列联表也会带有定量变量作为协变量。
2.方差分析
方差分析(analysis of variance,ANOVA)是分析各个自变量对因变量影响的一种方法。这里的自变量就是定性变量的因子及可能出现的称为协变量(covariate)的定量变量。分析结果是由一个方差分析表表示的。原理为:把因变量的值随着自变量的不同取值而得到的变化进行分解,使得每一个自变量都有一份贡献,最后剩下无法用已知的原因解释的则看成随机误差的贡献。然后用各自变量的贡献和随机误差的贡献进行比较(F检验),以判断该自变量的不同水平是否对因变量的变化有显著贡献。输出就是F-值和检验的一些p-值。
3.相关和回归分析
发现变量之间的统计关系,并且用此规律来帮助我们进行决策才是统计实践的最终目的。一般来说,统计可以根据目前所拥有的信息(数据)来建立人们所关心的变量和其他有关变量的关系。这种关系一般称为模型(model)。
假如用Y表示感兴趣的变量,用X表示其他可能与Y有关的变量(X也可能是若干变量组成的向量)。则所需要的是建立一个函数关系Y=f(X)。这里Y称为因变量或响应变量(dependent variable, response variable),而X称为自变量,也称为解释变量或协变量(independent variable, explanatory variable, covariate)。建立这种关系的过程就叫做回归(regression)。
一旦建立了回归模型,除了对变量的关系有了进一步的定量理解之外,还可以利用该模型(函数)通过自变量对因变量做预测(prediction)。这里所说的预测,是用已知的自变量的值通过模型对未知的因变量值进行估计;它并不一定涉及时间先后。
4.主成分分析和因子分析
主成分分析从原理上是寻找椭球的所有主轴。原先有几个变量,就有几个主成分。而因子分析是事先确定要找几个成分,这里叫因子(factor)(比如两个),那就找两个。这使得在数学模型上,因子分析和主成分分析有不少区别。而且因子分析的计算也复杂得多。根据因子分析模型的特点,它还多一道工序:因子旋转(factor rotation);这个步骤可以使结果更好。对于计算机,因子分析并不费事。从输出的结果来看,因子分析也有因子载荷(factor loading)的概念,代表了因子和原先变量的相关系数。但是在因子分析公式中的因子载荷位置和主成分分析不同。因子分析也给出了二维图;其解释和主成分分析的载荷图类似。
可以看出,因子分析和主成分分析都依赖于原始变量,也只能反映原始变量的信息。所以原始变量的选择很重要。另外,如果原始变量都本质上独立,那么降维就可能失败,这是因为很难把很多独立变量用少数综合的变量概括。数据越相关,降维效果就越好。在得到分析的结果时,并不一定会都得到如我们例子那样清楚的结果。这与问题的性质,选取的原始变量以及数据的质量等都有关系。
5.聚类分析
物以类聚、人以群分;但根据什么分类呢?如要想把中国的县分类,就有多种方法可以按照自然条件来分,比如考虑降水、土地、日照、湿度等,也可考虑收入、教育水准、医疗条件、基础设施等指标;既可以用某一项来分类,也可以同时考虑多项指标来分类。对一个数据,既可以对变量(指标)进行分类(相当于对数据中的列分类),也可以对观测值(事件,样品)来分类(相当于对数据中的行分类)。当然,不一定事先假定有多少类,完全可以按照数据
本身的规律来分类。对变量的聚类称为R型聚类,而对观测值聚类称为Q型聚类。它们在数学上是无区别的。
k-均值聚类(k-means cluster,也叫快速聚类,quick cluster)却要求先说好要分多少类。然后,根据和这三个点的距离远近,把所有点分成三类。再把这三类的中心(均值)作为新的基石或种子(原来“种子”就没用了),再重新按照距离分类。如此叠代下去,直到达到停止叠代的要求(比如,各类最后变化不大了,或者叠代次数太多了)。显然,前面的聚类种子的选择并不必太认真,它们很可能最后还会分到同一类中呢。另一种聚类称为分层聚类或系统聚类(hierarchical cluster)。开始时,有多少点就是多少类。它第一步先把最近的两类(点)合并成一类,然后再把剩下的最近的两类合并成一类;这样下去,每次都少一类,直到最后只有一大类为止。越是后来合并的类,距离就越远。
