大数据观后感

时间:2019-05-12 15:47:09下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《大数据观后感》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《大数据观后感》。

第一篇:大数据观后感

2018年4月1日,我参加观看了贵州省组织的“新时代学习大讲堂”时代前沿知识专题讲座第二期的直播,本期的主体是“大数据”。主讲人是中国科学院院士,北京理工大学党委常委、副校长,贵州省大数据产业发展应用研究院院长梅宏同志。他从认识大数据、应对大数据、应用大数据、现状与思考四个方面作了全方面讲解,并谈了意见和建议。

总书记在中共中央政治局第二次集体学习时指出,大数据是信息化发展的新阶段。善于获取数据、分析数据、运用数据,是领导干部做好工作的基本功。所以,大力加快发展大数据是我们目前的重要工作之一。

梅院长在《认识大数据》中表示:大数据现象源于互联网及其延伸所带来的无处不在的信息技术应用、以及信息技术的不断廉价化。近年来,大数据蕴含的巨大应用价值和潜力已被广泛认知和期待,并兴起了大数据研究和应用的热潮,我们正在步入大数据时代。”他总结和概括了大数据的本质和内涵。在《应对大数据》一节分析了大数据对信息技术体系的挑战以及相关的技术发展趋势。在《应用大数据》一节中梅院长举了大量的实例来介绍大数据应用的成功情况。梅院长指出,他第一次感受到时代和数据的变化是他领工资的时候,以前将工资装入信封中,总是厚厚的一叠,突然有一天,信封里的厚度变薄了,里面只放一张工资条。,由此可见,数据时代给我们带了很多的便利。

梅院长指出,大数据的发展也面临着很多困难,如google的流感预测,2009年,GTF预判一个地区的流感爆发情况,其结果和CDC的数据十分接近,却比CDC提前了一到两周。这件事引发轰动后,其数据的准确性却在不断下降。其原因包括行为动机随时间变化和模型本身可能改变人的行为等。由此可见,数据也会受很多因素的影响。梅院长举了很多这方面的例子,如:人与机器同时回答一个问题:美国哪两个机场是由人的名字命名的,对于人来说,只需要经过一些筛选就可以得出答案,对于机器来说,他的数据只要在“机场”和“人名”中的某一项不完善,则无法得出结论。所以,我们还面临着很大的挑战。

我们从硬件为王的时代到软件为主导的时代,现在我们已经进入到了以数据为王的时代。我们都还处于初级阶段,还未到达我们的预期,我们所说的智能化到底有多智能,我们还尚未得知。梅院长指出,我国要发展大数据,应该借鉴已有的模式,兼顾现状和发展,建立符合我国国情的体系

这次讲座中我学习到了很多大数据的相关知识,受益匪浅。

第二篇:大数据时代观后感

浅谈《BBC地平线系列——大数据时代》 现今的我们正处于一个时代转型中,因为科技的发展与互联网的日益强大,数据将逐步取代旧事物,创造出新事物。当今社会以一种前所未有的方式,通过对海量数据进行分析,获得巨大价值的产品和服务,或深刻的洞见。数据可以反映出很多项指标,特别是海量数据的处理下,如何挖掘获得价值更是需要一种具有新型的复合能力人才,而得以用数据改变对世界的认知、改变市场、改变关系。以前单纯依靠人类判断力的领域都会被计算机系统所改变甚至取代,运用大数据的处理与分析,为我们的生活创造出前所未有的可量化的维度。大数据是指不用随机分析法这样的捷径,而采用所有数据的方法。“总体=样本”以前是做不到的,现在对于数据的储存、处理能力、统计技术与数据资源等各方面都有了飞速的发展,信息总量的变化也导致量变到质变的飞跃,并在其中去捕捉随机抽样所无法揭示的细节。

片中洛杉矶警方的犯罪预测系统,其使用的数学模型居然是用来预测余震的模型,因为犯罪案件的发生规律与余震的发生规律具有同种模式。片中我们可以看到模型根据过往的犯罪数据记录给出每一天最可能的案件发生类型和发生区域,而警方也确实通过这套系统抓获了罪犯,降低了区域案件发生率。

