第一篇:化工原理实验感想
化工原理实验心得体会
经过这一学期的化工原理实验课程的学习,我认识到化工原理实验这一独特的实验课程是用以工程中的实际问题为解决对象,通过小型装置模拟的方法所进行的实验。它与一般化学实验极为不同,化学实验以验证已存在的现象或者测定某一化学计量值为目的,化工原理实验则以解决工程问题为目的,在实验对象以及实验方法上也与其他不同。工程实验的研究对象是具体的工程装置中的现象。而对于化学工程,由于化学工程反应的多样性,具体对每一种反应都进行相应的实验是极其困难与复杂的。所以,在化学工程实验中,把各种反应装置和类型进行归类,分为几种明确的单元操作,从而进行分类研究,极大减少了工作量。而一套完整的化工装置,一定包含着很多的单元操作设备。为了对此进行完善的设计和有效的操作,我们必须掌握并正确判断有关设计或操作参数的可靠性,必须准确了解并把握设备的特性。实际化工过程中影响因素很多,有很多工程上的问题都难以用理论解释,并且反应过程的很多参数由于实际反应过程与理想条件差别很大,很难用理论计算的方法加以论证,所以必须依靠实验的方法解决。另外,在实际实验之前采用计算机模拟的方法,在电脑上预先操作,加深对实验过程和实验装置的认识,为实验做好充分准备。
全部的化工原理实验一共有六个实验:流体流动阻力的测定、离心泵性能实验、传热膜系数测定实验、精馏实验、氧解吸实验、流化床干燥实验。
流体流动阻力实验旨在掌握测定流体流动阻力的一般方法。不可压缩流体在圆形直管中做稳定流动时,由于粘性和涡流的作用产生摩擦阻力,就会在管内形成压降;而在流过突然扩大(或缩小)、弯头等部件时,由于流体运动的速度和方向突然变化,会产生局部阻力。实际化工生产过程中,流体输送是一个无处不在的过程,物料的流体输送所需要的动能、压力、管道内径等都是需要研究的问题。另外,通过完成对离心泵的实验,掌握其操作和调节方法,并测定在不同流量下的离心泵特性曲线,能更好的理解流体输送中流量、阻力、扬程等参数的关系,对整个流体输送过程有一个清醒的认识。传热是化工过程“三传一反”中的重要部分。化学变化的过程中都伴随着热量的变化,而化工生产过程中经常是需要对物料进行加热或冷却才能维持反应的正常进行。热量的传递通常是经由换热器、反应器夹套、冷却器等装置进行的。通过对传热过程的实验,加深对反应过程中热量传递的理解,深刻认识实际化工过程中的各种情况。在精馏实验中,精馏作为工程液相分离的重要方法,在化学工业中占据着极为重要的地位。精馏过程同时包含着物料传递和热量传递,整个精馏过程从开始到稳定,需要内部各塔板气液关系经过一个较长时间的调整。实际工业生产过程中,由于存在各种不理想情况,使得这个稳定的过程非常复杂,所以要求我们必须对精馏过程有一个完整的认识。解吸实验是气相分离过程的一个基础实验,通过对富氧水在解吸塔中的氧解吸过程,加深对气相分离过程的理解。流化床干燥实验,则是通过对小麦物料的流化干燥,建立对干燥过程的认知。
化工的最终目的在于工业大规模生产,要想对化工过程进行正确的设计,必须对各个基本单元操作进行有效的模拟和深刻的认识。化工原理实验要求实验者必须秉持严谨的态度进行实验探究,这对将来都是很有帮助的。
第二篇:化工原理实验感想(原创)
化工原理实验感想
化工原理对化工专业的学生来说是一门极其重要的课,在将来的工作中扮演着不可或缺的角色,所以我们十分重视,也学到了很多东西。同样的,化工原理实验是对课程的深化,对理论的进一步实践,让我们更深刻的领悟了公式的意义,也锻炼了解决实际问题的能力。
这学期总共做了三个实验:流体阻力实验、离心泵特性曲线测定以及传热实验,基本涵盖了我们这学期化工原理课程所学内容。
绪论课上,老师讲解了实验的注意事项以及实验数据处理方法、实验报告的格式要求等,这些使我体会到想要做好化工原理实验需要严谨的态度。随后我们观看了第一个演示实验即流体流动状态的模型,直观的了解了湍流、层流以及像孔板流量计的形成原因和工作原理。让我们对流体实验有了一个初步的认识,但那时我们还对很多知识概念都很模糊。第二次做了流体阻力实验,我们了解流体流动阻力的测定方法,确定摩擦系数与雷诺准数的关系以及局部阻力。根据上机课时在电脑上的模拟与老师的讲解我们分成小组摸索着开始了实验。大家边讨论边请教老师,终于完成了实验,但是一些细节的问题还是没有注意到,比如实验的范围的选择,点的分布以及组员之间配合的问题。随着实验一次次的进行到传热试验的时候,大家也渐渐掌握了实验方法,怎样高效的合作等等。
