用比例知识解答应用题 教学设计资料

时间:2019-05-12 16:35:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《用比例知识解答应用题 教学设计资料》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《用比例知识解答应用题 教学设计资料》。

第一篇:用比例知识解答应用题 教学设计资料

用比例知识解答应用题 教学设计资料

教学目的

1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系。

2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题。

3.通过复习,培养学生的分析能力、综合能力以及判断推理能力。教学重点

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题。教学难点

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题。教学过程

一、复习准备。

下面每题中的两种量成什么比例关系?(1)速度一定,路程和时间。

(2)总价一定,每件物品的价格和所买的数量。(3)小朋友的年龄与身高。

(4)正方体每一个面的面积和正方体的表面积。(5)被减数一定,减数和差。

第 1 页 谈话引入:我们今天运用正反比例的知识来解决实际问题。(板书:用比例知识解应用题)

二、探讨新知。

(一)教学例5(用比例解答下题)

修一条公路,总长12千米,开工3天修了1.5千米。照这样计算,修完这条路还要多少天? 1.学生读题,独立解答。2.学生反馈: 3.分析:

(1)为什么需要用正比例解答?(2)12和要求的天数之间有什么关系?

4.小结:我们在做题时,根据注意题目中的数量关系,不仅需要判定运用什么比例方法,而且还要注意找准题目中的对应关系。

(二)反馈。

1.某车队运送一批救灾物品,原计划每小时行60千米,6.5小时到达灾区,实际每小时行了78千米。照这样计算,行完全程需要多少小时?

2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?

三、巩固反馈。

1.一张大纸,如果裁成长36厘米,宽26厘米的小纸张,可

第 2 页 以裁成28张;如果裁成长18厘米,宽13厘米的小纸张,可以裁成多少张?

2.某车间有男工25人,女工20人。如果男工增加15人,要想使男工和女工人数的比不发生变化,女工应该增加多少人?

3.一项工程,10人去做24天可以完成;如果每人的工作效率不变,现在需要提前4天完成,需要多少人?

4.两个底面半径相等的圆柱体,第一个圆柱的高是第二个圆柱高的。第二个圆柱的体积是60立方米,第一个圆柱体的体积是多少立方米?

四、课堂总结。

通过这堂课的学习,你有什么收获?

五、课后作业。

1.生产小组加工一批零件,原计划用14天,平均每天加工1500个零件。实际每天加工2100个零件。实际用了多少天就完成了任务?

2.一个编织组,原来30人10天生产1500只花篮,现在增加到80人,按原来的工效,生产6000只花篮需要多少天?

六、板书设计

第 3 页

第二篇:《用比例解应用题复习》教学设计

《用比例解应用题复习》教学设计

教学目标

1.复习正反比例的意义,练习判断两种相关联的量成正比例还是成反比例。

2.复习用正比例方法解答应用题。3.复习用反比例方法解答应用题。教学重点和难点

判断两种相关联的量成什么比例;确定解答应用题的方法。教学过程设计(一)复习数量关系

判断两种相关联的量成不成比例,确定解答应用题的方法。1.被除数一定,除数和商。2.一条路,已修的和未修的。

3.梯形的上、下底长度一定,梯形的面积和它的高度。4.每块砖的面积一定,砖的块数和铺地面积。5.挖一条水渠,参加的人数和所需要的时间。6.从甲地到乙地所需的时间和所行走的速度。7.单位面积一定,播种面积和总产量。8.时间一定,速度和距离。

9.订阅《北京儿童》的份数和所需钱数。(二)复习应用题

1.某工厂八月份计划造一批机床,开工8天就造了56台,照这样速度到月底可生产多少台?

第一步,先找对应关系: 8天——56台 31天——?台

第二步,判断成什么比例?(每天生产的台数一定,成正比例。)请你在对应关系的旁边写上“正”字,决定用正比例方法做。解设到月底可生产x台。x=217 答:照这样速度月底可生产217台。

2.一批纸张,钉成20页一本的练习本,能钉600本。如果钉成24页一本的练习本,能钉多少本?

