概率与数理统计学习心得

时间:2019-05-12 13:09:05下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《概率与数理统计学习心得》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《概率与数理统计学习心得》。

第一篇:概率与数理统计学习心得

概率与数理统计学习心得

概率论与数理统计是研究随机现象统计规律性的一门数学学科,其理论与方法的应用非常广泛,几乎遍及所有科学技术领域、工农业生产、国民经济以及我们的日常生活。对于作为电子通信专业的我,其日后的帮助也是很大的。

这门课程给我最深刻的体会就是这门课程很抽象,很难以理解,初学时,就算觉得理解了老师的讲课内容,但是一联系实际也会很难以应用上,简化不出有关所学知识的模型。后来经过老师的生动现实的实例分析,逐渐对这门课程有了新的认识。首先,这门课程给我带来了一种新的思维方式。前几章的知识好多都是高中大学讲过的,接触下来觉得挺简单,但是后面从大数定理及中心极限定理就开始是新的内容了。我觉得学习概率论与数理统计最重要的就是要学习书本中渗透的一种全新的思维方式。统计与概率的思维方式,和逻辑推理不一样,它是不确定的,也就是随机的思想。这也是一个人思维能力最主要的体现,整个学习过程中要紧紧围绕这个思维方式进行。这些都为后面的数理统计还有参数估计、检验假设打下了基础。

概率论与数理统计不仅在自然科学中发挥重要作用,实证的方法就是基于数据分析整理并推理预测,而且在社会实践中发挥着重要的不可替代的作用,这是因为 1.人类活动的各个领域都不同程度与数据打交道,都有如何收集和分析数据的问题,因此概率论与数理统计学的理论和方法,与人类活动的各个领域都有关联。

2.组成社会的单元——人、家庭、单位、地区等,都有很大的变异性、不确定性,如果说,在自然现象中尚有一些严格的、确定性的规律,在社会现象中则绝少这规律,因此更加依靠从概率论与数理统计的角度去考察。

概率论与数理统计的发展方向是更加实用,基于多元函数、通过建立数学模型来分析解决问题,理论更加严密,应用更加广泛,发展更加迅速。

通过老师的教学,使我初步了解了概率论与数理统计的基本概念和基本理论,知道了处理随机现象的基本思想和方法,有助于培养自己解决实际问题的能力和水平。

第二篇:概率与数理统计课程教学改革探讨

概率与数理统计课程教学改革探讨

摘 要:长期以来,在财经类专业概率与数理统计课程建设中,一直存在着教学方法及考试模式等方面的问题。通过结合教学实践与理论思考,阐述了概率与数理统计教学改革的几点看法。

关键词:课堂教学;概率论与数理统计;应用能力;教学模式 

概率与数理统计是实际应用性很强的一门数学学科,它在经济管理、金融投资、保险精算、企业管理、投入产出分析、经济预测等众多经济领域都有广泛的应用。概率与数理统计是高等院校财经类专业的公共基础课,它既有理论又有实践,既讲方法又讲动手能力。然而,在该课程的具体教学过程中,由于其思维方式与以往数学课程不同、概念难以理解、习题比较难做、方法不宜掌握且涉及数学基础知识广等特点,许多学生难以掌握其内容与方法,面对实际问题时更是无所适从,尤其是财经类专业学生,高等数学的底子相对薄弱,且不同生源的学生数理基础有较大的差异,因此,概率统计成为一部分学生的学习障碍。如何根据学生的数学基础调整教学方法,以适应学生基础,培养其能力,并与其后续课程及专业应用结合,便成为任课教师面临的首要任务。作为我校教学改革的一个重点课题,在近几年的教学实践中,我们结合该课程的特点及培养目标,对课程教学进行了改革和探讨,做了一些尝试性的工作,取得了较好的成效。 与实际结合,激发学生对概率统计课程的兴趣