6.判别分析
在聚类分析中,人们一般事先并不知道应该分成几类及哪几类,全根据数据确定。在判别分析中,至少有一个已经明确知道类别的“训练样本”,并利用该样本来建立判别准则,并通过预测变量来为未知类别的观测值进行判别了。训练样本中必须包含所有要判别的类型,分类必须清楚,不能有混杂。要选择好可能用于判别的预测变量。这是最重要的。当然,在应用中,选择余地不见得有多大。要注意数据是否有不寻常的点或者模式存在。还要看预测变量中是否有些不适宜的;这可以用单变量方差分析(ANOVA)和相关分析来验证。判别分析是为了正确地分类,但同时也要注意使用尽可能少的预测变量来达到这个目的。使用较少的变量意味着节省资源和易于对结果作解释。在计算中需要看关于各个类的有关变量的均值是否显著不同的。
7.典型相关分析
由于一组变量可以有无数种线性组合(线性组合由相应的系数确定),因此必须找到既有意义又可以确定的线性组合。典型相关分析(canonical correlation analysis)就是要找到这两组变量线性组合的系数使得这两个由线性组合生成的变量(和其他线性组合相比)之间的相关系数最大。目的:研究多个变量之间的相关性。方法:利用主成分思想,可以把多个变量与多个变量之间的相关化为两个变量之间的相关.即找一组系数(向量)l和m, 使新变量U=l`X(1)和V=m`X(2)有最大可能的相关关系。
8.对应分析
在因子分析中,或者只对变量(列中的变量)进行分析,或者只对样品(观测值或行中的变量)进行分析;而且利用载荷图来描述各个变量之间的接近程度。典型相关分析也只研究列中两组变量之间的关系。然而,在很多情况下,所关心的不仅仅是行或列本身变量之间的关系,而是行变量和列变量的相互关系;对应分析方法被普遍认为是探索性数据分析的内容,处理列联表的问题仅仅是对应分析的一个特例。一般地,对应分析常规地处理连续变量的数据矩阵;这些数据具有如在主成分分析、因子分析、聚类分析等时所处理的数据形式。在对应分析中,根据各行变量的因子载荷和各列变量的因子载荷之间的关系,行因子载荷和列因子载荷之间可以两两配对。如果对每组变量选择前两列因子载荷,则两组变量就可画出两因子载荷的散点图。由于这两个图所表示的载荷可以配对,于是就可以把这两个因子载荷的两个散点图画到同一张图中,并以此来直观地显示各行变量和各列变量之间的关系。由于列联表数据形式和一般的连续变量的数据形式类似,所以也可以用对应分析的数学方法来研究行变量各个水平和列变量各个水平之间的关系。
9.时间序列分析
人们对统计数据往往可以根据其特点从两个方面来切入,以简化分析过程。一个是研究所谓横截面(cross section)数据,也就是对大体上同时,或者和时间无关的不同对象的观测值组成的数据。另一个称为时间序列(time series),也就是由对象在不同时间的观测值形成的数据。时间序列分析也是一种回归。回归分析的目的是建立因变量和自变量之间关系的模型;并且可以用自变量来对因变量进行预测。通常线性回归分析因变量的观测值假定是互相独立并且有同样分布。而时间序列的最大特点是观测值并不独立。时间序列的一个目的是用变量过去的观测值来预测同一变量的未来值。也就是说,时间序列的因变量为变量未来的可能值,而用来预测的自变量中就包含该变量的一系列历史观测值。当然时间序列的自变量也可能包含随着时间度量的独立变量。一个时间序列可能有趋势、季节、循环这三个成分中的某些或全部再加上随机成分。因此,如果要想对一个时间序列本身进行较深入的研究,把序列的这些成分分解出来、或者把它们过虑掉则会有很大的帮助。如果要进行预测,则最好把模型中的与这些成分有关的参数估计出来。