另一个很有趣的地方是对经济活动进行预测,片中的那家预测分析公司收集的数据极其庞大,为了预测当今人们的经济活动,竟然需要收集从中世纪至今的商品价格。但即便如此,他们预测的结果也更多是概率上的差别,比如51%对49%这样的比率,但仅仅2%的差别,就能够产生重大的结果。

而对人们的购买习惯进行预测中,提到了一个数学分支:决策论。如何在纷繁复杂的各种决定中找到最关键和最重要的,进而简化整个决策程序。这种理论的基础来源于:在超市购物。哪种食品我们最需要?哪种买了之后就必须买另一种?等等。从预测人们的购买习惯,到载人登陆火星,决策论应用的方面相当广阔。

从数据中挖掘出各种各样的模式用于预测未来犯罪,个性化广告,金融等等,天文观测等等,数据挖掘的前景很光明,但是人们的干预对数据也可能产生一定的影响,警察去巡逻了当然犯罪率会下降啊。还是金融预测的那个例子说的在理:算法并不一定要预测的100%正确,只需要正确率比错误率高就有巨大利润的可能

而以上这些,全都属于大数据应用。由此看来,大数据并不神秘,它远不像电视剧里讲述的那样让人恐慌,它只不过是一种工具,就像我们会使用物理和化学知识一样。虽然它必定会对这个世界产生深远的影响,但最终决定如何使用的依然是我们自己。*** 魏子昂

第三篇:读书报告——《大数据时代》观后感

读书报告——《大数据时代》观后感

大数据时代,一个被嚼烂的词汇,不知从何时起,兴起了数据科学的狂潮,本书核心论点,第一,要全体不要抽样,第二,要相关不要因果,第三,要效率不要精确。弊端:产业生态环境,数据安全隐私,信息公正公开。本书实例众多,理论残缺,可以说是举了一系列的例子要论证观点的,我们知道这种论证方式逻辑上存在谬误。故而,本书可以说是一本数据科学的正面的背景教学,供谈资。数据科学基础:云计算,人工智能和机器学习,大规模处理结构数据算法,日渐增长的计算速度和数据规模的指数增加。

从硅谷到北京,大数据话题正在被传播。随着智能手机以及“可佩带”计算设备的出现,我们的行为,位置甚至身体生理数据等每一点变化都成了可以被记录和分析的数据。以此为基础,反馈经济等新经济,新商业模式也正在开始形成。

大数据时代,我们可以有更全面的数据来研究,如楼上所说,甚至可以认为是样本=总体,那么,就不用再做一些统计上随机采样的工作了,基于大数据的研究可以关注到统计研究上难以关注到的一些小的、个别的情况,这些情况往往会呈现出更大的价值。

在数据量很小的时候,研究往往会对精确度做很严格的要求,而大数据时代会把这些条件放的更加宽松,不然大数据很难应用于研究,这种情况下,尽管数据的准确度降低了,但大量的数据会给我们带来额外的收益

基于前两个转变,我们不再寻找因果关系,而是去关注关联关系,即倾向关注“是什么”,而不是“为什么”(翻译此书的周涛不太认同这个观点,他认为是现在一些基于机器学习的算法得出的结果驱使我们去仅仅关注关联关系,因为我们现在很难把这些复杂算法转换成因果关系了)

现在谈论大数据的人真的很多,但是能全面的讲述大数据的人我个人的感觉是不多的。作者从非技术这个角度,从思维、价值、隐私、管理这些角度来细致的讲述大数据,这点我觉得是值得我们学习的,而且书中例子的结合,也很能看出作者的功力。

结合产品来谈数据的话,我个人觉得产品的设计是可以融入数据元素的,从数据废气到数据的可扩展性,到挖掘数据的价值完善自身的产品,这些都是可以思考的点。很自然的冒出来的一个想法,在我们的产品设计里面,可以突出用户留言之类的功能,通过这些功能的设计,收集对产品存在的问题、改进建议等等,或者说,这些功能以前也是有的,但是真正利用这些数据完善产品的思维却是丢失的。大数据的意义,也就是从这些已存在的数据中发觉价值,利用这些数据完善自身产品、业务是数据的基本功能,对数据的二次利用,也是我们可以考虑的。结合《大数据时代》这本书,我觉的书中提到的数据创新的思路是我们很值得学习的。