在课下写实验报告的过程中,我也学到了很多。因为完成报告需要用到很多软件Excel,Origin,CAD等,我们又翻出书来重新学习这些软件的用法,更加熟练地掌握了它们。而且报告中有疑问的地方小组之间还会一起讨论,一起研究思考题,查阅资料等,锻炼了同学们之间的沟通合作能力。最后数据处理部分还需要根据实际情况对实验测的数据进行修正与理论进行比较,这部分老师会进行详细的讲解,让我们知道怎样排除错误的数据,也掌握了修正数据的方法。
总之,上了几节实验课我渐渐的发现,这些实验器材都和化工仪器厂或者其他工厂里边的大型器械非常相近,这为我们以后踏入社会熟悉仪器的使用有很直接的关系。化工原理实验最重要的就是将理论付诸实践,化工原理实验就提供给我们一个平台,一个能更深入了解化工原理知识、更锻炼自己动手能力、在学习上更加丰富的平台。我们可以通过实验锻炼动手能力,团队合作能力,更能够把理论上的知识在实践中具体应用,增强了理论与实际的相结合。
感谢学校开始这一门课程,作为工科生,最为重要的就是动手和根据实际情况解决实际问题的能力,我一定会好好总结经验与教训,将从化工原理实验课上所获得的种种继续应用 到以后的学习中去。
第三篇:化工原理实验
吸收实验
?
一、实验目的1、? 熟悉填料吸收塔结构和流程
2、? 观察填料塔流体力学状况,测定压降与气速的关系曲线
3、? 掌握气相总体积系数kYa和气相总传质单元高度HOG的测定方法。
?
二、实验原理
1、? 填料塔流体力学特性
图2-73 填料层压降-空塔气速关系示意图填料塔的压降与泛点气速是填料塔设计与操作的重要流体力学参数,气体通过填料层引起的压降与空塔气速关系如图2-73所示:
当无液体喷淋时,干填料层压降Dp对气速u的关系在双对数坐标中可得斜率为1.8~2的直线,(图中aaˊ线)。当有液体喷淋时,在低气速下,(c点以前)对填料表面覆盖的液膜厚度无明显影响,填料层内的持液量与空塔气速无关,仅随喷淋量的增加而增大,压降正比于气速的1.8~2次幂,由于持液使填料层的空隙率减少,因此,压降高于相同气速下的干填料层压降,是图中bc段为恒持液区。随气速的增加液膜增厚,出现填料层持液量增加的“拦液状态”(或称载液现象),此时的状态点,图中的c点称载点或拦液点。气速大于载点气速后,填料层内的持液量随气速的增大而增加,压降与气速关系线的斜率增大,图中cd段为载液区段。当气速继续增大,到达图中d点,该点成为泛点,泛点对应的气速称为液泛气速或泛点气速。此时上升气流对液体产生的曳力使液体向下流动严重受阻,积聚的液体充满填料层空隙,使填料层压降急剧上升,压降与气速关系线变陡,图中d点以上的线段为液泛区段。填料塔实际操作的气速控制在接近液泛但又不发生液泛时的气速,此时传质效率最高。一般操作气速取液泛气速的60%~80%。
2、? 气相总体积吸收系数kYa的测定
(1)?? 气相总体积吸收系数
??(2—63)
式中:V ——惰性气体流量,kmol/s;
z ——填料层的高度,m;
W——塔的横截面积,m2;
Y1、Y2——分别为进塔及出塔气体中溶质组分的摩尔比,kmol(溶质)/kmol(惰性组分); ——塔顶与塔底两截面上吸收推动力与的对数平均值,称为对数平均推动力。
??(2—64)
在本实验中,由测定进塔气体中的氨量和空气量求出Y1,由尾气分析器测出Y2,再由平衡关系求出Y*。数据整理步骤如下:
(1)?? 空气流量
标准状态的空气流量为V。用下式计算:
?(2—65)
式中:V1——标定状态下的空气流量,(m3/h);
T0、P0——标准状态下空气的温度和压强,kPa;
T1、P1——标定状态下空气的温度和压强,kPa;
T2、P2——使用态下空气的温度和压强,kPa;
(2)?? 氨气流量
标准状态下氨气流量 用下式计算:
(2—66)