如果我们不仅仅满足于分解现有的时间序列,而且想要对未来进行预测,就需要建立模型。首先,这里介绍比较简单的指数平滑(exponential smoothing)。指数平滑只能用于纯粹时间序列的情况,而不能用于含有独立变量时间序列的因果关系的研究。指数平滑的原理为:当利用过去观测值的加权平均来预测未来的观测值时(这个过程称为平滑),离得越近的观测值要给以更多的权。而“指数”意味着:按照已有观测值“老”的程度,其上的权数按指数速度递减。
第二篇:统计分析学习总结
经过四周的课程主要学习了以下几种分析方法: 1.方差分析
方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”或“F检 验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。
作用:一个复杂的事物,其中往往有许多因素互相制约又互相依存。方差分析的目的是通过数据分析找出对该事物有显著影响的因素,各因素之间的交互作用,以及显著影响因素的最佳水平等。方差分析是在可比较的数组中,把数据间的总的“变差”按各指定的变差来源进行分解的一种技术。对变差的度量,采用离差平方和。方差分析方法就是从总离差平方和分解出可追溯到指定来源的部分离差平方和,这是一个很重要的思想。
经过方差分析若拒绝了检验假设,只能说明多个样本总体均值不相等或不全相等。若要得到各组均值间更详细的信息,应在方差分析的基础上进行多个样本均值的两两比较。
(1)多个样本均值间两两比较
多个样本均值间两两比较常用q检验的方法,即Newman-kueuls法,其基本步骤为:建立检验假设-->样本均值排序-->计算q值-->查q界值表判断结果。
(2)多个实验组与一个对照组均值间两两比较
多个实验组与一个对照组均值间两两比较,若目的是减小第II类错误,最好选用最小显著差法(LSD法);若目的是减小第I类错误,最好选用新复极差法,前者查t界值表,后者查q'界值表。折叠
分析方法
根据资料设计类型的不同,有以下两种方差分析的方法:
1、对成组设计的多个样本均值比较,应采用完全随机设计的方差分析,即单因素方差分析。
2、对随机区组设计的多个样本均值比较,应采用配伍组设计的方差分析,即两因素方差分析。折叠两类方差分析的异同
两类方差分析的基本步骤相同,只是变异的分解方式不同,对成组设计的资料,总变异分解为组内变异和组间变异(随机误差),即:SS总=SS组间+SS组内,而对配伍组设计的资料,总变异除了分解为处理组变异和随机误差外还包括配伍组变异,即:SS总=SS处理+SS配伍+SS误差。折叠基本步骤
整个方差分析的基本步骤如下:
1、建立检验假设; H0:多个样本总体均值相等;
H1:多个样本总体均值不相等或不全等。检验水准为0.05。
2、计算检验统计量F值;
3、确定P值并作出推断结果。
2.回归分析法定义
所谓回归分析法,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式)。回归分析法不能用于分析与评价工程项目风险。
分类
回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。根据自变量的个数,可以是一元回归,也可以是多元回归。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数
表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。根据所研究问题的性质,可以是线性回归,也可以是非线性回归。通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理。回归分析法预测是利用回归分析方法,根据一个或一组自变量的变动情况预测与其有相关关系的某随机变量的未来值。进行回归分析需要建立描述变量间相关关系的回归方程。
应用
社会经济现象之间的相关关系往往难以用确定性的函数关系来描述,它们大多是随机性的,要通过统计观察才能找出其中规律。回归分析是利用统计学原理描述随机变量间相关关系的一种重要方法。