跟个人比较紧密相关的,我比较感兴趣大数据时代的角色定位,既有个人的定位、也有公司的定位,这个或许也是需要我再好好领悟的点吧。

至于《大数据时代》中提及的风险和掌控,这两张特别是掌控,我想是大多数谈论大数据人都很少去思考的,人人都想从大数据中分杯羹,但是大数据发展到一定阶段,这些问题都会是比较突出的问题。

大数据时代的知识能轻松获得,也并不意味着就能真正掌握知识。大数据时代的知识仅仅是一种资源,好比家中存放成百上千的书籍,如果不去研读,知识和人依然无关。不管处于怎样的一种时代,知识需要人们花苦功夫钻研,否则再多的知识也无意义。另外,现在不少人,凡是有不懂的问题,习惯性地上网搜索,不做任何甄别地将网上的知识和答案奉为宝典。长此以往,久而久之会使大脑变得懒惰,思维变得迟钝。大数据时代的知识,究竟是令人变得聪明还是愚笨?

《大数据时代》作者认为:“由大数据带来对人的重新认识,不是在阿波罗神庙,而是在小世界网络中,认识你自己。”我们从昨天的数据作用中认识自然、认识宇宙到今天通过大数据更多地认识网络和社会,我们的认识更加全面、更加深刻、也更加广泛。但是成就大数据的是无数努力造就小数据的人,他们探索大数据技术,认知大数据文化,并怀揣着对数据的敬畏和对规律的尊重。

我们本学期正在学习概率论与数理统计这门课,有人总是把大数据和统计学摆在两个对立面,认为有了大数据之后统计学就会逐渐消亡,而我并不这么认为。首先,数据量的增加,有助于减小数据的误差,如抽样误差等,能够极大地提高各类分析的精准度,这是大数据对于统计学的直接影响之一。

尽管当今的”大数据“潮流使得我们获得了海量的数据,但掌握这些海量的数据本身并无意义。真正的意义体现在对于含有信息的数据进行专业化的处理。要对大数据进行处理,即在样本几乎等于总体的情况下,以目前的分析方法以及分析设备成本较高,耗时较长。

相比之下,统计学的抽样方法似乎显得更加”经济实惠“。在实际的运用中,统计学能够以较低的成本,较少的数据,对数据进行精确度相对较高的的分析,这是大数据分析所无法替代的。

甚至有学者指出,很多情况下,只要有一定的数据,无关数据数量,分析结果不会有太大差别,因此大数据也就显得不重要了。不敢说这话完全正确,但很大程度上说明了统计学对于数据分析处理的意义。通过一定的数据即可满足人们对于数据处理的需要,统计学极大地提高了人们对于数据处理的效率。

大数据的来临会推动统计学的发展,衍生出更多的发展方向,但绝不会替代统计学,也不会减弱统计学的效果与意义。

第四篇:大数据(推荐)

《新技术讲座》论文2012-2013(1)

XXXX大学—

《微软新技术系列讲座》论文

大数据

一、背景及发展趋势

1.1.背景

大数据(BigData),或称巨量资料,指的是所涉及的资料规模巨大到无

/ 7

《新技术讲座》论文2012-2013(1)

法透过目前主流软件工具,在合理的时间内撷取、管理、处理并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume(海量)、Velocity(高速)、Variety(多样)、Value(价值)。

大数据作为时下最火热的IT行业的词汇,随之数据仓库、数据安全、数据分析、数据挖掘等等围绕大数量的商业价值的利用逐渐成为行业人士争相追捧的利润焦点。

早在1980年,著名未来学家阿尔文·托夫勒便在《第三次浪潮》一书中,将大数据热情地赞颂为“第三次浪潮的华彩乐章”。不过,大约从2009年开始,“大数据”才成为互联网信息技术行业的流行词汇。美国互联网数据中心指出,互联网上的数据每年将增长50%,每两年便将翻一番,而目前世界上90%以上的数据是最近几年才产生的。此外,数据又并非单纯指人们在互联网上发布的信息,全世界的工业设备、汽车、电表上有着无数的数码传感器,随时测量和传递着有关位置、运动、震动、温度、湿度乃至空气中化学物质的变化,也产生了海量的数据信息。