第一步,先找对应关系: 20页——600本 24页——?本

第二步,判断成什么比例?(纸张总页数一定,成反比例。)请你在对应关系的旁边写上“反”字,决定用反比例方法做。解钉成24页一本的练习本,可钉x本。24x=20×600 x=500 答:如果钉成24页一本的练习本可钉500本。学生独立地用老师教的分析应用题的思路和方法在本上做两道题。(1)火车3小时行135千米,用同样的速度5小时可以行多少千米?(2)有一批砖,25人去搬,6小时搬完,如果30人去搬,需要多少小时搬完?

(三)练习解答两步的比例应用题

1.李涛读一本书,每天读6页,30天可以读完。如果每天多读4页,多少天可以读完?

黑板上的对应关系变成: 解设x天读完。(6+4)x=6×30 10x=6×30 x=18 答:18天可以读完。

2.在第1题的基础上,改变问题。

李涛读一本书,每天读6页,30天可以读完,如果每天多读4页,提前几天读完?

对应关系:

解设如果每天多读4页,x天读完。(6+4)x=6×30 10x=6×30 x=18 30-18=12(天)答:提前12天读完。(指导学生分析、比较。)以上两道题,什么发生了变化?什么没有变?(条件和问题发生了变化,使原来的题复杂了一步,但用反比例解的方法没有变。)练习(学生独立分析,做题。)1.一辆汽车从甲城开往乙城,3小时行驶105km。用同样的速度又行驶了1.2h到达乙城,甲城到乙城有多少千米?

解设甲城到乙城有x千米。3x=105×(3+1.2)x=147 答:甲城到乙城有147km。

2.光明乡有144公顷水稻,5天收割了90公顷,照这样计算,剩下的几天可以收割完?

解设剩下的x天可以收割完。90x=5×54 x=3 答:剩下的3天可以收割完。(再用间接设的方法做两道题。)1.纺织厂的织布车间过去每人看16台织布机,每班需要42人,现在改进操作方法,每人看24台。每班可以节约几人?

16×42=24x 42-x 2.某机器厂原计划每天生产机器48台,15天可以完成任务,现在要12天完成任务,每天应增产多少台?

12x=48×15 x-48(四)总结

这节课我们主要复习了解正、反比例应用题的分析、思考方法。拿到应用题不要急于先做,要先读题,找出对应关系,判断是正比例还是反比例,就可以正确解答了。

课堂教学设计说明

解答正、反比例应用题是有其独特的思考方法的,所以在教案的设计上重点放在指导、解答正反比例应用题的思考方法上。

第一层次,先做判断练习,判断两个相关联的量是否成比例,成什么比例,因为这是正确解答正反比例应用题的基础。

第二层次,进行最基本的正反比例应用题的训练,着重训练学生怎样找对应关系,如何正确判断,然后再动笔做题,目的是培养学生良好的学习习惯和学习方法。

第三层次,进行间接设的正、反比例应用题的训练,目的是在原来分析问题的基础上,使学生的思维更高一步。

第三篇:正反比例应用题教学设计

正反比例应用题教学设计

西华小学

王丽英

教学目标

1.复习成正比例和反比例关系的量的意义。

2.掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、反比例关系的应用题。

3.进一步培养同学们分析、推理和判断等思维能力。教学重点和难点

1、判断两种相关联的量成什么比例;确定解答应用题的方法。教学准备 多媒体课件

教学过程设计

今天我们上一节复习课。(板书课题:正反比例应用题)出示目标学生齐读。通过这节课的学习,进一步理解和掌握正反比例意义及应用题的解题规律。

一、复习概念

1、什么叫成正比例的量?它的关系式是什么?

2、什么叫成反比例的量?它的关系式是什么?

3、正反比例它们有什么相同和不同的地方?

二、复习数量关系

1.判断下面每题里相关联的两种量是不是成比例?如果成比例,成

什么比例?

1.工作效率一定,工作时间和工作总量。()2.每块砖的面积一定,砖的块数和铺地面积。()3.挖一条水渠,参加的人数和所需要的时间。()4.从甲地到乙地所需的时间和所行走的速度。()5.时间一定,速度和距离。()2.选择题:

1.如果a = c÷b,那么当 c 一定时,a和b 两种量()。

① 成正比例 ② 成反比例 ③ 不成比例 2.步测一段距离,每步的平均长度和步数()。

① 成正比例 ② 成反比例 ③ 不成比例 3.比的后项一定,比的前项和比值()。

① 成正比例 ② 成反比例 ③ 不成比例 4.C= πd 中,如果c一定,π和 d()。

①成正比例 ② 成反比例 ③ 不成比例

5.化肥厂有一批煤,每天用15吨,可用40天,如果这批煤要用60天,每 天只能用几吨?下面等式()对。

40:15= 60:χ ② 40χ=15×60 ③ 60χ=15×40

三、复习简单应用题

例1 一台抽水机5小时抽水40立方米,照 这样计算,9小时可抽水多少立方米?