在物流的计算中,回归分析法的公式如下: y=a+bx b=∑xy-n·∑x∑y/[∑x²-n·(∑x)²];a=∑y-b·∑x/n
3.主成分分析和因子分析
principal component analysis(PCA)主成分分析法是一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。在数学变换中保持变量的总方差不变,使第一变 量具有最大的方差,称为第一主成分,第二变量的方差次大,并且和第一变量不相关,称为第二主成分。依次类推,I个变量就有I个主成分。
其中Li为p维正交化向量(Li*Li=1),Zi之间互不相关且按照方差由大到小排列,则称Zi为X的第I个主成分。设X的协方差矩阵为Σ,则Σ必为半正定对称矩阵,求特征值λi(按从大到小排序)及其特征向量,可以证明,λi所对应的正交化特征向量,即为第I个主成分Zi所对应的系数向量Li,而Zi的方差贡献率定义为λi/Σλj,通常要求提取的主成分的数量k满足Σλk/Σλj>0.85。
主成分分析主要是一种探索性的技术,在分析者进行多元数据分析之前,用他来分析数据,让自己对数据有一个大致的了解,这是非常有必要的。主成分分析一般很少单独使用:a、了解数据。(screening the data),b、和cluster analysis(聚类分析)一起使用,c、和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成分对变量简化(reduce dimensionality),d、在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。
1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成各变量的线性组合。
2、主成分分析的重点在于解释各变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。
3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。
4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。
5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这种情况也可以使用因子得分做到。所以这种区分不是绝对的。
在算法上,主成分分析和因子分析很类似,不过在因子分析中所采用的协方差矩阵的对角元素不再是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分)。4.聚类分析
依据研究对象(样品或指标)的特征,对其进行分类的方法,减少研究对象的数目。各类事物缺乏可靠的历史资料,无法确定共有多少类别,目的是将性质相近事物归入一类。各指标之间具有一定的相关关系。聚类分析(cluster analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术。聚类分析也叫分类分析(classification analysis)或数值分类(numerical taxonomy)变量类型:定类变量、定量(离散和连续)变量 聚类方法
1,层次聚类(Hierarchical Clustering)合并法、分解法、树状图 2.非层次聚类 划分聚类、谱聚类 分析步骤:
定义问题与选择分类变量;聚类方法;确定群组数目;聚类结果评估;结果的描述、解释
5典型相关分析和对应分析
典型相关分析(canonical correlation analysis)就是利用综合变量对之间的相关关系来反映两组指标之间的整体相关性的多元统计分析方法。它的基本原理是:为了从总体上把握两组指标之间的相关关系,分别在两组变量中提取有代表性的两个综合变量U1和V1(分别为两个变量组中各变量的线性组合),利用这两个综合变量之间的相关关系来反映两组指标之间的整体相关性。
对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,是近年新发展起来的一种多元相依变量统计分析技术,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。主要应用在市场细分、产品定位、地质研究以及计算机工程等领域中。原因在于,它是一种视觉化的数据分析方法,它能够将几组看不出任何联系的数据,通过视觉上可以接受的定位图展现出来。6.判别分析和时间序列分析 判别分析又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。其基本原理是按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标。据此即可确定某一样本属于何类。当得到一个新的样品数据,要确定该样品属于已知类型中哪一类,这类问题属于判别分析问题。时间序列分析(Time series analysis)是一种动态数据处理的统计方法。该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。它包括一般统计分析(如自相关分析,谱分析等),统计模型的建立与推断,以及关于时间序列的最优预测、控制与滤波等内容。经典的统计分析都假定数据序列具有独立性,而时间序列分析则侧重研究数据序列的互相依赖关系。后者实际上是对离散指标的随机过程的统计分析,所以又可看作是随机过程统计的一个组成部分。例如,记录了某地区第一个月,第二个月,„„,第N个月的降雨量,利用时间序列分析方法,可以对未来各月的雨量进行预报。
第三篇:数据统计分析方法
数据统计分析方法
排列图:
排列图是由两个纵坐标,一个横坐标,若干个按高低顺序依次排列的长方形和一条累计百分比折线所组 的,为寻找主要问题或主要原因所使用的图。
排列图有以下优点:直观,明了--全世界品质管理界通用用数据说明问题--说服力强用途广泛: 品质管理 / 人员管理 / 治安管理排列图的作图步骤收集数据(某时间)作缺陷项目统计表绘制排列图画横坐标(标出项目的等分刻度)画左纵坐标(表示频数)画直方图形(按每项的频数画)画右纵坐标(表示累计百分比)定点表数。
因果图何谓因果图:
对于结果(特性)与原因(要因)间或所期望之效果(特性)与对策的关系,以箭头连接,详细分析原因或对策的一种图形称为因果图。因果图为日本品管权威学者石川馨博士于1952年所发明,故又称为石川图,又因其形状似鱼骨,故也可称其为鱼骨图,或特性要因图作因果图的原则采取由原因到结果的格式通常从‘人,机,料,法,环’这五方面找原因‘4M1E’, Man, Machine, Material, Method, Environment通常分三个层次:主干线、支干线、分支线尽可能把所有的原因全部找出来列上对少数的主要原因标上特殊的标志写上绘制的日期、作者、有关说明等作因果图应注意的事项问题(结果)应单
一、具体,表述规范最后细分出来的因应是具体的,以便采取措施;在寻找和分析原因时,要集思广益,力求准确和无遗漏可召开诸葛亮会,采用头脑风暴法层次要清,因果关系不可颠倒原因归类正确作因果图应注意的事项画法按从左至右的贯例执行--规范化在作因果图前,可先从排列图中找出主要问题,然后针对主要问题,召集相关人员进行讨论,力求尽可能找出产生问题的原因,通过分析,确立主要原因。因果图在今后可不断进行修改,逐渐完善,反復使用。
直方图:
是通过对数据的加工整理,从而分析和掌握品质数据的分布状况和估算工序不合格率的一种方法。直方图的作法作直方图的三大步骤作频数表画直方图进行有关计算作直方图的步骤(例3)1.搜集数据作直方图的步骤计算极差(Range),上表中最大值Xmax=48;最小值Xmin=1;R=Xmax-Xmin=48-1=47适当分组(k)在本例中,取k=10确定组距(h)组距用字母 h 表示:h=R/k=47/10=4.7, Y约等于5。确定各组界限--组的边界值单位取最小测量单位的一半。作直方图的步骤本例第一组的下限为:第一组的上限值为下界限值加上组距第二组的下界值为上界限值,第一组的上界值加上组距就是第二组上界限值,照此类推,定出各组的边界。编制频数分布表