概率论与数理统计从内容到方法与以往的数学课程都有本质的不同,因此其基本概念的引入就显得更为重要。为了激发学生的兴趣,在教学中,可结合教材插入一些概率论与数理统计发展史的内容或背景资料。如概率论的直观背景是充满机遇性的赌博,其最初用到的数学工具也仅是排列组合,它提供了一个比较简单而非常典型(等可能性、有限性)的随机模型,即古典概型;在介绍大数定律与中心极限定理时可插入贝努里的《推测术》以及拉普拉斯将概率论应用于天文学的研究,既拓广了学生的视野,又激发了学生的兴趣,缓解了学生对于一个全新的概念与理论的恐惧,有助于学生对基本概念和理论的理解。此外,还可以适当地作一些小试验,以使概念形象化,如在引入条件概率前,首先计算著名的“生日问题”,从中可以看到:每四十人中至少有两人生日相同的概率为 0.882,然后在各班学生中当场调查学生的生日,查找与前述结论不吻合的原因,引入条件概率的概念,有了前面的感性认识后学生就比较主动地去接受这个概念了。

在概率统计中,众多的概率模型让学生望而生威,学生常常记不住公式,更不会应用。而概率统计又是数学中与现实世界联系最紧密、应用最广泛的学科之一。不少概念和模型都是实际问题的抽象,因此,在课堂教学中,必须坚持理论联系实际的原则来开展,将概念和模型再回归到实际背景。例如:二项分布的直观背景为 n重贝努里试验,由此直观再利用概率与频率的关系,我们易知二项分布的最可能值及数学期望等,这样易于学生理解,更重要的是让其看到如何从实际问题抽象出概念和模型,引导学生领悟事物内部联系的直觉思维。同时在介绍各种分布模型时可以有针对性地引入一些实际问题,向学生展示本课程在工农业、经济管理、医药、教育等领域中的应用,突出概率统计与社会的紧密联系。如将二项分布与新药的有效率、射击命中、机器故障等问题结合起来讲;将正态分布与学生考试成绩、产品寿命、测量误差等问题结合起来讲;将指数分布与元件寿命、放射性粒子等问题结合起来讲,使学生能在讨论实际问题的解决过程中提高兴趣,理解各数学模型,并初步了解利用概率论解决实际问题的一些方法。 运用案例教学法,培养学生分析问题和解决问题的能力

案例教学法是把案例作为一种教学工具,把学生引导到实际问题中去,通过分析与互相讨论,调动学生的主动性和积极性,并提出解决问题的基本方法和途径的一种教学方法。它是连接理论与实践的桥梁。我们结合概率与数理统计应用性较强的特点,在课堂教学中,注意收集经济生活中的实例,并根据各章节的内容选择适当的案例服务于教学,利用多媒设备及真实材料再现实际经济活动,将理论教学与实际案例有机的结合起来,使得课堂讲解生动清晰,收到了良好的教学效果。案例教学法不仅可以将理论与实际紧密联系起来,使学生在课堂上就能接触到大量的实际问题,而且对提高学生综合分析和解决实际问题的能力大有帮助。通过案例教学可以促进学生全面看问题,从数量的角度分析事物的变化规律,使概率与数理统计的思想和方法在现实经济生活中得到更好的应用,发挥其应有的作用。

在介绍分布函数的概念时,我们首先给出一组成年女子的身高数据,要学生找出规律,学生很快就由前面所学的离散型随机变量的分布知识得到分组资料,然后引导他们计算累积频率,描出图形,并及时抽象出分布函数的概念。紧接着仍以此为例,进一步分析:身高本是连续型随机变量,可是当我们把它们分组后,统计每组的频数和频率时却是用离散型随机变量的研究方法,如果在每一组中取一个代表值后,它其实就是离散型的,所以在研究连续型随机变量的概率分布时,我们可以用离散化的方法,反过来离散型随机变量的分布在一定的条件下又以连续型分布为极限,服装的型号、鞋子的尺码等问题就成为我们理解“离散”和“连续”两个对立概念关系的范例,其中体现了对立统一的哲学内涵,而分布函数正是这种哲学统一的数学表现形式。尽管在这里花费了一些时间,但是当学生理解了这些概念及其关系之后,随后的许多概念和内容都可以很轻松地掌握,而且使学生能够对数学概念有更深层次上的理解和感悟,同时也调动了学生的学习积极性和主动性,培养了他们再学习的能力。 运用讨论式教学法,增强学生积极向上的参与和竞争意识