A、题中涉及哪三种量?其中哪两种是相关联的量? B、哪一种量是一定的?你是怎么知道的?

C、题中“照这样计算”就是说()一定,那么()和()成()比例关系。学生独立解答。

2、总结 正、反比例解比例应用题要抓的四个环节

3、判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

①、一台机床5小时加工40个零件,照这样计算,8小时加工64个。

②、一列火车从甲地到乙地,每小时行90千米,要行4小时;每小时行80千米,要行X小时。

③、一辆汽车3小时行180千米,照这样的速度,5小时可行300千米。

④、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

⑤、小敏买3枝铅笔花了1.5元,小聪买同样的铅笔5枝,要付给营业员多少钱?

⑥、甲种铅笔每支0.25元,乙种铅笔每支0.20元,买甲种铅笔32支的钱,可以买乙种铅笔多少支?

四、巩固练习

1、用一批纸装订练习本,如果每本30页可装订500本,如果每本比原来多10页,可装订多少本?

解:设可装订χ本。

(30+10)χ=500×30 4 0χ=15000 χ=15000 χ=375 答:可装订375本。

2、比一比,想一想,每一组题中有什么不同,你会列式吗?(1)修路队要修一条公路,计划每天修60米,8天可以修完。实际前25天就修了200米,照这样计算,修完这条路实际需要多少天?

(2)修路队计划30天修路3750米,实际5天就修了750米,照这样几天就能完成?

五、拓展延伸 用正反两种比例解答:

1、一辆汽车原计划每小时行80千米,从甲地到乙地要4.5小时。实际0.4小时行驶了36千米。照这样的速度,行完全程实际需要几小时?

六、全课总结

解答正反比例应用题,条件和问题不管多么复杂,我们要紧扣正反比例的意义,从题中的定量入手,对应用题中两种相关联的量进行正确的判断。定量等于两种相关联的量相除,则成正比例;定量等于两种相关联的量相乘,则成反比例。

七、板书设计

正反比例应用题

=K(一定)X×Y=K(一定)X和Y成正比例关系。X和Y成反比例关系。

正y、反比例解比例应用题要抓的四个环节 x第一、分析:可分四步。第一步:确定什么量是一定的。

第二步:相依变化的量成什么比例。

第三步:找准相对应的两个量的数。

第四步:解方程(根据比例的基本性质)第二、设未知数为X,注意写明计量单位。第三、根据正反比例的意义列出方程。第四、检验并答题。

正反比例应用题(复习课)——教学反思

西华小学

王丽英

正反比例的意义和应用题是人教版小学数学第十二册的内容,这个教学内容要求学生学会分析、判断两种相关联的量是否能成正比例或反比例,学会比较正反比例的相同点及不同点,同时学会用比例的方法解答相关的应用题,作为一节复习课,课前我首先进行了深入的研究,对本课内容进行了整合,自己设计了课件,一节课下来有很多感触: 我觉得在教学过程中做好了以下几方面:

1、能强化正、反比例意义概念的复习,因为正反比例的意义所涉及的文字内容较多,因此,在教学中以简化的概括让学生很容易就把两个意义的核心内容记牢。

2、重视知识间的对比,让学生在对比中发现正、反比例的相同点及不同点,杜绝在以后的学习中出现混乱的现象。

3、练习设计形式多样,让学生在完成不同类型的题目中巩固知识。

4、善于引导学生分析问题,回答问题,出现问题的根源所在,让学生真正掌握知识。

5、课堂教学的连贯性较强,知识之间的衔接严密,教学层次之间过渡自然,让不同层次的学生均能有所收获。

课后,我反复回忆了本节课,发现也存在不足之处,1.教学时没有让学生讨论分析题里的数量关系成什么比例,老师讲的多,学生说的少。

2.教学时不注重情感交流,应及时抓住学生的闪光点,及进表扬,充分让学生表现自己。

3.讲课节奏快,对差生辅导不到位。讨论的环节和交流的环节花费的时间少,抽的学生少,导致学生没有更好的掌握怎样从关键字眼上找正反比例的特征,因此有些学生不会判断。不会判断就不会列方程。对于这节课的不足我在今后的教学中要克服缺点,不断积累有效的教学经验,争取每节课都能收到很好的教学效果。