随着云时代的来临,大数据也吸引了越来越多的关注。《著云台》的分析师团队认为,大数据通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数

十、数百或甚至数千的电脑分配工作。

1.2.发展趋势

斯隆数字巡天收集在其最初的几个星期,比在天文学的历史,早在2000年的整个数据收集更多的数据。自那时以来,它已经积累了140兆兆 字节的信息。这个望远镜的继任者,大天气巡天望远镜,将于2016年在网上和将获得的数据,每5天沃尔玛处理超过100万客户的交易每隔一小时,反过来进口量数据库估计超过2.5 PB的是相当于167次,在美国国会图书馆的书籍。FACEBOOK处理400亿张照片,从它的用户群。解码最初的人类基因组花了10年来处理时,现在可以在一个星期内实现。

“大数据”的影响,增加了对信息管理专家的需求,甲骨文,IBM,微软和SAP花了超过15亿美元的在软件智能数据管理和分析的专业公司。这个行业自

/ 7

《新技术讲座》论文2012-2013(1)

身价值超过1000亿美元,增长近10%,每年两次,这大概是作为一个整体的软件业务的快速。

大数据已经出现,因为我们生活在一个社会中有更多的东西。有46亿全球移动电话用户有1亿美元和20亿人访问互联网。基本上,人们比以往任何时候都与数据或信息交互。1990年至2005年,全球超过1亿人进入中产阶级,这意味着越来越多的人,谁收益的这笔钱将成为反过来导致更多的识字信息的增长。思科公司预计,到2013年,在互联网上流动的交通量将达到每年667艾字节。

大数据,其影响除了经济方面的,它同时也能在政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。

谷歌搜索、Facebook的帖子和微博消息使得人们的行为和情绪的细节化测量成为可能。挖掘用户的行为习惯和喜好,凌乱纷繁的数据背后找到更符合用户兴趣和习惯的产品和服务,并对产品和服务进行针对性地调整和优化,这就是大数据的价值。大数据也日益显现出对各个行业的推进力。

大数据时代来临首先由数据丰富度决定的。社交网络兴起,大量的UGC(互联网术语,全称为User Generated Content,即用户生成内容的意思)内容、音频、文本信息、视频、图片等非结构化数据出现了。另外,物联网的数据量更大,加上移动互联网能更准确、更快地收集用户信息,比如位置、生活信息等数据。从数据量来说,目前已进入大数据时代,但现在的硬件明显已跟不上数据发展的脚步。

以往大数据通常用来形容一个公司创造的大量非结构化和半结构化数据,而现在提及“大数据”,通常是指解决问题的一种方法,即通过收集、整理生活中方方面面的数据,并对其进行分析挖掘,进而从中获得有价值信息,最终衍化出一种新的商业模式。

虽然大数据目前在国内还处于初级阶段,但是商业价值已经显现出来。首先,手中握有数据的公司站在金矿上,基于数据交易即可产生很好的效益;其次,基于数据挖掘会有很多商业模式诞生,定位角度不同,或侧重数据分析。比如帮企业做内部数据挖掘,或侧重优化,帮企业更精准找到用户,降低营销成本,提高企业销售率,增加利润。

/ 7

《新技术讲座》论文2012-2013(1)

未来,数据可能成为最大的交易商品。但数据量大并不能算是大数据,大数据的特征是数据量大、数据种类多、非标准化数据的价值最大化。因此,大数据的价值是通过数据共享、交叉复用后获取最大的数据价值。在他看来,未来大数据将会如基础设施一样,有数据提供方、管理者、监管者,数据的交叉复用将大数据变成一大产业。据统计,目前大数据所形成的市场规模在51亿美元左右,而到2017年,此数据预计会上涨到530亿美元。

二、实施应用

大的数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。

“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”———哈佛大学 社会学教授加里·金

随着大数据应用的爆发性增长,它已经衍生出了自己独特的架构,而且也直接推动了存储、网络以及计算技术的发展。毕竟处理大数据这种特殊的需求是一个新的挑战。硬件的发展最终还是由软件需求推动的,我们很明显的看到大数据分析应用需求正在影响着数据存储基础设施的发展。从另一方面看,这一变化对存储厂商和其他IT基础设施厂商未尝不是一个机会。随着结构化数据和非结构化数据量的持续增长,以及分析数据来源的多样化,此前存储系统的设计已经无法满足大数据应用的需要。存储厂商已经意识到这一点,他们开始修改基于块和文件的存储系统的架构设计以适应这些新的要求。