分层法
分层的目的是把杂乱无章和错综复杂的数据,按照不同的目的、性质、来源等加以分类整理,使之系统化、条理化,能更确切地反映数据所代表的客观事实,便于查明产品质量波动的实质性原因和变化规律,以便抓住主要矛盾,找到主要影响因素,从而对症下药,采取相应的措施。
分层的原则是使同一层内的数据波动尽可能小、而层与层之间的差别尽可能大。
为了达到目的,通常按操作者、机器设备、材料、工艺方法、测量手段、环境条件和时间等标志对数据进行分层。
调查表
调查表也叫检查表或核对表,它是一种为了便于搜集数据而使用简单记号并予统计整理,并作进一步分析或作为核对、检查之用而事先设计的一种表格或图表
控制图
控制图是一种带有控制界限的反映过程质量的记录图形,图的纵轴代表産品质量特性值(或由质量特性值获得的某种统计量);横轴代表按时间顺序(自左至右)抽取的各个样本号;图内有中心线(记爲CL)、上控制界限(记爲UCL)和下控制界限(记爲LCL)三条线(见下图)
第四篇:大数据的统计分析方法
统计分析方法有哪几种?下面天互数据将详细阐述,并介绍一些常用的统计分析软件。
一、指标对比分析法指标对比分析法
统计分析的八种方法
一、指标对比分析法指标对比分析法,又称比较分析法,是统计分析中最常用的方法。是通过有关的指标对比来反映事物数量上差异和变化的方法,有比较才能鉴别。
指标分析对比分析方法可分为静态比较和动态比较分析。静态比较是同一时间条件下不同总体指标比较,如不同部门、不同地区、不同国家的比较,也叫横向比较;动态比较是同一总体条件不同时期指标数值的比较,也叫纵向比较。
二、分组分析法指标对比分析法
分组分析法指标对比分析法对比,但组成统计总体的各单位具有多种特征,这就使得在同一总体范围内的各单位之间产生了许多差别,统计分析不仅要对总体数量特征和数量关系进行分析,还要深入总体的内部进行分组分析。分组分析法就是根据统计分析的目的要求,把所研究的总体按照一个或者几个标志划分为若干个部分,加以整理,进行观察、分析,以揭示其内在的联系和规律性。
统计分组法的关键问题在于正确选择分组标值和划分各组界限。
三、时间数列及动态分析法
时间数列。是将同一指标在时间上变化和发展的一系列数值,按时间先后顺序排列,就形成时间数列,又称动态数列。它能反映社会经济现象的发展变动情况,通过时间数列的编制和分析,可以找出动态变化规律,为预测未来的发展趋势提供依据。时间数列可分为绝对数时间数列、相对数时间数列、平均数时间数列。
时间数列速度指标。根据绝对数时间数列可以计算的速度指标:有发展速度、增长速度、平均发展速度、平均增长速度。
动态分析法。在统计分析中,如果只有孤立的一个时期指标值,是很难作出判断的。如果编制了时间数列,就可以进行动态分析,反映其发展水平和速度的变化规律。
四、指数分析法
指数是指反映社会经济现象变动情况的相对数。有广义和狭义之分。根据指数所研究的范围不同可以有个体指数、类指数与总指数之分。
指数的作用:一是可以综合反映复杂的社会经济现象的总体数量变动的方向和程度;二是可以分析某种社会经济现象的总变动受各因素变动影响的程度,这是一种因素分析法。操作方法是:通过指数体系中的数量关系,假定其他因素不变,来观察某一因素的变动对总变动的影响。
用指数进行因素分析。因素分析就是将研究对象分解为各个因素,把研究对象的总体看成是各因素变动共同的结果,通过对各个因素的分析,对研究对象总变动中各项因素的影响程度进行测定。因素分析按其所研究的对象的统计指标不同可分为对总量指标的变动的因素分析,对平均指标变动的因素分析。
五、平衡分析法
平衡分析是研究社会经济现象数量变化对等关系的一种方法。它把对立统一的双方按其构成要素一一排列起来,给人以整体的概念,以便于全局来观察它们之间的平衡关系。平衡关系广泛存在于经济生活中,大至全国宏观经济运行,小至个人经济收支。平衡分析的作用:一是从数量对等关系上反映社会经济现象的平衡状况,分析各种比例关系相适应状况;二是揭示不平衡的因素和发展潜力;三是利用平衡关系可以从各项已知指标中推算未知的个别指标。