讨论课是由师生共同完成教学任务的一种教学形式,是在课堂教学的平等讨论中进行的,它打破了老师满堂灌的传统教学模式。师生互相讨论与问答,甚至可以提供机会让学生走上讲台自己讲述。如,在讲授区间估计方法时,就单双边估计问题我们安排了一次讨论课,引导学生各抒己见,鼓励学生大胆的发表意见,提出质疑,进行自由辩论。通过问答与辩驳,使学生开动脑筋,积极思考,激发了学生学习热情及科研兴趣,培养了学生综合分析能力与口头表达能力,增强了学生主动参与课堂教学的意识。学生的创新研究能力得到了充分的体现。这种教学模式是教与学两方面的双向互动过程,教师与学生的经常性的交流促使教师不断学习,更新知识,提高讲课技能,同时也调动了学生学习的积极性,增进师生之间的思想与情感的沟通,提高了教学效果。教学相长,相得益彰。

保险是最早运用概率论的学科之一,也是我们日常谈论的一个热门话题。因此,在介绍二项分布时,例如一家保险公司有1000人参保,每人、每年12元保险费,一年内一人死亡的概率为0.006。死亡时,其家属可向保险公司领得1000元,问:①保险公司亏本的概率为多大?②保险公司一年利润不少于40000元、60000元、80000元的概率各为多少? 保险这一类型题目的引入,通过讨论课使学生对概率在经济中的应用有了初步的了解。 运用多媒体教学手段,提高课堂教学效率

传统上一本教材、一支粉笔、一块黑板从事数学教学的情景在信息社会里应有所改变,计算机对数学教育的渗透与联系日益紧密,特别是概率论与数理统计课,它是研究随机现象统计规律性的一门学科,而要想获得随机现象的统计规律性,就必须进行大量重复试验,这在有限的课堂时间内是难以实现的,传统教学内容的深度与广度都无法满足实际应用的需要。在教学中我们可以采用了多媒体辅助手段,通过计算机图形显示、动画模拟、数值计算及文字说明等,形成了一个全新的图文并茂、声像结合、数形结合的生动直观的教学环境,从而大大增加了教学信息量,以提高学习效率,并有效地刺激学生的形象思维。另外,利用多媒体对随机试验的动态过程进行了演示和模拟,如:全概率公式应用演示、正态分布、随机变量函数的分布、数学期望的统计意义、二维正态分布、中心极限定理的直观演示实验等,再现抽象理论的研究过程,能加深学生对理论的理解及方法的运用。让学生在获得理论知识的过程中还能体会到现代信息技术的魅力,达到了传统教学无法实现的教学效果。 改革考试方式和内容,合理评定学生成绩

应试教育向素质教育的转变,是我国教育改革的基本目标。财经类专业的概率与数理统计教学,除了在教学方法上应深入改革外,在考试环节上也需要进行改革。

考试是教学过程中的一个重要环节,是检验学生学习情况,评估教学质量的手段。对于数学基础课程概率与数理统计的考试,多年以来一直沿用闭卷笔试的方式。这种考试方式对于保证教学质量,维持正常的教学秩序起到了一定的作用,但也存在着缺陷,离考试内容和方式应更加适应素质教育,特别是应有利于学生的创造能力的培养之目的相差甚远。在过去的概率与数理统计教学中,基本运算能力被认为是首要的培养目标,教科书中的各种例题主要是向学生展示如何运用公式进行计算,各类辅导书中充斥着五花八门的计算技巧。从而导致了学生在学习概率与数理统计课程的过程中,为应付考试搞题海战术,把精力过多的花在了概念、公式的死记硬背上。这与财经类培养跨世纪高素质的经济管理人才是格格不入的。为此,我们对概率与数理统计课程考试进行了改革,主要包括两个方面:一是考试内容与要求不仅体现出概率与数理统计课程的基本知识和基本运算以及推理能力,还注重了学生各种能力的考查,尤其是创新能力。二是考试模式不具一格,除了普遍采用的闭卷考试外,还在教学中用互动方式进行考核,采取灵活多样的考核形式。学生成绩的测评根据学生参与教学活动的程度、学习过程中掌握程度和卷面考试成绩等综合评定。这样,可以引导学生在学好基础知识的基础上,注重技能训练与能力培养。

实践表明,运用教改实践创新的教学模式,可以使原本抽象、枯燥难懂的数学理论变得有血有肉、有滋有味,可以激发学生的求知欲望,提高学生对课程的学习兴趣。在概率统计的教学模式上,我们尽管做了一些探讨,但这仍是一个需要继续付出努力的研究课题,也希望与更多的同行进行交流,以提高教学水平。

参考文献

[1]陈善林,张浙.统计发展史[M].上海:立信会计图书用品社,1987:119-151.