第四篇:正反比例应用题教学设计

正反比例应用题教学设计

教学目的:1.通过检测讲评,进一步理解和掌握正、反比例应用题的解题规律。

2.通过一题多变、一题多解等题组练习形式,由浅入深,由易到难,培养学生思维的灵活性。教学过程:

我们已经学过了正、反比例应用题,今天我们上一节检测讲评课课。(板书课题:正反比例应用题)通过这节课的学习,希望进一步理解和掌握正反比例应用题的解题规律。

一、检测题

1.什么叫成正比例的量?它的关系式是什么?

2.什么叫成反比例的量?它的关系式是什么?

3.判断下面两种量成不成比例?成什么比例?

a.订阅《中国少年报》的份数和钱数。

b.日产量一定,天数和总产量。

c.路程一定,速度和时间。

d.圆的周长和半径。

e.长方形的周长一定,长和宽。

f.圆锥的体积一定,底面积和高。

大家对概念掌握得较熟练,但在应用中可看出对概念的理解程度还是有差距的。两种量是不是成正反比例的量先明确是谁和谁,其次看它们是不是相互影响,若是,就看着两种量是不是属于积商关系,积商一定时,就下断论。例如人的身高和体重是不是成正反比例的量,这两种量一种量变化,另一种量不一定发生变化,直接否定。再如,圆周率和圆周长是不是成正反比例的量,因为圆周长变化时圆周率并不发生变化,也是直接否定。a、b、c、d、f中两种量相互影响,且积或商一定所以成正反比例的量,e中两种量相互影响,但不实际上已定,故不成正反比例的量。大家一定要把握概念的实质,灵活运用。

二、练一练

1.计算下列各题:

农具厂生产一批农具,3天生产360台,照这样计算,30天可生产多少台?(指名读题)

师:这道题用比例方法来解答请同学们自己做一做。(一人板演)

订正时请板演的同学先讲一讲,做题的时候自己是怎么想的?并板书列式:360/3=X/30。

师:这道题,你们觉得他做得咋样?如果工作时间30天不直接告诉我们,还可以怎么说?

生:如果再生产27天,一共可生产多少台?

师:同原题比较,这道题复杂在哪呢?

生:原题的条件是直接的,这题的条件是间接的。

生:原题问题所对应的量是已知的,这题问题所对应的量是未知的。

师:这道题怎样解答呢?(要求学生口头列出比例式)

生:解:设一共可生产X台,360/3=X/(3+27)(板书:360/3=X/(3+27))。

教师提问:3+27求的是什么?把3+27写成27可以吗?

教师强调:列式时一定要找准相关联的量中相对应的数。

师;这道题还可以怎样解答?

生:解:设27天可生产X台,360/3=X/27 X+360。(板书:360/3=X/27 X+360)。

教师小结:80%同学能做出地一题,第二问题就有点大了。其实象这道题,问题虽然变了,但题中基本数量关系未变,所以我们都是用正比例的方法来解答的。这道题我们可以直接设问题为X,列出这样的比例式(指360/3=X/(3+27))。也可以间接设27天的生产量为X,求出27 天的生产量再加上前3天的生产量,就得到了一共的生产量。

解答正比例应用题的关键一是要正确判断相关联的两种量是否成正比例,二是要找准相关联的量中相对应的数。

a.农具厂生产一批农具,原计划每天生产80台,20天完成任务。如果每天生产100台,需多少天完成?

师:这道题用比例方法来解答请同学们自己做一做。(一人板演)

教师订正时请同学讲述解题思路,并板书方程:100X=80*20。

将原题变成:

b.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天多生产20台,需多少天能完成任务?

c.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天比原计划多生产25%,需多少天能完成任务?

d.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天生产100台,可提前几天完成任务?

e.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天比原计划多生产20台,可提前几天完成任务?