六、综合评价分析
社会经济分析现象往往是错综复杂的,社会经济运行状况是多种因素综合作用的结果,而且各个因素的变动方向和变动程度是不同的。如对宏观经济运行的评价,涉及生活、分配、流通、消费各个方面;对企业经济效益的评价,涉及人、财、物合理利用和市场销售状况。如果只用单一指标,就难以作出恰当的评价。
进行综合评价包括四个步骤:
1.确定评价指标体系,这是综合评价的基础和依据。要注意指标体系的全面性和系统性。
2.搜集数据,并对不同计量单位的指标数值进行同度量处理。可采用相对化处理、函数化处理、标准化处理等方法。
3.确定各指标的权数,以保证评价的科学性。根据各个指标所处的地位和对总体影响程度不同,需要对不同指标赋予不同的权数。
4.对指标进行汇总,计算综合分值,并据此作出综合评价。
七、景气分析
经济波动是客观存在的,是任何国家都难以完全避免的。如何避免大的经济波动,保持经济的稳定发展,一直是各国政府和经济之专家在宏观调控和决策中面临的重要课题,景气分析正是适应这一要求而产生和发展的。景气分析是一种综合评价分析,可分为宏观经济景气分析和企业景气调查分析。
宏观经济景气分析。是国家统计局20世纪80年代后期开始着手建立监测指标体系和评价方法,经过十多年时间和不断完善,已形成制度,定期提供景气分析报告,对宏观经济运行状态起到晴雨表和报警器的作用,便于国务院和有关部门及时采取宏观调控措施。以经常性的小调整,防止经济的大起大落。
企业景气调查分析。是全国的大中型各类企业中,采取抽样调查的方法,通过问卷的形式,让企业负责人回答有关情况判断和预期。内容分为两类:一是对宏观经济总体的判断和预期;一是对企业经营状况的判断和预期,如产品订单、原材料购进、价格、存货、就业、市场需求、固定资产投资等。
八、预测分析
宏观经济决策和微观经济决策,不仅需要了解经济运行中已经发生了的实际情况,而且更需要预见未来将发生的情况。根据已知的过去和现在推测未来,就是预测分析。
统计预测属于定量预测,是以数据分析为主,在预测中结合定性分析。统计预测的方法大致可分为两类:一类是主要根据指标时间数列自身变化与时间的依存关系进行预测,属于时间数列分析;另一类是根据指标之间相互影响的因果关系进行预测,属于回归分析。
预测分析的方法有回归分析法、滑动平均法、指数平滑法、周期(季节)变化分析和随机变化分析等。比较复杂的预测分析需要建立计量经济模型,求解模型中的参数又有许多方法。
第五篇:应用统计分析课程学习总结
应用统计分析课程学习总结
在学期开始时,老师就语重心长的告诉我们:一定要好好听应用统计分析的课,那个SPSS软件非常有用,以后写论文肯定要用到!尽管心里也是一再暗示自己要好好学,但是因为其他原因,学习的效果并没有预期中的那么理想,课程结束后依旧是模模糊糊,好多知识还真的是一知半解。通过回顾课程内容,阅读老师发来的SPSS电子书,我简略总结一下自己这学期所学到的基本内容。
SPSS社会科学统计软件是世界著名的统计分析软件之一,SPSS作为数据统计分析的重要工具,其操作是属于技术方面的,关键在于数据的收集描述和分析以及后期数据处理时的假设检验方法的选择。通俗一点说,使用SPSS可以从一堆看似杂乱无章的数字中找到联系,发现数据之间的影响关系。这就是SPSS的神奇之处,这也就是我们作为研究生在实证研究时使用SPSS的目的和用途。