针对大数据的世界领先品牌存储企业有:IBM、EMC、LSISandForce、INTEL、惠普、戴尔、甲骨文、日立、赛门铁克等 对于大数据的存储问题,以下问题不可忽视:

容量问题

/ 7

《新技术讲座》论文2012-2013(1)

这里所说的“大容量”通常可达到PB级的数据规模,因此,海量数据存储系统也一定要有相应等级的扩展能力。与此同时,存储系统的扩展一定要简便,可以通过增加模块或磁盘柜来增加容量,甚至不需要停机。在解决容量问题上,不得不提LSI公司的全新Nytro™智能化闪存解决方案,采用Nytro产品,客户可以将数据库事务处理性能提高30倍,并且超过每秒4.0GB1的持续吞吐能力,非常适用于大数据分析。延迟问题

“大数据”应用还存在实时性的问题。特别是涉及到与网上交易或者金融类相关的应用。有很多“大数据”应用环境需要较高的IOPS性能,比如HPC高性能计算。此外,服务器虚拟化的普及也导致了对高IOPS的需求,正如它改变了传统IT环境一样。为了迎接这些挑战,各种模式的固态存储设备应运而生,小到简单的在服务器内部做高速缓存,大到全固态介质可扩展存储系统通过高性能闪存存储,自动、智能地对热点数据进行读/写高速缓存的LSI Nytro系列产品等等都在蓬勃发展。

安全问题

某些特殊行业的应用,比如金融数据、医疗信息以及政府情报等都有自己的安全标准和保密性需求。虽然对于IT管理者来说这些并没有什么不同,而且都是必须遵从的,但是,大数据分析往往需要多类数据相互参考,而在过去并不会有这种数据混合访问的情况,大数据应用催生出一些新的、需要考虑的安全性问题,这就充分体现出利用基于DuraClass™ 技术的LSI SandForce®闪存处理器的优势了,实现了企业级闪存性能和可靠性,实现简单、透明的应用加速,既安全又方便。

成本问题

对于那些正在使用大数据环境的企业来说,成本控制是关键的问题。想控制成本,就意味着我们要让每一台设备都实现更高的“效率”,同时还要减少那些昂贵的部件。目前,像重复数据删除等技术已经进入到主存储市场,而且现在还可以处理更多的数据类型,这都可以为大数据存储应用带来更多的价值,提升存储效率。在数据量不断增长的环境中,通过减少后端存储的消耗,哪怕只是降低几个百分点,这种锱铢必较的服务器也只有LSI推出的Syncro™ MX-B机架服务器启动盘设备都能够获得明显的投资回报,当今,5 / 7

《新技术讲座》论文2012-2013(1)

数据中心使用的传统引导驱动器不仅故障率高,而且具有较高的维修和更换成本。如果用它替换数据中心的独立服务器引导驱动器,则能将可靠性提升多达100倍。并且对主机系统是透明的,能为每一个附加服务器提供唯一的引导镜像,可简化系统管理,提升可靠性,并且节电率高达60%,真正做到了节省成本的问题。

数据的积累

许多大数据应用都会涉及到法规遵从问题,这些法规通常要求数据要保存几年或者几十年。比如医疗信息通常是为了保证患者的生命安全,而财务信息通常要保存7年。而有些使用大数据存储的用户却希望数据能够保存更长的时间,因为任何数据都是历史记录的一部分,而且数据的分析大都是基于时间段进行的。要实现长期的数据保存,就要求存储厂商开发出能够持续进行数据一致性检测的功能以及其他保证长期高可用的特性。同时还要实现数据直接在原位更新的功能需求。

灵活性

大数据存储系统的基础设施规模通常都很大,因此必须经过仔细设计,才能保证存储系统的灵活性,使其能够随着应用分析软件一起扩容及扩展。在大数据存储环境中,已经没有必要再做数据迁移了,因为数据会同时保存在多个部署站点。一个大型的数据存储基础设施一旦开始投入使用,就很难再调整了,因此它必须能够适应各种不同的应用类型和数据场景。