[2]姜启源,谢金星,叶俊.数学模型(第三版)[M].北京:高等教育出版社,2003.

[3]肖柏荣.数学教学艺术概论[M].合肥:安徽教育出版社,1996.

[4]蔺云.哲学与文化视角下概率统计课的育人功能[J].数学教育学报,2002,11(2):24-26.

[5]陈嫣,涂荣豹.关于随机性数学意识的培养[J].数学教育学报,2002,11(2):27-29.

第三篇:概率论与数理统计 学习心得

《概率论与数理统计》由于其理论及应用的重要性,目前在我国高等数学教育中,已与高等数学和线性代数渐成鼎足之势。

学生们在学习《概率论与数理统计》时通常的反映之一是“课文看得懂,习题做不出”。概率论习题的难做是有名的。要做出题目,至少要弄清概念,有些还要掌握一定的技巧。这句话说起来简单,但是真正的做起来就需要花费大量的力气。不少学生在学习时,只注重公式、概念的记忆和套用,自己不对公式等进行推导。这就造成一个现象:虽然在平时的做题过程中,自我感觉还可以;尤其是做题时,看一眼题目看一眼答案,感觉自己已经掌握的不错了,但一上了考场,就考砸。这就是平时的学习过程中只知其一,不知其二,不注重对公式的理解和推导造成的。比方说,在我们教材的第一章,有这样一个公式:A-B=bar(AB)=A-AB,这个公式让很多人迷糊,因为这个公式本身是错误的,在教材后面的例题1-15中证明利用了这个公式,很多人就用教材上这个错误的公式套用,结果看不懂。其实这个公式正确的应该是A-B=AbarB=A-AB.这是一个应用非常多的公式,而且考试的时候一般都会考的公式。在开始接触这个公式的时候就应该自己进行推导,发现这个错误,而不是看到这个公式之后,记住,然后运用到题目中去。大家在看书的时候注意对公式的推导,这样才能深层次的理解公式,真正的灵活运用。做到知其一,也知其二。

现在概率统计的考试试题难度,学员呼声不一,有的人感觉非常难,而且最让他们难以应对的是基础知识,主要涉及排列组合、导数、积分、极限这四部分。现在就这部分内容给大家分析一下。说这部分是基础,本身就说明这些知识不是概率统计研究的内容,他们只是在研究概率统计的时候不可缺少的一些工具。即然这样,在考试中就不会对这部分内容作过多的考察,也会尽量避免大家在这些方面丢分。分析到这里,就要指出一些人在学习这门课的“战术失误”。有些人花大量的力气学习微积分,甚至学习概率统计之前,将微积分重新学一遍,这是不可取的。对这部分内容,将教材上涉及到的知识选出来进行复习,理解就可以。万不能让基础知识成为概率统计的拦路虎。学习中要知道哪是重点,哪是难点。

如何掌握做题技巧?俗话说“孰能生巧”,对于数学这门课,用另一个成语更贴切——“见多识广”。对于我们自考生而言,学习时间短,想利用“孰能生巧”不太现实,但是“见多识广”确实在短时间内可以做到。这就是说,在平时不能一味的多做题,关键是多做一些类型题,不要看量,更重要的是看多接触题目类型。同一个知识点,可以从多个角度进行考察。有些学员由于选择辅导书的问题,同类型的题目做了很多,但是题目类型却没有接触多少。在考试的时候感觉一落千丈。那么应该如何掌握题目类型呢?我想历年的真题是我们最好的选择。