描述性统计是进行其他统计分析的基础和前提。利用这些基本统计方法,可以对要分析数据的总体特征有比较准确的把握,同时也为更深入的分析提供了依据。在商业分析中,通常需要进行组与组之间平均水平的比较。t检验方法,就是主要用来进行两个样本间的比较。t检验的基本原理是:首先假设零假设H0成立,即样本间不存在显著差异,然后利用现有样本根据t 分布求得t值,并据此得到相应的概率值p,若p≤ɑ,则拒绝原假设,认为两样本间存在显著差异。SPSS中“Analyze”菜单中的“Compare Means”可用于均值检验,其子菜单中的“One-sample t test”用于单一样本t检验;“Independent-samples t test”用于两独立样本t检验;“Baired-samples t test”用于两配对样本t检验。方差分析用于两个及两个以上样本均值差异的显著性检验。方差分析的基本思想是:通过分析研究中不同变量的变异对总变异的贡献大小,确定控制变量对研究变量影响力的大小。通过方差分析,分析不同水平的控制变量是否对结果产生了显著影响。如果控制变量的不同水平能够对结果产生显著影响,那么它和随机变量共同作用,必将使结果有显著变化。单因素方差分析所解决的是一个因素下的多个不同水平之间的相关问题;多因素方差分析的控制变量在两个或两个以上,其主要用于分析多个控制变量的作用、多个控制变量的交互作用以及其他随机变量是否对结果产生了显著影响;协方差分析将那些很难控制的因素作为协变量,在排除协变量影响的条件下,分析控制变量对观察变量的影响,从而更准确地对控制因素进行评价。单因素方差分析主要用“Analysis”的“Compare Means”菜单下的“One—Way ANOVA”子菜单实现;多因素方差分析和协方差分析都是在“Analysis”下“General Linear Model”菜单下的“Univariate”子菜单实现的。相关分析即是用适当的统计指标来衡量事物之间,以及变量之间线性相关程度的强弱。相关分析的方法很多,包括简单相关分析、偏相关分析和距离相关分析。简单相关分析包括定距变量的相关分析和定序变量的相关分析。前者通过计算定距变量间的相关系数来判断两个或两个以上定距变量之间的相关程度。后者则采用非参数检验的方法利用等级相关系数来衡量定序变量之间的相关程度;偏相关分析是指在排除了第三者影响的前提下,衡量两个变量之间的相关程度,当然第三者与这两个变量之间要有一定的联系;距离相关分析是对观测变量之间差异度或相似程度进行的测量。回归分析是研究变量与变量之间联系的最为广泛的模型。在实际中,根据变量的个数、类型,以及变量之间的相关关系,回归分析通常分为一元线性回归分析、多元线性回归分析、非线性回归分析、曲线估计、时间序列的曲线估计、含虚拟自变量的回归分析和逻辑回归分析等。一元线性回归只涉及一个自变量的回归问题;多元线性回归用于解决两个或两个以上自变量对一个因变量的数量变化关系问题;非线性回归主要解决在非线性相关条件下,自变量对因变量的数量变化关系;时间序列的曲线回归用于研究因变量与时间之间的变化关系;当遇到非数量型变量时,通过引入虚拟变量来构造含虚拟变量的回归模型;Logistic回归分析是对定性变量进行的回归分析。SPSS中“Analyze”/“Regression”菜单可用于回归统计分析。其中,一元线性回归、多元线性回归和含虚拟变量的回归分析可由“Linear”子菜单完成;非线性回归分析、曲线估计和时间序列的曲线估计可由“Curve Estimation”子菜单完成;逻辑回归分析可由“Binary Logistic”子菜单完成。
结构方程模型又称协方差结构模型,它主要是在心理、行为、教育、和社会科学等学科的实际应用中发展起来的一个研究方向。结构方程模型是验证性因子分析和因果模型的结合体,所包含的因子模型又称为测量模型,其中的方程成为测量方程,描述了潜变量与观察变量之间的关系,所包含的因果模型又称为潜变量模型,也称为结构模型,描述了潜变量之间的关系。结构方程模型具有诸多好处,可以同时处理多个因变量,容许自变量和因变量含测量误差,同时估计因子结构和因子关系,容许更大弹性的测量模型,估计整个模型的拟合程度。
以上是对每一部分内容的简要概述,其中更深层的内容仍需要更深刻的理解。课程虽然结束了,但是对SPSS的学习不能停止,因为自己还不能独自熟练的操作这个软件,还不能依靠这个软件为自己的论文或科研做出一些成果。SPSS是极其实用的,学习不能止步!很是希望能够把SPSS的应用熟练操作,并且能把它变为自己的一种技能,使自己在今后的工作与学习中,可以轻松运用。