应用感知

最早一批使用大数据的用户已经开发出了一些针对应用的定制的基础设施,比如针对政府项目开发的系统,还有大型互联网服务商创造的专用服务器等。在主流存储系统领域,应用感知技术的使用越来越普遍,它也是改善系统效率和性能的重要手段,所以,应用感知技术也应该用在大数据存储环境里。

针对小用户

依赖大数据的不仅仅是那些特殊的大型用户群体,作为一种商业需求,小型企业未来也一定会应用到大数据。我们看到,有些存储厂商已经在开发一些小型的“大数据”存储系统,主要吸引那些对成本比较敏感的用户。

实际应用

/ 7

《新技术讲座》论文2012-2013(1)

包括网络日志,RFID,传感器网络,社会网络,社会数据(由于数据革命的社会),互联网文本和文件;互联网搜索索引;呼叫详细记录,天文学,大气科学,基因组学,生物地球化学,生物,和其他复杂和/或跨学科的科研,军事侦察,医疗记录;摄影档案馆视频档案;和大规模的电子商务。

三、心得体会

听完此次王老师的《大数据》讲座,让我受益匪浅。不仅充分了解了大数据的概念,大数据时代的起源、发展及实际应用产品的问世,而且对大数据的神奇很是惊讶。的确,未来的世界需要科技创新,需要技术变革,而大数据就是改变世界的助推器之一,作为即将进入IT行业的我们来说,这既是机遇,也是挑战!

/ 7

第五篇:大数据读后感

感于《大数据》

崮山裕禄学校 白海

我原以为《大数据》会是一本理论书籍。读下去才发现该书很像西方的教科书,运用案例和讲故事的方式,把美国数据开放、收集、使用背后的立法故事,公民故事,技术故事,商业故事娓娓道来,引人入胜,令我大开眼界。而更让我惊讶的是,《大数据》并不是技术类的书籍,它的着重点是公共管理,是在谈数据信息的公开,如何公开,如何收集,如何使用。对我们现在如何推动政务信息公开,财政支出公开,如何更好地发挥政府部门的数据服务民生,如何更好地实现社会公益组织与政府的和谐互动具有很好的启发作用。

我心目中的好书,应该是能开阔视野,启发思维,昭示未来的。我觉得《大数据》就是这样的一本书。

首先说下这本书好的地方就是将大数据变化为一本科普读物,不是讲大数据的关键技术和具体实现,而更多的是围绕美国政府基于数据的管理历史线条展开,让大家更加容易理解大数据在政府执政和公共事务管理中发挥的作用,所以我看完后最大的感觉就是关注智慧城市的相关人员完全有必要阅读该书,会对以后在智慧城市的管理和建设中如何更好的理解大数据,应用大数据,发挥大数据本身的业务价值有更好的理解。

为何近几年出现大数据,最重要的还是随着信息技术和互联网,管理的精细化,全球化和社交圈扩大,数据呈现了指数级的增长。2009年美国的数据,离散制造业966PB,政府848PB,传媒行业715PB,这是麦肯锡2011年出版的一份报告《大数据:下一代创新,竞争和生产率的前沿》里面的一个估算。正是由于数据指数级的增长,对数据的开放,信息自由,数据的采集,数据的分析和处理,预测和决策提出了更高的要求。

信息自由,一为信息公开,二为信息发布。公开是政府和某一社会特定主体的关系,是点对点的;而信息发布是政府和社会的关系,是点对面的。信息自由法已经成为美国不可缺少的一个基本法案,只有信息自由才谈得上进一步的数据开放和数据共享。我们信奉上帝,除了上帝任何人都要以数据说话。信息技术发展,数据指数级增长,已经彻底改变了政府,社会,商业群体的决策方法。需要的是形成一种数据驱动的决策方法,数据治国,需要基于实证的事实而非简单的意识形态。而真正要让数据能够上升到决策层面,首先需要的就是数据大范围采集,数据抽样,数据测量和数据质量管理。另外数据驱动和事件驱动是两种模式,数据驱动强调的是历史和预测,而事件驱动强调的是实时和响应。大数据有一个维度专门是指速度和快速响应,更需要考虑事件驱动和数据驱动融合。