平时该如何练习?提出这个问题可能很多人会感到不可思议。有一句话说得好“习惯形成性格”。这句话应用到我们的学习上也成立。这么多年以来,有些人有很好的学习习惯,尽管他的学习基础也不好,学习时间也有限,但是他们能按照自己知道的学习规律坚持学习,能够按照老师说得去思考、前进。我们大多数人都有惰性,一个题目一眼看完不会,就赶紧找答案。看了答案之后,也就那么回事,感觉明白了,就放下了。就这样“掰了很多玉米,最后却只剩下一个玉米”。我们很清楚,最好的方法是摘一个,留一个。哪怕一路你只摘了2个,也比匆匆忙忙摘了一路,却不知道保留的人得到的多。平时做题要先多思考,多总结,做一个会一个,而且对于做过的题目要经常地回顾,这样才能掌握住知识。就我的辅导经验而言,绝大多数人还是在这个问题上出现了问题。

考试有技巧,学习无捷径。平时的学习要注重知识点的掌握,踏踏实实,这才是方法中的方法。“梅花香自苦寒来”,“书山有路勤为径”。

这学期的数学学习情况比以往都好。可能是因为老师讲得好,注意把握整本书的体系,在每节课上都会不断提醒我们以往学过的知识,或者根本就是整本书的知识都是脉状的,各个知识点都有相互交错碰撞的节点,而不是线性的,仅有一条主线牵引,旁支彼此互不相干。一个知识点的学习需要用到以往学过的知识,所以每个知识都显得很饱满,有新的因子又有旧的根基,它们彼此交融补充,向我展示了概率论与数理统计的丰富多彩的面貌。也是在这本书的学习中,我强烈地感受到了数学的丰富多彩,逻辑的严密和体系的完整。我不禁老泪纵横,在数学的殿堂门口晃悠了10多年,终于看到了那辉煌庄严富丽堂皇的大门。

偶然在图书馆自然科学书库发现的一本小书,由商务印书馆出版的科学之旅系列的《概率论与数理统计》,让我看到了这个体系的发展过程,从随机的赌博事件到布朗运动、马尔可夫链再到核弹航空航天,从事件的简单分析再总结规律推广到不同领域。由不知名的数学教师再到世界顶级数学家,在前人研究结果上不断修正补充发展,将这一体系不断完善,我看到那是一棵枝繁叶茂的数学之树,坚定稳固的根基不断为后续生长提供源源不断的养分。

下面对课本所学知识做一个简要总结。本书从简单随机事件出发,将随机事件分为有限或无限可数的古典概论事件和不可测的几何概率事件。再用数学语言——随机变量(是函数)描述出这两类事件的概率发生情况,划分为离散型随机变量和连续性随机变量。离散型随机变量函数的自变量是每个可能取值,因变量是每个可能取值的概率。而连续性随机变量函数则用面积来表示,随机变量的概率等于其概率密度在区间上的积分。再将这些用分布函数表达,分别形成离散型和连续性随机变量函数的分布。

再推广到二维随机变量,X和Y的不同取值相互组合,构成联合离散型随机变量和联合连续性随机变量,再出现了联合概率分布律,联合概率分布函数及其密度函数等等。其中在事件概率中,出现了条件概率和事件独立性这两个概念。A和B同时发生的概率等于A的概率乘以B的概率,当B受A影响时,B的概率应为A下B的概率,即条件概率,AB的概率则用乘法公式表达;若B不受A影响,彼此相互独立,则直接相乘,即独立性。如果一个事件在不同的条件下发生,则其概率为不同原因下发生的概率的总和,即全概率。有点类似前面讲随机事件,有一个提法,事情还没做完(即前后两步有联系,即条件关系)用乘法,不同事情用加法(每个事件彼此不影响)。全概率公式倒推过来则是贝叶斯公式。基本上就是这样了吧......每天脑子里想的都是怎么样去简化理解,而不是死记公式,所以那些公式记得有些模糊,什么泊松分布,正态分布!@#$

第四篇:概率论与数理统计学习心得

概率论与数理统计学习心得

摘要:通过概率论与数理统计这门课的学习,我掌握了基本的概率论的知识,当然学习中也曾遇到过很多的问题。本文主要就概率论的发展历史、我的学习心得和其在生活中的应用三个方面来阐述我对这门课的理解。

关键词:概率论,数理统计,学习心得,发展历史,应用。

一、概率论与数理统计的发展历史:

早在1654年,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。比赛进行三局后,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,乙获胜的概率为(1/2)*(1/2)=1/4。所以甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。这个故事里出现了“期望”这个词,数学期望由此而来。

三年后,也就是1657年,荷兰著名的天文、物理兼数学家惠更斯企图自己解决这一问题,结果写成了《论机会游戏的计算》一书,这就是最早的概率论著作。在此期间,法国的费尔马与帕斯卡也在相互通信中探讨了随机博弈现象中所出现的概率论的基本定理和法则.惠更斯等人的工作建立了概率和数学期望等主要概念,找出了它们的基本性质和演算方法,从而塑造了概率论的雏形。

18世纪是概率论的正式形成和发展时期。1713年,贝努利的名著《推想的艺术》发表。在这部著作中,贝努利明确指出了概率论最重要的定律之一“大数定律”,并且给出了证明,这使以往建立在经验之上的频率稳定性推测理论化了,从此概率论从对特殊问题的求解,发展到了一般的理论概括。继贝努利之后,法国数学家棣谟佛于1781年发表了《机遇原理》。书中提出了概率乘法法则,以及“正态分布”的概念,为概率论的“中心极限定理”的建立奠定了基础。1706年法国数学家蒲丰的《偶然性的算术试验》完成,他把概率和几何结合起来,开始了几何概率的研究,他提出的“蒲丰问题”就是采取概率的方法来求圆周率π的尝试。通过贝努利等人的努力,使数学方法有效地应用于概率研究之中,使概率论成为数学的一个分支。数理统计是一个比较年轻的数学分支。多数人认为它的形成是在20世纪40年代克拉美的著作《统计学的数学方法》问世之时,它使得1945年以前的25年间英、美统计学家在统计学方面的工作与法、俄数学家在概率论方面的工作结合起来,从而形成数理统计这门学科。它是以对随机现象观测所取得的资料为出发点,以概率论为基础来研究随机现象的一门学科。

近二十年来,随着计算机的发展以及各种统计软件的开发,概率统计方法在金融、保险、生物、医学、经济、运筹管理和工程技术等领域得到了广泛应用。主要包括:极限理论、随机过程论、数理统计学、概率论方法应用、应用统计学等。极限理论包括强极限理论及弱极限理论;随机过程论包括马氏过程论、鞅论、随机微积分、平稳过程等有关理论。概率论方法应用是一个涉及面十分广泛的领域,包括随机力学、统计物理学、保险学、随机网络、排队论、可靠性理论、随机信号处理等有关方面。应用统计学方法的产生主要来源于实质性学科的研究活动中,例如,最小二乘法与正态分布理论源于天文观察误差分析,相关与回归分析源于生物学研究,主成分分析与因子分析源于教育学与心理学的研究,抽样调查方法源于政府统计调查资料的搜集等等。

二、学习心得与体会:

大二上学期,我们开始学习《概率论与数理统计》这门课程。如名称所述,课程内容分为两部分:概率论和数理统计。这两部分是有着紧密联系的。在概率论中,我们研究的随机变量,都是在假定分布已知的情况下研究它的性质和特点;而在数理统计中,是在随机变量分布未知的前提下通过对所研究的随机变量进行重复独立的观察,并对观察值进行分析,从而对所研究的随机变量的分布做出推断。因此,概率论可以说是数理统计的基础。

概率论与数理统计是一门在大学数学中极为重要的课程。以我个人的理解,如果说微积分、线性代数只是分析数学、或是说解题的工具,那么概率论才是真正把实际问题转换为数学问题的学问,因为它解决的并非纯数学问题,不是给你一个命题让你去解决,而恰恰是让你去构思命题,进而构建模型来想方设法解决实际问题。

在学习这门课程时,我逐渐掌握了几个要点:

1.在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例如为什么要引进“随机变量”这一概念。随机变量X(即从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画。此外若对一切实数集合B,知道P(X∈B)。那么随机试验的任一随机事件的概率也就完全确定了。所以我们只须求出随机变量X的分布P(X∈B)。就对随机试验进行了全面的刻画。2.在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差异要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从样本空间到实轴的单值实函数X(w),但它不同于一般的函数,首先它的定义域是样本空间,不同随机试验有不同的样本空间。

3.概率论中也有许多习题,在解题过程中不要为解题而解题,而应理解题目所涉及的概念及解题的目的,至于具体计算中的某些技巧基本上在高等数学中都已学过。因此概率论学习的关键不在于做许多习题,而要把精力放在理解不同题型涉及的概念及解题的思路上去。这样往往能“事半功倍”。

三、概率论与数理统计在生活中的应用:

以下举几个有趣的实例来说明概率论与统计在生活中的应用。

一、首先来看一个经典的生日概率问题:

1.团体有一群人,我绝对可以肯定至少有2人生日相同,这群人人数至少要多少?(假设一年是365天)

对于这个问题,某一团体中,绝对肯定至少有2人生日相同,即为必然事件,p=1。由抽屉原理可知,这群人至少要有366人。或者这样想,若是365人,则有可能这365人出生在一年的365天里,所以至少是366人。

2.如果某个随机而遇的团体有50人以上,我敢打贿,这个团体几乎可以肯定有生日相同的两个人,你相信吗?

要解决这个概率问题,我们首先来计算一下,50个人生日的搭配一共有多少种可能情况。第一个人生日,可以是一年中任何一天,一共有365种可能情况,而第二、第三及其它所有人生日也都有365种,这样50个人共有36550种可能搭配。如果50人的生日无一相同,那么生日搭配可能情况就少得多了。第一个人有365种可能,第二人因不能与第一个生日相同,只有364种可能,依次类推,如50人生日无一相同,其生日搭配情况只有365×364×363×……×317×316。那么50人生日无一相同的概率仅为3%,所以至少有两人的生日相同的概率为97%。所以我敢打赌是基本可以稳操胜券的。在这个实例中,我们可以清楚地发现有时自己感觉起来不太可能的事,其实概率是很大的。学习了概率论之后,我们要学会用概率论的知识判断周围的事物,使自己收益最大化。

二、中奖问题:

在各个国家都有各种彩票,使不少人一夜之间变成千万或百万富翁,但这种游戏究竟对参与者来说有没有利,现在我们用概率论的知识来简单地说明这个问题。

首先假设有十个人参与抽奖,每人要向彩票公司缴纳一元钱,彩票公司必须挣钱呀,所以它最多会拿出5元钱作为中奖者的奖金。因为每个人中奖几率一样,即十分之一,所以每个人获得回报的期望是0.5元,那么回报的期望小于自己的付出,显然对自己来说是不划算的。

当然,由于彩票的价钱一般不高,中奖奖金又数以千万计,所以人们购买彩票的欲望才会这么高。再者人都是想不劳而获的,所以虽然很多人知道中奖机率几乎为零,还是想像自己可能会是幸运儿。

三、考试问题:

大学英语四六级考试是全面检验大学生英语水平的一种考试,四六级考试改革前除写作和翻译20分外,其余85道题是单项选择题,每道题有四个选项,这种情况使个别学生产生碰运气和侥幸心理,那么靠运气能通过四六级考试吗?答案是否定的。假设不考虑写作和翻译20分,及格按60分算,则85道题必须答对51题以上,可以看成85重伯努利试验。概率非常小,相当于1000亿个靠运气的考生中仅有0.874人能通过。所以靠运气通过考试是不可能的。这也告诉我们做人做事要脚踏实地,在有些时候学会用概率论的知识来判断事物,但千万不可做投机取巧的事,而要真真实实,脚踏实地。

掌握了概率论的知识会让我们终生受益,它可以指导我们进行判断与决策,让我们避免人生的危机,走在通往光明的康庄大道上。当然远离了脚踏实地,就像那些天天指望中一百万、一千万的人那样,人生将会在漫无目的的等待和渴望中度过,一辈子浑浑噩噩,一事无成。

参考文献:《概率论公理化进程的历史研究》,张鑫,山东大学,2012-10-20 《数理统计学小史》,陈希儒,数理统计与管理,1998-04-10 《概率论的缘起、发展及其应用》,徐洪香,辽宁工学院学报,2001-06-30 《浅析现实生活中概率论的应用》,段静涵,华章,2012-02-10

第五篇:概率论与数理统计学习心得

《概率论与数理统计》学习心得

材料01 薛飞 2010021023

随着学习的深入,我们在大二下学期开了《概率论与数理统计》这一门课。概率论与数理统计是研究随机现象统计规律性的一门数学学科,其理论与方法的应用非常广泛,几乎遍及所有科学技术领域、工农业生产、国民经济以及我们的日常生活。学习这门课,不仅能培养我们的理论学习能力,也能在日后给科研及生活提供一种解决问题的工具。

说实话,这门课给我的第一印象就是它可能很难很抽象,很难用于实际生活中,并且对于这门课的安排与流程我并没有太确切的认识。但在第一节课上听了老师的讲解我才理出了一些头绪。这门课分为概率论与数理统计两个部分,其中概率论部分又是数理统计的基础。我们所要课程就是围绕着这两大部分来学习的。

如今经过了一学期的学习,在收获了不少知识的同时也颇有些心得体会。首先,它给我们提供了一种解决问题的的新方法。我们在解决问题不一定非要从正面进行解决。在某些情形下,我们可以进行合理的估计,然后再去解决有关的问题。并且,概率论的思维方式不是确定的,而是随机的发生的思想。

其次,在这门课程学习中,我意识到其实概率论与数理统计才是与生活紧密相连的。它用到高数的计算与思想,却并不像高数那样抽象。而且老师所讲例题均与日常生产和生活相关,让我明白了日常生产中如何应用数学原理解决问题,我想假设检验便是很好的诠释。

最后,概率论与数理统计应该被视为工具学科,因为它对其他学科的学习是不可少的。它对统计物理的学习有重要意义,同时对于学习经济学的人在探究某些经济规律也是十分重要的。

总之,通过学习这门课程,我们可以更理性的对待生活中的一些问题,更加谨慎的处理某些问题。

最后,感谢老师近半年来的辛苦教学与谆谆教导!

下载概率与数理统计学习心得word格式文档
下载概率与数理统计学习心得.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数理统计学习心得

    数理统计学习心得 现实中常常存在这种情况,我们所掌握的数据只是部分单位的数据或有限单位的数据,而我们所关心的却是整个总体甚至是无限总体的数量特征。例如民意测验谁会当......

    数理统计学习心得

    数理统计学习心得 现实中常常存在这种情况,我们所掌握的数据只是部分单位的数据或有限单位的数据,而我们所关心的却是整个总体甚至是无限总体的数量特征。例如民意测验谁会当......

    xx年学习概率与数理统计总结

    xx年学习概率与数理统计总结撰写人:___________日期:___________xx年学习概率与数理统计总结学习总结1.概率与数理统计包括概率论和数理统计概率论的基本问题是:已知总体分布的......

    概率与数理统计 2011年7月试题及答案

    全国2011年7月自学考试概率论与数理统计(二) 课程代码:02197 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填......

    概率论与数理统计的学习心得

    概率论与数理统计的学习心得 三四百年前在欧洲许多国家,贵族之间盛行赌博之风。掷骰子是他们常用的一种赌博方式。因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可......

    哈工大概率论与数理统计学习心得

    概率论与数理统计学习心得 学完《概率论与数理统计》这门课程,了解掌握了一些相关的基础知识与方法,并对该学科有了更加深刻的认识,实在是获益匪浅。本文围绕概率论发展、对本......

    [原创]概率论与数理统计的学习心得(模版)

    概率论与数理统计的学习心得 步入大二,我们开始学习『概率论与数理统计』这门课程。如名称所述,课程内容分为两部分:概率论和数理统计。这两部分是有着紧密联系的。在概率论中......

    《概率论与数理统计》课程学习心得(5篇模版)

    《概率论与数理统计》课程学习心得 1004012033 陈孝婕 10计本3班 有人说:“数学来源于生活,应用于生活。数学是有信息的,信息是可以提取的,而信息又是为人们服务的。”那么概率......