式中:——氨气流量计示值,(m3/h);
——标准状态下空气的密度,kg/m3;
——标准状态下氨气的密度, kg/m3。
若氨气中含纯氨为98%,则纯氨在标准状态下的流量V0〞用下式计算:
??? ?(2—67)
(3)?? 混合气体通过塔截面的摩尔流速:
(2—68)
式中:d——填料塔内径,m。
(4)?? 进塔气体浓度
??(2—69)
式中:n1——氨气的摩尔分率。
n2——空气的摩尔分率。
根据理想气体状态方程式:
∴? ?(2—70)
(5)??平衡关系式
如果水溶液<10%的稀溶液,平衡关系服从亨利定律,则:
Y*=mx???(2—71)
式中:m——相平衡常数,??(2—72)
H——亨利系数,Pa;
p——系统总压强,Pa.?(2—73)
?
式中:p*——平衡时的氨气分压,(mmHg或Pa),其数值可从附录5.1氨气的平衡分压表查得。
(6)?? 出塔气体(尾气)浓度
出塔气体(尾气)浓度由尾气分析仪测得,具体见附录5.4,尾气浓度的测定方法。尾气中氨的浓度由下式计算:
???(2—74)
式中:T1、p1——空气流经湿式气体流量计的压强和温度;
T0、p0——标准状态下空气的温度和压强;
V1——湿式气体流量计所测得的空气体积,ml;
Vs——硫酸体积,L;
Cs——硫酸浓度,mol/L;
rs——反应式中硫酸配平系数,本实验rs =1;
r2——反应式中氨配平系数,本实验r2=2。
(7)?? 出塔液相浓度
根据物料平衡方程:
(2—75)
因进塔液相为清水,即X2=0,则
?(2—76)
(8)?? 计算
由对数平均推动力公式计算,其中∵X2=0∴Y*=0
(9)?? 求气相总体积吸收系数KYa3、? 传质单元高度HOG的测定
?(2—77)
式中:HOG——气相总传质单元高度,m;
NOG——气相总传质单元数,无因次。
z已知,NOG求出后,则HOG可求得。
?
三、实验装置及流程
图2-74 吸收装置流程图
l—风机;2—空气调节阀;3—油分离器;4—转子流量计;5—填料塔;6—栅板;7—排液管; 8—喷头;9—尾气调压阀;10—尾气取样管;11—稳压瓶;12—旋塞;13—吸收盒;14—湿式气体流量计;
15—总阀;16—水过滤减压阀;17—水调节阀;18—水流量计;19—压差计;20、21—表压计;
22—温度计;23—氨瓶;24—氨瓶阀;25—氨自动减压阀;
26、27—氨压力表;28—缓冲罐; 29—膜式安全阀;30—转子流量计;31—表压计;32—闸阀
四、实验步骤及注意事项
1、? 实验步骤
(1)?? 填料塔流体力学测定操作
1)? 先全开叶氏风机的旁通阀,然后再启动叶氏风机,风机运转后再逐渐关小旁通阀调节空气流量。做无液体喷淋时,干填料层压降Dp对应气速u的关系。
2)? 全开旁通阀,再打开供水系统在一定液体喷淋量下,缓慢调节加大气速到接近液泛,使填料湿润,然后再回复到预定气速进行正式测定。
3)? 正式测定时固定某一喷淋量,测量某一气速下填料的压降,按实验记录表格记录数据。
4)? 实验完毕停机时,必须全开空气旁通阀,待转子降下后再停机。
(2)?? 气相总体积吸收系数测定的操作
1)? 实验前确定好操作条件(如氨气流量、空气流量、喷淋量)准备好尾气分析器。
2)? 按前述方法先开动水系统和空气系统,再开动氨气系统,实验完毕随即关闭氨气系统,尽可能节约氨气。
2、? 注意事项
(1)填料塔流体力学测定操作,不要开动氨气系统,仅用水与空气便可进行操作。
(2)正确使用供水系统滤水器,首先打开出水端阀门,再慢慢打开进水阀,如果出水端阀门关闭情况下打开进水阀,则滤水器可能超压。
(3)正确使用氨气系统的开动方法,事先要弄清氨气减压阀的构造。开动时首先将自动减压阀的弹簧放松,使自动减压阀处于关闭状态,然后打开氨瓶顶阀,此时自动减压阀的高压压力表应有示值,关好氨气转子流量计前的调节阀,再缓缓压紧减压阀的弹簧,使阀门打开,低压氨气压力表的示值达到5ⅹ104Pa或8ⅹ104Pa时即可停止。然后用转子流量计前的调节阀调节氨气流量,便可正常使用。关闭氨气系统的步骤和开动步骤相反。
(4)尾气浓度的测定,详见附录5.4。
?
五、实验报告要求
1、? 在双对数坐标纸上绘出干填料层压降Dp与空塔气速u的关系曲线及一定液体喷淋密度下的压降Dp与空塔气速u的关系曲线。
操作条件下液体的喷淋密度 [m3/m2.h]
???(2—78)
2、? 测定含氨空气~水系统在一定的操作条件下的气相总体积吸收系数KYa和传质单元高度HOG。
六、思考题
1、? 阐述干填料压降线和湿填料压降线的特征。
2、? 为什么要测Dp~u的关系曲线?实际操作气速与泛点气速之间存在什么关系?
3、? 为什么引入体积吸收系数KYa?它的物理意义是什么?
混合气体经过填料塔吸收后,塔顶尾气浓度是怎样测定?
第四篇:化工原理实验心得
化工原理实验心得
班级:应用化学(2)
学号:XXXXXX 姓名:XXXXX
本学期化工原理实验课堂上我们一共做了六个实验,分别为流体阻力的测定¸传热综合试验,精馏实验,填料吸收实验,洞道干燥实验,过滤实验。
开始的时候我并不明白实验仪器的使用方法,经过书上的介绍和老师的讲解我了解了仪器的基本构造和使用方法以及该注意的问题。本以为化工原理实验很繁琐,但在同学们的一起努力下实验显得轻松了很多,这和同学们配合默契老师讲解有很大的关系。
流体阻力的测定的实验宗旨是让我们了解流体流动阻力测定的方法,确定摩擦系数与雷诺系数的关系以及局部阻力。在传热综合试验中我们通过对管程内部插有螺旋线圈和采用螺旋扁管为内管的空气-水蒸气强化套管换热器的研究测定准数关联式NuBRem中B,m的值和强化比Nu/Nu。,了解强化热的基本理论和基本方式。在精馏实验我们认识了解精馏设备的结构,装置流程及仪表。在填料吸收实验中我们了解填料吸收它的结构和流体力学的性能。在过滤实验中我们学会了滤饼压缩性指数s和物料常数k的测定方法。
化工原理实验从各个方面锻炼了我们的能力。首先,我们在实验前期必须了解实验目的,实验原理以及操作步骤,这培养了我们自学能力其次我们在实验过程中必须细心,认真完成实验步骤,记录实验数据,最后是实验数据的处理和回答思考题这也是最重要的一个阶段,看是否验证实验原理,实验做得是否成功,让我们对实验更加清楚。
这学期化工原理实验课上我收获很多,也逐步对化工原理实验产生了浓厚的兴趣。
第五篇:化工原理实验心得
化工原理实验期末小结
院系: 专业: 学号: 姓名:
2014.11.01
这学期化工原理实验课堂上我们一共做了八个实验,都是一些非常重要的实验,分别为流体阻力的测定、离心泵特性曲线的测定、传热综合试验、过滤实验以及伯努利方程实验。现在实验已经结束,通过对这五个实验的学习,我加深了对化工原理课上一些理论的理解,也熟悉了实验的流程、操作步骤、并掌握了实验的内容,现结合以上几个实验对化工原理实验作如下总结。
流体阻力的测定实验旨在让我们了解流体流动阻力的测定方法,确定摩擦系数与雷诺准数的关系以及局部阻力。离心泵特性曲线实验旨在让我们了解离心泵的基本操作,为以后的泵与风机课程提供了入门的基础,另外就是测定单机离心泵在一定转速下的特性曲线。由于一开始对这两个实验不是很了解,使得流体的流量过小达不到实验预期效果。第二次实验是传热试验,这个实验是为了让我们掌握传热系数的测定方法。并比较汽—水套管、裸管和保温管的单位管长下的传热速率,掌握热电偶测温原理。第三次实验是伯努利方程实验。实验中,我们了解了通过实验的方法对伯努利方程进行了验证,让我们更能深刻的认识和学习伯努利方程以及运用伯努利方程解决一些实际问题。这学期的化工原理课使我收获很多,使我对基础知识有了更深的了解,同时也锻炼了我的动手能力和理论联系实际的能力,加深了我对化工原理的浓厚兴趣。
离心泵的流量调节,其实质上是改变泵的工作点。由于工作点是由泵的特性曲线和管路特性曲线所决定,只要改变丙条特性曲线之一均能达到目的。
(1)改变出口阀门开度
设离心泵原工作点M对应的流量为QM。若关小出口阀门阻力↑,曲线变陡,工作点由M→M1,流量QM到QM1减少。若开大出口阀门阻力↓,曲线变平坦,工作点由M→M1,流量QM到QM2增大。利用阀门调节流量迅速方便,且流量可连续变化,故通常采用此法调节。但关小阀门,阻力增大,需额外多消耗部分动力。
(2)改变泵的转速
泵的转速改变,其特性曲线也随之改变。当n向n1增大,泵特性曲线上移,工作 点由M→M1,流量QM到QM1增大。当n向n2减小,泵特性曲线下移,工作点由M→M2,流量QM到QM2减少。这种调节方法需要价格昂贵的变速机构,且不能做到流量的连续调节,很少采用。但流量随转速降低而减小,动力消耗相应降低,从动力消耗角度考虑则较为合适。
一般以3~4人为一小组合作进行实验,实验前必须作好组织工作,做到既分工、又合作,每个组员要各负其责,并且要在适当的时候进行轮换工作,这样既能保证质量,又能获得全面的训练。实验操作注意事项如下:
(1)实验设备的启动操作,应按教材说明的程序逐项进行,设备启动前必须检查:
(a)对泵、风机、压缩机、真空泵等设备,启动前先用手扳动联轴节,看能否正常转动。
(b)设备、管道上各个阀门的开、闭状态是否合乎流程要求。上述两点皆为正常时,才能合上电闸,使设备运转。
(2)操作过程中设备及仪表有异常情况时,应立即按停车步骤停车并报告指导教师,对问题的处理应了解其全过程,这是分析问题和处理问题的极好机会。
(3)操作过程中应随时观察仪表指示值的变动,确保操作过程在稳定条件下进行。出现不符合规律的现象时应注意观察研究,分析其原因,不要轻易放过。
化工原理实验从各个方面锻炼了我们的能力。首先,在每次实验前,我们都会写预习报告,了解实验目的,清楚实验原理,实验仪器,这培养了我们自学的能力;其次,在实验过程中,我们需要耐心,细心,认真的完成实验步骤,记录实验数据;最后就是实验过后的数据处理和回答思考题,这也是完成一个实验的最后一个阶段,是整个实验最终能够出结果的重要阶段,通过数据处理我们可以跟所学知识进行比较,看是否能够验证试验原理,实验做得是否成功,而思考题更是将我们引入了一个深入思考实验的阶段,让我们对实验更加清楚。
上了几节实验课我渐渐的发现,原来这些实验器材都和化工仪器厂或者其他工厂里边的大型器械非常相近,这为我们以后踏入社会熟悉仪器的使用有很直接的关系。化工原理实验最重要的就是将理论付诸实践,平时我们上化工原理课的时候,只能通过老师的讲解,自己的想象了解知识,许多时候我们甚至不能明白为什么就能有这样的结论。而化工原理实验就提供给我们一个平台,一个能更深入了解化工原理知识、更锻炼自己动手能力、在学习上更加丰富的平台。我们可以通过实验锻炼动手能力,团队合作能力,更能够把理论上的知
识在实践中具体应用,增强了理论与实际的相结合。
以上是我对这学期的几个实验的总结,通过这些实验我也确实从中学到了不少知识,对我的生活和学习都有很大的帮助。希望在这些实验的基础上能把下学期的实验做的更好。