帝国法则,详细讲述了数据的收集法则,使用法则,发布法则和管理法则。数据能够满足既定的用途,它才有质量。如果不能满足既定的目标和用途,就谈不上质量。换句话说,数据的质量不仅取决于它本身,还取决于它的用途。数据质量的问题涉及到数据收集,使用,发布等所有过程的问题。数据质量管理要有标准,有流程,有救助机制。

从软件的开源到数据的开放,我们过渡到一个新的世界,可以讲数据开放式本身的另外一个重点。在这个新的世界里面,数据远远比软件更加重要。从2004年以来,美国一直在进行数据开放运动,联邦政府也专门家里了数据开放门户网站DataGov,其主要目标就是通过数据开放,通过鼓励新的创意,让数据走出政府,得到更多的创新型应用。从而进一步巩固政府透明化,民主化和政府效能。

数据之争涉及到原始数据采集,数据质量,数据安全,数据粒度,数据价值,数据虚实多个维度。而DataGov不仅仅开放了原始数据,地理数据,还包含了数据分析工具的开放。数据开放为创新提供了无穷的燃料,因为创新型应用,数据的能量将逐层放大。

预测未来最好的方法,就是创造未来。而数据最大的价值仍然在预测上面,在解决了数据开放,数据采集,数据质量管理,数据处理后,最重要的作用就是基于数据进行科学的预测和决策。数据竞争将是企业赢之道,一些企业已经将他们商业活动的每个环节放在了数据收集,分析和行动的能力上。摘录大数据中令人难忘的语句:

一个真正的信息社会,首先是一个公民社会。

永远不要怀疑,那一小部分有思想并且执著努力的公民能够改变这个世界。事实上,人类的历史从来都是这样最高深的技术是那些令人无法察觉的技术,这些技术不停的把它们自己编织进日常生活,直到你无从发现为止。

下载大数据观后感word格式文档
下载大数据观后感.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    大数据试题

    大数据试题及答案 一、判断题 1. 集成创新是指基于新的科学发现原理基础之上的创新 。是否正确:否2. 中国(郑州)跨境电子商务综合试验区的获批时间是2016年8月。( )是否正确 : 否3......

    大数据试题

    《大数据前沿技术应用与发展》在线测试题 1、下面哪一项不属于大数据关键技术( ) (单选题) A.云计算 B.分布式文件系统 C.数据众包 D.关系型数据库 回答正确 2、最早提出......

    大数据读后感(推荐)

    《大数据时代》读后感 在21世纪,大量的数据在我们身边无时无刻的产生着,每个人都是大数据的生产者和接收者,但不是每个人都能成为大数据的分析者和预测者。 维克托·尔耶·舍恩......

    数据整理工作报告大全

    数据整理工作报告 1 数据整理内容 1.1 数据库新建 数据库新建主要完成业务数据新建整理:包括业务属性入库,业务逻辑关联处理,地块坐标入库、坐标上图等处理工作,提供数据库建库......

    大数据发展趋势

    大数据发展趋势2016年以来,国家政策持续推动大数据产业发展。2016年“十三五规划”中明确提出实施大数据战略,把大数据作为基础性战略资源,全面实施促进大数据发展行动,加快推动......

    十九大数据材料

    一、十九大专题 (一)经济建设 “创新驱动发展战略大力实施,创新型国家建设成果丰硕,天宫、蛟龙、天眼、悟空、墨子、大飞机等重大科技成果相继问世。” (二)文化建设 (三) 生态建......

    数据申请书

    篇一:企业数据申请书 企业数据购买申请书盛总: 您好! 市场渠道部已经组建完成,目前需要购买真实、细致的湖南省内的企业数据做以下用途: 第一:以真实、具体的市场数据做支撑,来做......

    数据统计

    一.数据统计(2013年北一经营情况) 收入:4096267元 其中自营3296845元 成本:自营部分 直接成本72.1%, 水电、社保、维修、其他成本8.52% 员工工资成本:17.53%毛利:19.5% 档口收入:7994......