以上4题要求学生独立完成。

教师评讲:通过刚才的变换我们发现,较复杂的反比例应用题,其复杂性表现在两个方面。一是已知条件发生变化,引起未知数X对应值的复杂化。二是问题发生变化,引起未知数X的复杂化。但不管怎样,我们要紧扣反比例的意义,对应用题中两相关联的量进行正确的判断。

三、巩固练习

1.学校买来塑料绳150米,先剪下12米做了4根跳绳。照这样计算,剩下的塑料绳可以做这样的跳绳多少根?(用算术和比例两种方法)

2.利民加工厂生产一批零件,原计划每天生产25个,30天可以完成。实际每天多生产5个,这样可提前几天完成?

3.根据题中所给的条件,你能提出什么问题?并列出比例式。

一个农具厂,计划一个月(30天)生产农具600台,结果4天生产了100台,照这样计算,?

小结:刚才这道题同学们所提的问题有:(1)完成计划需要多少天?(2)余下的任务还需要几天?(3)可比计划提前几天完成?(4)全月实际可生产多少台?(5)实际超过计划多少台?虽然不同,但因题中的基本数量关系未变,所以我们都是用正比例的方法来解答的。

4.用正、反比例两种方法解答下题。

修一条公路,原计划每天修300米,60天修完。实际3天就修了120米,照这样计算,实际用几天修完?

教师小结:我们分析问题的角度不同,解题的思路也就不同。刚才这道题,从“照这样计算”可知每天修路的米数是不变的,可用正比例的方法来解答。从“修一条公路”又可知这条路的长度是不变的。又可用反比例的方法来解答。

四、全课小结

解答正反比例应用题,条件和问题不管多么复杂,我们要紧扣正反比例的意义,从题中的定量入手,对应用题中两种相关联的量进行正确的判断。定量等于两种相关联的量相除,则成正比例;定量等于两种相关联的量相乘,则成反比例。

第五篇:按比例分配应用题教学设计

按比例分配应用题教学设计

教学目标:

1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;

2、培养学生应用所学数学知识解决实际问题的能力;使学生真正成为课堂的主人;

3、通过实例使学生感受到数学来源于生活,生活离不开数学。教学重点:

1、正确理解按比例分配的意义。

2、掌握按比例分配应用题的特征和解题方法。教学难点:能正确、熟练地解答按比例分配的实际问题。教学过程:

一、创设情境:

同学们,我们生活在深圳这个国际大都市相信对“投资”和“创业”这两个词一定不陌生吧?谁给大家说说。

1、PPT出示:李阿姨和张阿姨合伙开了家书店,第一年,她们各投资5万元,经过一年的苦心经营,除去交税,发工资和其他费用,共获利润10万元,你们说,她们各应分得利润多少万元?

2、小结:刚才两位阿姨由于投资额相同,所以他们获得的利润要按1:1来分配,这种分配方式也就叫平均分。

3、PPT出示:第二年,李阿姨仍然投资了5万元,张阿姨投资了4万元,除去一切开支,共获利润18万元。这一次,你说她们的利润该怎么分合理呢?

(组织交流)

师:这里的利润要按投资额的比进行分配比较合理。像这样,把一个数量按一定的比来进行分配,通常叫做按比例分配。(揭示课题:按比例分配)

二、初步感知

1、想一想,两位阿姨应该按怎样的比来分配?(板书:按投资数的比5:4进行分配)

2、谁能用自己的语言说说5:4的具体含义。

3、谁能用算式表示两位阿姨各应分得多少万元?

4、小结:通过刚才的生活实例,你认识了什么?(什么是按比例分配)

三、自主探究,合作研习:

1、谈话:其实,在生活中,像这样的按比例分配的例子是很多的,你有没有遇到过?说一个给大家听听,今天,我们学习第75页内容,由于我们昨天已经布置了预习,所以我们按以下提纲进行交流。

2、此时用PPT出示“学习内容”“学习目标”和“导学提纲” 学习内容:苏教版小学数学六年级上册第75页。

学习目标:

1、认识按比例分配的实际问题,掌握这类实际问题的解答方法。

2、认识连比,理解三个数量连比的意义。

导学提纲:

1、例5中“红色与黄色方格数的比是3:2”的含义是什么?

2、与同学说说例题中每种方法的解题思路。

3、你能画图理解这两种解题方法与同学交流吗?

4、你怎样理解“按照1:2:3涂成红、黄、绿三种颜色”这句话的含义?

5、“练一练”第2题是把180块巧克力按怎样的比来分配?

学生根据导学提纲进行下列活动,教师巡视,深入各小组交流,关注学困生。(1)独立思考,尝试解答。(2)小组交流,说说想法。(3)组织交流,形成思路。(4)选好内容,进行预展示。

四、集中展示

1、例5中“红色与黄色方格数的比是3:2”的含义是什么?

预设:(1)这里的3:2,也就是在30个方格,红色方格占3份,黄色方格占4份,一共有5份,红色方格占了方格总数的3/5,黄色方格占方格总数的2/5。求红色方格有多少个,就是求30的3/5是多少,求黄色方格有多少个,就是求30的2/5是多少。(2)把30个方格平均分成5份,3份是红色,2份是黄色。总份数3+2=5,红色方格为30÷5×3=18(格),黄色方格为30÷5×2=12(格)。

2、展示例5的解题思路及方法(结合图)

3、展示“试一试”的解题方法

4、说一说例5与“试一试”的相同点与不同点。

5、“练一练”第2题“练一练”与“试一试”的相同点与不同点。

小结:通过刚才的生活实例,你又有什么新的收获?你觉得按比例分配应用题的解答关键是什么?

预设:(1)关键是根据已知的比表示的份数关系,找出各种数量占总数量的几分之几,也就是把比转化成分数,再按求一个数的几分之几是多少乘法计算。(2)根据份数先求总份数,再求每份数,最后求几份数。

(板书: 比----分数 各种数量占总数量的几分之几,用乘法;比----份数,先求总份数,再求每份数,最后求几份数。)

五、反馈检测

1、本次校运动会上共有644人报名参加各项目比赛,其中男女运动员人数的比是4 :3,你知道参加各项比赛的女运动员有多少名吗?

2、低年级老师用一根长40厘米的铁丝围成一个三条边的比是4 : 7 : 9的三角形,请你帮低年级老师算算三条边的长度各是多少?

3、保税区小学六(1)班有学生35人,六(2)班有学生36人,六(3)班有学生34人。在第十二届田径运动会入场式上需要制作210面彩旗,按照六年级各班学生人数的比,六年级三个班各需要做多少面彩旗?

4、一个标准的篮球场是长方形,它的周长是86米。长与宽的比是28:15。求这个标准的篮球场的面积。

六、课堂小结:

学了这节课,你有什么收获?

七、课堂作业:76页,1、2、3、4。

板书设计:

按比例分配的解题方法

一要知道分配的数量,二要知道按怎样的比分配

下载用比例知识解答应用题 教学设计资料word格式文档
下载用比例知识解答应用题 教学设计资料.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    按比例分配应用题教学设计(范文模版)

    按比例分配应用题教学设计 教学内容:苏教版第十一册75页例5 教学目标: 1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征......

    解答乘除两步应用题教学设计

    《解答乘除两步应用题》教学设计 教学内容: 教学解答乘除两步应用题。课本第31页得例题4. 教学目标: 1.进一步理解除法应用题的数量关系,初步学会解答乘除两步运算的应用题。......

    用比例解决问题教学设计

    《用比例解决问题》例5教学设计 横道河子乡中心校 陈立强 教学目标: 1.掌握用正比例知识解答含有正比例关系问题的步骤和方法。 2.使学生熟练地判断两种相关联的量是否成正比......

    《用比例解决问题》教学设计

    《用比例解决问题》导学案 白冬梅 学习目标: 1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、......

    用比例解决问题教学设计

    用比例解决问题教学设计(一) 罗少小学 姚淑萍 教学内容:用比例解决问题(P61页) 教学目标: 1、知识与技能,使学生能正确判断实际问题中涉及的量成什么比例关系,能利用正、反比例正确......

    最终定稿《用比例解决问题》教学设计

    《用比例解决问题》 最后定稿教学设计 教学目标:1.掌握用正反比例知识解答含有正反比例关系问题的步骤和方法。 2.使学生熟练地判断两种相关联的量是否成正反比例,从而加深对正......

    用比例解决问题教学设计

    《用比例解决问题》教学设计 一、教学内容:教材第59页例5和第60页例6及“做一做”相关内容。 二、教学目标: 1、知识目标:使学生掌握用比例知识解答以前学过的用归一、归总方法......

    用比例解决问题教学设计(范文)

    用比例解决问题教学设计 教学内容:教科书P58~59例5、例6,练习九3~7题。 教学目标 1、 使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟......